JPH11101741A - Fiber liquid detector - Google Patents

Fiber liquid detector

Info

Publication number
JPH11101741A
JPH11101741A JP30142897A JP30142897A JPH11101741A JP H11101741 A JPH11101741 A JP H11101741A JP 30142897 A JP30142897 A JP 30142897A JP 30142897 A JP30142897 A JP 30142897A JP H11101741 A JPH11101741 A JP H11101741A
Authority
JP
Japan
Prior art keywords
fiber
fluorescence
liquid
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30142897A
Other languages
Japanese (ja)
Inventor
Masayuki Yokota
正幸 横田
Toshihiko Yoshino
俊彦 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP30142897A priority Critical patent/JPH11101741A/en
Publication of JPH11101741A publication Critical patent/JPH11101741A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fiber sensor capable of simply detecting a liquid highly stably in a non-contact state. SOLUTION: One end of two branched bundle fibers is attached to a scanning device 9 to two dimensionally scan the waterdrop placed on a copper plate 18. Exciting light and fluorescence are split by a beam splitter 10 and the exciting light is detected by a photodetector (exciting light) 15 having sensitivity only to exciting light to obtain an output signal. The fluorescence is condensed by a lens 12 to pass through a filter 19 removing only exciting light and only a fluorescence signal is detected by a photodetector 13. The obtained voltage signal is amplified by a signal amplifier 14 to obtain an output signal 17. By calculating the ratio of the obtained output signals 16, 17, the attenuation of fluorescence can be estimated and a waterdrop and other liquid can be discriminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、主として光ファイバ
を利用して物体に付着した液体を非接触で識別検出を行
う装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting and detecting liquid adhering to an object in a non-contact manner mainly by using an optical fiber.

【0002】[0002]

【従来の技術】従来より、物体に付着した液体の検出を
行うのには、光ファイバをプローブとして直接接触させ
て、ファイバ中を導波する光の漏れによる減衰を測定す
ることにより行う方法が知られている。光の減衰を遠隔
測定するのにOTDR(ファイバ内光パルスレーダ)等
の技術が用いられるが、この方法では複雑な装置を必要
とし、信号の処理をコンピュータ処理で行っている。
2. Description of the Related Art Conventionally, a method of detecting a liquid adhering to an object has been performed by directly contacting an optical fiber as a probe and measuring attenuation due to leakage of light guided in the fiber. Are known. Techniques such as OTDR (optical pulse radar in fiber) are used to remotely measure the attenuation of light, but this method requires a complicated device and performs signal processing by computer processing.

【0003】[0003]

【発明が解決しようとする問題】しかし従来の方法で
は、測定しようとする液体に常にプローブが接触してい
るために、繰り返し測定を行うことが難しく、また、光
の漏れによる減衰を測定するだけでは液体の識別を行う
ことが難しい。
However, in the conventional method, since the probe is constantly in contact with the liquid to be measured, it is difficult to repeat the measurement, and only the attenuation due to light leakage is measured. Then, it is difficult to identify the liquid.

【0004】[0004]

【問題を解決するための手段】本発明は、液体の検出を
行うのに、目的とされる液体固有の吸収スペクトルを用
いることで液体を弁別して検出することが可能であり、
また反射光を使うことで非接触の検出を可能にさせるも
のである。
According to the present invention, it is possible to discriminate and detect a liquid by using a target absorption spectrum specific to the liquid to detect the liquid.
Also, non-contact detection is enabled by using reflected light.

【0005】[0005]

【作用】液体にはそれぞれ固有の吸収スペクトルがあ
り、特に近赤外線から中赤外線域にかけて強い吸収スペ
クトルを持っているものが多い。
[Function] Each liquid has its own absorption spectrum. In particular, many liquids have a strong absorption spectrum in the near infrared to mid-infrared range.

