JPH0459761B2 - - Google Patents

Info

Publication number
JPH0459761B2
JPH0459761B2 JP22195285A JP22195285A JPH0459761B2 JP H0459761 B2 JPH0459761 B2 JP H0459761B2 JP 22195285 A JP22195285 A JP 22195285A JP 22195285 A JP22195285 A JP 22195285A JP H0459761 B2 JPH0459761 B2 JP H0459761B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetized
magnetic flux
permanent magnet
flux distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22195285A
Other languages
Japanese (ja)
Other versions
JPS6281706A (en
Inventor
Hirofumi Imamura
Yo Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKA PHARMA
Original Assignee
DENKA PHARMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKA PHARMA filed Critical DENKA PHARMA
Priority to JP22195285A priority Critical patent/JPS6281706A/en
Publication of JPS6281706A publication Critical patent/JPS6281706A/en
Publication of JPH0459761B2 publication Critical patent/JPH0459761B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、一体に形成された素材に特殊な着磁
方法を施すことにより、磁極間が所望する磁束分
布となるように制御された永久磁石とその製造方
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a permanent magnet that is controlled to have a desired magnetic flux distribution between magnetic poles by applying a special magnetization method to an integrally formed material. It relates to magnets and their manufacturing methods.

[従来の技術] 従来、永久磁石はその両端部N、S極で残留磁
気が強く、磁石の中央部に存在する中性点に近く
なるにつれ残留磁気は弱くなり、磁極間中央部で
は残留磁気を期待することができなかつた。この
ような従来磁石の欠点を補うもの、すなわち、磁
石の端部以外の任意の部位の残留磁気を得るため
の技術としては、特開昭60−107809号公報に開示
された発明が知られている。この発明は、被磁化
素材の周囲に被磁化素材より透磁率の高い金属を
密着させて着磁し、被磁化素料の端部以外の部位
にも磁極を有する多極磁石としたものである。
[Prior art] Conventionally, permanent magnets have strong remanence at both ends of the N and S poles, and as they get closer to the neutral point in the center of the magnet, the remanence becomes weaker. I couldn't have expected it. As a technique for compensating for the drawbacks of conventional magnets, that is, for obtaining residual magnetism in any part other than the ends of the magnet, the invention disclosed in Japanese Patent Application Laid-open No. 107809/1983 is known. There is. In this invention, a material to be magnetized is magnetized by closely adhering a metal having a higher magnetic permeability than the material to be magnetized, thereby creating a multipolar magnet having magnetic poles in areas other than the ends of the material to be magnetized. .

[発明が解決しようとする問題点] 上記発明は、端部以外の任意の部位の残留磁気
を強くすることができ、任意の部位に磁気吸収力
を集中させることが望ましい用途などに有効であ
る。しかしながら、上記発明においては、磁極の
中性点の任意の位置への移動並びに磁極と中性点
間の残留磁束分布を所望する位置と値に正確に設
定することが難しかつた。
[Problems to be Solved by the Invention] The above invention can strengthen the residual magnetism in any part other than the end, and is effective in applications where it is desirable to concentrate magnetic absorption power in any part. . However, in the above invention, it is difficult to move the neutral point of the magnetic pole to an arbitrary position and to accurately set the residual magnetic flux distribution between the magnetic pole and the neutral point to a desired position and value.

本発明は上記従来技術に鑑なされたもので、中
性点の移動及び残留磁束分布を所望の位置、値に
設定可能な永久磁石とその製造方法を提供するこ
とを目的とするものである。
The present invention has been made in view of the above-mentioned prior art, and aims to provide a permanent magnet in which the movement of the neutral point and the distribution of residual magnetic flux can be set to desired positions and values, and a method for manufacturing the same.

[問題点を解決するための手段] 第1の発明である永久磁石は、被磁化材料を着
磁する際に、所望する磁束分布を磁場解析し、算
出されたデータをもとに作製した所定の形状を有
するこの被磁化材料よりも透磁率が高い磁性材
を、前記被磁化材料に局部的に密着させ、被磁化
材料の磁極間の磁束分布があらかじめ設定した所
望する磁束分布特性となるように制御されて製造
されたものである。
[Means for Solving the Problems] The permanent magnet of the first invention performs a magnetic field analysis of a desired magnetic flux distribution when magnetizing a material to be magnetized, and a predetermined magnet is manufactured based on the calculated data. A magnetic material having a higher permeability than the magnetized material and having a shape of Manufactured under controlled conditions.