【0006】Er3+やTm3+などの希土類金属イオ
ンをドープした光学結晶を特定の波長の光源により励起
すると、近赤外線域から中赤外線域に蛍光を放射する。
When an optical crystal doped with a rare earth metal ion such as Er 3+ or Tm 3+ is excited by a light source having a specific wavelength, it emits fluorescence from the near infrared region to the mid infrared region.

【0007】このような結晶から放射される蛍光と、励
起に用いられる光源の組み合わせを適当に選ぶことによ
り、液体の吸収スペクトルに対して吸収を受ける蛍光
と、吸収を受けない励起光の2つの光に対する液体の吸
収率の違いを使い、特定の液体だけを検出する。
By appropriately selecting a combination of fluorescence emitted from such a crystal and a light source used for excitation, there are two types of excitation light, fluorescence that is absorbed by the absorption spectrum of the liquid and excitation light that is not absorbed. Using the difference in the absorptivity of liquid to light, only specific liquid is detected.

【0008】物体に付着した液体を遠隔、非接触検出す
るために光ファイバを用いる。このファイバは蛍光と励
起光とを導波させるだけでなく、測定対象からの反射光
を受光する測定プローブの役割を果たす。
An optical fiber is used for remote, non-contact detection of a liquid attached to an object. This fiber not only guides the fluorescence and the excitation light, but also functions as a measurement probe that receives the reflected light from the measurement target.

【0009】プローブファイバはファイバ走査装置を用
いて走査されながら、受光した励起光、蛍光の強度の比
を計算することで、2つの光のファイバに対する結合損
失や時間的な光源の強度変動を相殺することができ、液
体に吸収された蛍光の減衰だけを測定することが可能と
なる。
While the probe fiber is scanned by the fiber scanning device, the ratio between the intensity of the received excitation light and the intensity of the received fluorescence is calculated, thereby canceling the coupling loss between the two lights to the fiber and the temporal fluctuation in the intensity of the light source. It is possible to measure only the decay of the fluorescence absorbed in the liquid.

【0010】蛍光の減衰の測定には、ディジタル電圧計
やオッシロスコープを使う。
[0010] A digital voltmeter or an oscilloscope is used to measure the fluorescence attenuation.

【0011】蛍光の減衰を測定しながら走査プローブフ
ァイバを制御することで、液体の検出と同時にその大き
さや位置も測定することができる。
By controlling the scanning probe fiber while measuring the fluorescence attenuation, the size and position of the liquid can be measured simultaneously with the detection of the liquid.

【0012】この信号処理やファイバ走査制御はコンピ
ュータを用いることもできる。
A computer can be used for the signal processing and the fiber scanning control.

【実施例】以下、本発明に関わる液体検出装置とその応
用を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a liquid detecting device according to the present invention and its application will be described in detail.

【0013】図1は、本発明の実施例を示すための全体
の構成図である。光源部1から出射した光線を、ファイ
バ液体検出装置2、信号処理部3に通す構成になってい
る。
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention. The light emitted from the light source 1 is passed through the fiber liquid detector 2 and the signal processor 3.

【0014】図2は、本発明の一実施例を詳細に示すた
めの水分センサの構成図である。励起光源としてLD
(レーザダイオード)光源5から出射した光をレンズ6
を通してTm3+:YAG結晶7へ照射し、得られた蛍
光と励起光とを走査プローブである2分岐バンドルファ
イバ8へ導波させる。出力信号のS/N比を向上させる
ために、LDは注入電流を信号発生器4からの交流信号
で変調されており、励起光および蛍光の光出力も交流変
調されている。
FIG. 2 is a block diagram of a moisture sensor for showing one embodiment of the present invention in detail. LD as excitation light source
(Laser Diode) Light emitted from the light source 5 is
Irradiates the Tm 3+ : YAG crystal 7 through the through-hole, and guides the obtained fluorescence and excitation light to a two-branch bundle fiber 8 which is a scanning probe. In order to improve the S / N ratio of the output signal, the injection current of the LD is modulated by an AC signal from the signal generator 4, and the optical output of the excitation light and the fluorescence is also AC modulated.

【0015】2分岐バンドルファイバの出力端面内での
光強度分布が一様になるように蛍光、励起光をファイバ
中へ導波させる。
Fluorescence and excitation light are guided into the fiber so that the light intensity distribution in the output end face of the two-branch bundle fiber becomes uniform.

【0016】2分岐バンドルファイバの片端はステッピ
ングモータ駆動の走査装置9に取り付けられており、銅
板18上に置かれた水滴の上を2次元的に走査できる。
One end of the two-branch bundle fiber is attached to a scanning device 9 driven by a stepping motor, and can two-dimensionally scan a water drop placed on the copper plate 18.

【0017】水滴を透過して銅板表面で反射した励起
光、蛍光は2分岐ファイバ8中を再び導波し、出力端側
に置かれたビームスプリッタ10で2方向に分けられ
る。
The excitation light and the fluorescence transmitted through the water droplet and reflected on the surface of the copper plate are guided again in the two-branch fiber 8, and are divided into two directions by the beam splitter 10 placed on the output end side.

【0018】ビームスプリッタ10で分けられた蛍光、
励起光はファンドルファイバ11を通り、励起光のみに
感度を持つ光検出器(励起光)15で検出されて出力信
号16が得られる。
Fluorescence separated by the beam splitter 10,
The excitation light passes through the fundal fiber 11 and is detected by a photodetector (excitation light) 15 having sensitivity only to the excitation light, and an output signal 16 is obtained.

【0019】もう一方の光はレンズ12で集光され励起
光を除去するフィルタ19を通り光検出器13により蛍
光信号のみを検出する。得られた電圧信号は信号増幅器
14により増幅されて出力信号17が得られる。
The other light is condensed by the lens 12 and passes through the filter 19 for removing the excitation light, and the photodetector 13 detects only the fluorescence signal. The obtained voltage signal is amplified by the signal amplifier 14 to obtain an output signal 17.

【0020】得られた出力信号16と17の比(信号1
7/信号16)を計算することにより蛍光信号の減衰を
測定する。
The ratio of the obtained output signals 16 and 17 (signal 1
7 / Signal 16) is calculated to determine the fluorescence signal decay.

【0021】図3は、得られた出力電気信号比の波形例
である。プローブファイバが水滴上を走査すると、蛍光
は水に吸収されることから蛍光信号が減衰し、水に吸収
されない励起光との電圧比が大きく落ち込む。
FIG. 3 is a waveform example of the obtained output electric signal ratio. When the probe fiber scans over the water droplet, the fluorescence signal is attenuated because the fluorescence is absorbed by the water, and the voltage ratio with the excitation light not absorbed by the water drops significantly.

【0022】図4は水滴上を走査したプローブファイバ
の水滴中心との相対位置に対して、得られた出力信号1
6と17の比との関係を示す測定例である。測定値と計
算値の良い一致が見られる。
FIG. 4 shows the obtained output signal 1 with respect to the relative position of the probe fiber scanned on the water drop to the center of the water drop.
It is a measurement example which shows the relationship between the ratio of 6 and 17. Good agreement between measured and calculated values is seen.

【0023】図5は、水滴の識別検出を示す測定例であ
る。銅板上にある水滴、油、表面の錆による変色などに
対して、プローブファイバを2次元的に走査した結果で
ある。蛍光と励起光の信号強度比に対する等高線の高さ
から蛍光の減衰を見積もることができ、水滴と他の液体
とを区別できることが確認される。
FIG. 5 is a measurement example showing the identification and detection of a water drop. This is a result of two-dimensionally scanning the probe fiber for water droplets, oil, discoloration due to rust on the surface, and the like on the copper plate. The decay of the fluorescence can be estimated from the height of the contour line with respect to the signal intensity ratio of the fluorescence and the excitation light, and it is confirmed that the water droplet can be distinguished from another liquid.