第2の発明は、前記第1の発明の永久磁石を製
造する方法の発明であつて、永久磁石を着磁によ
り製造する際に、被磁化材料の少なくとも一部
に、磁場解析によつて所望する磁極間の磁束分布
の特性に対応するよう所定の形状に設定された高
透磁率の磁性材料を局部的に密着させることによ
り、被磁化材料の残留磁束の位置、大きさ及び数
などを変化させるものである。このとき、高透磁
率の磁性材料と被磁化材料とを密着させ磁化させ
る瞬時の磁束は、磁性材料の形状に大きく左右さ
れる。磁極と中性点間に所望する残留磁束分布を
有する磁石、例えば棒状の被磁化材料の中心を中
性点とし、片端を磁極とした場合の磁束分布の幾
つかの態様を第1図に示す。図中、横軸は被磁化
材料の中心(中性点)からの長手方向の距離を示
し、縦軸は残留磁束密度Gを示す。第1図におい
て、a,bに示すような磁束分布をもつ磁石を得
るための磁性材料の形状を第2図a,bに示す。
なお、第1図のcは磁性材料を用いずに着磁した
場合の特性を示したもので、その形状は第2図c
に示すものである。
A second invention is an invention of a method for manufacturing the permanent magnet according to the first invention, wherein when manufacturing the permanent magnet by magnetization, at least a part of the magnetized material is subjected to a desired magnetic field analysis. The position, size, number, etc. of the residual magnetic flux in the magnetized material can be changed by locally adhering a high permeability magnetic material that is set in a predetermined shape to correspond to the characteristics of the magnetic flux distribution between the magnetic poles. It is something that makes you At this time, the instantaneous magnetic flux that brings the high permeability magnetic material and the magnetized material into close contact with each other and magnetizes the material is greatly influenced by the shape of the magnetic material. Figure 1 shows some aspects of the magnetic flux distribution when a magnet has a desired residual magnetic flux distribution between the magnetic pole and the neutral point, for example, when the center of a bar-shaped magnetized material is the neutral point and one end is the magnetic pole. . In the figure, the horizontal axis indicates the distance in the longitudinal direction from the center (neutral point) of the magnetized material, and the vertical axis indicates the residual magnetic flux density G. FIGS. 2a and 2b show the shapes of magnetic materials used to obtain magnets with magnetic flux distributions as shown in FIGS. 1A and 2B.
Note that c in Figure 1 shows the characteristics when magnetized without using a magnetic material, and its shape is shown in c in Figure 2.
This is shown below.

第2図に示した磁性材料の形状は、次のように
して求められる。すなわち、本発明の着磁方法に
おいては、まず所望する磁極間の磁束分布の特性
に対応させるため、被磁化材料より高透磁率の磁
性材料(以下、高透磁材料と称す)を、特定の形
状に設定する必要がある。このため所望する磁束
分布を有限要素法、ガラーキン法、ニユートン・
ラフソン法などにより磁場解析し、これによつて
得られた記録から逆の磁場解析を行なうことによ
り、高透磁材料の形状を設定するものである。
The shape of the magnetic material shown in FIG. 2 is obtained as follows. That is, in the magnetization method of the present invention, in order to correspond to the desired characteristics of magnetic flux distribution between magnetic poles, a magnetic material having a higher magnetic permeability than the material to be magnetized (hereinafter referred to as high magnetic permeability material) is first Must be set to shape. Therefore, the desired magnetic flux distribution can be determined using the finite element method, Galerkin method, Newton method, etc.
The shape of the highly permeable material is determined by performing a magnetic field analysis using the Raphson method or the like, and then performing an inverse magnetic field analysis from the records obtained by this method.

有限要素法による解析式は次の通りである。 The analytical formula using the finite element method is as follows.

有限要素解析において 〓=μ(B1)+〓+〓(〓) ガラーキン法を用いて離散化し、ニユートン・
ラフソン法を適用すると、 uiJK=1 SikApk 磁束密度は Bz (e)=1/3r0 (e) 3K=1 Apk3K=1 bk (e)Apk/2Δ(e) Bzの関数として磁石の減磁曲線より定める。
In finite element analysis, 〓=μ(B 1 )+〓+〓(〓) is discretized using the Galerkin method and Newtonian
Applying the Rafson method, u i = JK=1 S ik A pk magnetic flux density is B z (e) = 1/3r 0 (e) 3K=1 A pk + 3K=1 b k ( e) A pk /2Δ (e) B Determined from the demagnetization curve of the magnet as a function of z .

以上の離散化された式を用いて、まず着磁時の
磁束分布を求める。得られた記録から逆解析する
ことにより高透磁性材の形状を設定することがで
きる。
First, the magnetic flux distribution during magnetization is determined using the above discretized formula. The shape of the highly permeable material can be determined by back-analyzing the obtained records.

本発明に係る被磁化材料とはアルニコ、フエラ
イト、KS銅、炭素鋼、稀土類磁石、プラスチツ
ク(ゴム)磁石、その他公知の永久磁石材料であ
り、前述した一体に形成された素材とは、着磁前
に同一被磁化素材を接合又は接着させたものも含
まれる。
The materials to be magnetized according to the present invention include alnico, ferrite, KS copper, carbon steel, rare earth magnets, plastic (rubber) magnets, and other known permanent magnet materials. It also includes those in which the same magnetized material is bonded or glued in front of the magnet.