【0024】同様な原理で、水だけでなく油やアルコー
ルなどを検出することができる。測定対象は銅板に限ら
ず、反射光が得られればどんなものに対しても測定でき
る。特に、測定対象の表面形状や他の液体などと区別し
て検出できるのが本装置の特徴である。
On the same principle, not only water but also oil and alcohol can be detected. The object to be measured is not limited to a copper plate, and any object can be measured as long as reflected light can be obtained. In particular, a feature of the present apparatus is that it can be detected separately from the surface shape of the measurement target and other liquids.

【0025】本方式による液体検出装置は、反射光の光
強度の比を用いているので光源の時間的な強度変動やプ
ローブファイバへの結合損失などによる誤差を軽減でき
る。
Since the liquid detecting apparatus according to the present method uses the ratio of the light intensity of the reflected light, errors due to temporal intensity fluctuations of the light source and coupling loss to the probe fiber can be reduced.

【発明の効果】本発明によると、簡単な構成によって、
高安定、識別性に優れた液体検出が可能となる。これは
従来のファイバセンサ測定技術では実現されていないこ
とであり、新しい計測技術として広い応用範囲を持つ。
According to the present invention, with a simple configuration,
Liquid detection with high stability and excellent discrimination becomes possible. This is not realized by the conventional fiber sensor measurement technology, and has a wide application range as a new measurement technology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に関わる計測装置の実施例を説明するた
めの全体図である。
FIG. 1 is an overall view for explaining an embodiment of a measuring device according to the present invention.

【図2】本発明に関わるファイバ液体センサの実施例を
説明するための構成図である。
FIG. 2 is a configuration diagram for explaining an embodiment of a fiber liquid sensor according to the present invention.

【図3】本発明に関わる電気出力信号の実施例を示す図
である。
FIG. 3 is a diagram showing an embodiment of an electric output signal according to the present invention.

【図4】本発明に関わるファイバ液体センサの実施例を
示す図である。
FIG. 4 is a diagram showing an embodiment of a fiber liquid sensor according to the present invention.

【図5】本発明に関わるファイバ液体センサの実施例を
示す図である。
FIG. 5 is a diagram showing an embodiment of a fiber liquid sensor according to the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 ファイバ液体検出装置 3 信号処理部 4 信号発生器 5 励起光源 6 レンズ 7 Tm3+:YAG結晶 8 2分岐バンドルファイバ 9 ファイバ走査装置 10 ビームスプリッタ 11 バンドルファイバ 12 レンズ 13 光検出器 14 信号増幅器 15 光検出器 16 励起光出力信号 17 蛍光出力信号 18 銅板 19 励起光除去フィルタReference Signs List 1 light source 2 fiber liquid detection device 3 signal processing unit 4 signal generator 5 excitation light source 6 lens 7 Tm 3+ : YAG crystal 8 2-branch bundle fiber 9 fiber scanning device 10 beam splitter 11 bundle fiber 12 lens 13 photodetector 14 signal amplifier 15 Photodetector 16 Excitation light output signal 17 Fluorescence output signal 18 Copper plate 19 Excitation light removal filter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光源として被測定物体の吸収バンドに含ま
れない波長の励起光源と、その励起光源により被測定物
体の吸収バンドに含まれる波長の蛍光を発生させる結晶
などの発光体を用い、光源から発生する光を光ファイバ
に入射し、ファイバ出力端からの出力光を、ファイバ端
を空間走査しながら測定対象液体に照射し、測定対象を
透過した反射光を同じファイバ端から取り込み、取り込
んだ光を別のファイバ端から取り出し、励起光源波長と
被測定物体の吸収を受ける波長成分に分離して光強度を
測定する装置を具備し、それぞれの強度比を算出する信
号処理装置を有し、算出値をファイバ出力端の位置の関
数として表示する装置を具備することを特徴とした装
置。
1. A light source comprising: an excitation light source having a wavelength not included in an absorption band of an object to be measured; and a luminous body such as a crystal for generating fluorescence having a wavelength included in an absorption band of the object to be measured by the excitation light source. The light generated from the light source is incident on the optical fiber, the output light from the fiber output end is irradiated onto the liquid to be measured while spatially scanning the fiber end, and the reflected light transmitted through the measurement target is taken in from the same fiber end and taken in. It has a device that extracts light from another fiber end, separates the excitation light source wavelength into wavelength components that are absorbed by the object to be measured, and measures the light intensity, and has a signal processing device that calculates the respective intensity ratios. An apparatus for displaying the calculated value as a function of the position of the fiber output end.
JP30142897A 1997-09-28 1997-09-28 Fiber liquid detector Pending JPH11101741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30142897A JPH11101741A (en) 1997-09-28 1997-09-28 Fiber liquid detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30142897A JPH11101741A (en) 1997-09-28 1997-09-28 Fiber liquid detector

Publications (1)

Publication Number Publication Date
JPH11101741A true JPH11101741A (en) 1999-04-13

Family

ID=17896770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30142897A Pending JPH11101741A (en) 1997-09-28 1997-09-28 Fiber liquid detector

Country Status (1)

Country Link
JP (1) JPH11101741A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044735A (en) * 2004-07-12 2011-03-03 Nikon Corp Exposure equipment and device manufacturing method
CN103884706A (en) * 2014-04-08 2014-06-25 苏州优谱德光电科技有限公司 Online original pulp liquor detection and classification system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044735A (en) * 2004-07-12 2011-03-03 Nikon Corp Exposure equipment and device manufacturing method
JP2012009897A (en) * 2004-07-12 2012-01-12 Nikon Corp Exposure device and device manufacturing method
CN103884706A (en) * 2014-04-08 2014-06-25 苏州优谱德光电科技有限公司 Online original pulp liquor detection and classification system

Similar Documents

Publication Publication Date Title
US7060980B2 (en) Method and system for combined photothermal modulated reflectance and photothermal IR radiometric system
CN1662808B (en) Optical technique for detecting buried defects in opaque films
US5569911A (en) Fiber optic system for remote fluorescent sensing using excitation and return fibers
CN111812037A (en) Laser composite system and method integrating cleaning, polishing and ultrasonic detection
JPS63140927A (en) Distribution temperature sensor
CN111712908B (en) Method and apparatus for measuring carrier lifetime
CN111208084A (en) Optical fiber gas concentration remote sensing detection device and method based on coherent detection method
CN212340975U (en) Laser composite system integrating cleaning, polishing and ultrasonic detection
JP2000347229A (en) Arrangement for adjusting laser output and/or pulse width of short-pulse laser in microscope
JPH11326210A (en) Chlorophyll fluorescence measuring instrument
CN211528208U (en) Optical fiber gas concentration remote sensing detection device based on coherent detection method
UST102104I4 (en) Scanning optical system adapted for linewidth measurement in semiconductor devices
JPH11101741A (en) Fiber liquid detector
JP3065446B2 (en) Ultrasonic vibration measurement method
JP2004512521A (en) Device for online measurement of laser pulse and measurement method by photoacoustic spectroscopy
US5926270A (en) System and method for the remote detection of organic material in ice in situ
WO2005004713A1 (en) Method and apparatus for distinguishing materials
JPH06177218A (en) Measuring device for free-carrier life and the like of semiconductor
JPH11142238A (en) Transmission device for ultraviolet information and frame monitoring apparatus
JPH10332527A (en) Object inspector
JPH1183812A (en) Ultrasonic wave detecting method by laser beam and device therefor
JPH0821849A (en) Measuring method for high-temperature body by laser doppler system
US4522065A (en) Remote pressure sensor
JPS61194335A (en) Scanning type surface film analyzing method and apparatus
JPH11352068A (en) Diamond discrimination method and apparatus