[作 用] 上記解析法を適用して高透磁材料の形状設計を
することによつて、任意の磁極間磁束分布曲線を
持つ永久磁石が得られる。また、解析法によつて
高透磁材料の形状を決定するので、従来に比べて
所望する特性を容易かつ効率よく得ることができ
る。なお、上記方法は、両端に極を持つ2極の棒
状磁石に限らず、任意の形態の任意の極数を持つ
永久磁石の製造に適用できるものである。したが
つて、本発明の範囲は以下に示す実施態様に限定
されるものではない。
[Function] By applying the above analysis method to design the shape of a highly permeable material, a permanent magnet having an arbitrary magnetic flux distribution curve between magnetic poles can be obtained. Furthermore, since the shape of the highly permeable material is determined by an analytical method, desired characteristics can be obtained more easily and efficiently than in the past. Note that the above method is applicable not only to manufacturing a two-pole bar magnet having poles at both ends, but also to manufacturing a permanent magnet having an arbitrary number of poles in any form. Therefore, the scope of the present invention is not limited to the embodiments shown below.

[実施例] 本発明の実施例を第2図〜第5図と共に説明す
る。第2図は着磁方法を示す図である。図におい
て、1は被磁化材料であり、本実施例においては
直径12mm、長さ100mmの棒状のアルニコ5を用い
た。2は高透磁性体であり、純鉄製のリングを用
いた。第2図a,bは前述したように、第1図
a,bの特性を得るための高透磁性体の形状を示
したものであり、cは被磁化材料1のみの形状を
示したものである。また第3図は、第2図a〜c
を失視OBから見た図である。
[Example] An example of the present invention will be described with reference to FIGS. 2 to 5. FIG. 2 is a diagram showing the magnetization method. In the figure, 1 is a material to be magnetized, and in this example, a rod-shaped alnico 5 with a diameter of 12 mm and a length of 100 mm was used. 2 is a highly permeable material, and a ring made of pure iron was used. As mentioned above, Fig. 2 a and b show the shape of the highly permeable material to obtain the characteristics shown in Fig. 1 a and b, and c shows the shape of only the magnetized material 1. It is. In addition, Figure 3 is similar to Figures 2 a to c.
is a diagram seen from the apsis OB.

着磁するにあたつては、常法により鉄製ヨーク
内周囲に励磁コイルを設け、被磁化材料に高透磁
性体を、第2図a,bに示すように組み合せ、前
記ヨーク内に配置した。磁場方向は第2図の矢印
の方向に設定し、励磁コイルに3.2kAの直流電流
を瞬時に流した。このようにして着磁した棒磁石
の磁束分布が、前述の第1図に示したものであ
る。
For magnetization, an excitation coil was installed around the inside of the iron yoke using the usual method, and a highly permeable material was combined with the material to be magnetized as shown in Figure 2 a and b, and placed inside the yoke. . The direction of the magnetic field was set in the direction of the arrow in Figure 2, and a direct current of 3.2 kA was instantaneously passed through the excitation coil. The magnetic flux distribution of the bar magnet magnetized in this manner is shown in FIG. 1 described above.

第4図は本発明の他の実施例を示す図である。
第4図は、長軸方向に歯車状の溝部を有する高透
磁性材2を装着した被磁化材料1を示す図であ
り、第5図A〜DはそのA,B,C,Dの各断面
における磁束分布密度を磁力線で示した図であ
る。このような形状の高透磁性材を装着すれば、
長軸方向にも半径方向にも特定の磁束分布を有す
る永久磁石を得ることができる。
FIG. 4 is a diagram showing another embodiment of the present invention.
FIG. 4 is a diagram showing a magnetized material 1 equipped with a highly permeable material 2 having a gear-shaped groove in the long axis direction, and FIGS. FIG. 3 is a diagram showing magnetic flux distribution density in a cross section using lines of magnetic force. If you attach a highly permeable material with this shape,
A permanent magnet can be obtained that has a specific magnetic flux distribution both in the longitudinal direction and in the radial direction.

[発明の効果] 以上説明したように、本発明によれば、磁場解
析によつて得られた所定の形状を有する高透磁性
材を密着させ着磁することにより、中性点の移動
並びに被磁化材料の磁極間の残留磁束分布の位
置、値等を任意に設定することができる。また、
本発明による着磁方法は、例えば棒磁石等におい
て円周面に一様な単極の磁極、すなわち、N極ま
たはS極のみの磁極を得ることができるという特
有の効果を有する。
[Effects of the Invention] As explained above, according to the present invention, by closely adhering and magnetizing a highly permeable material having a predetermined shape obtained by magnetic field analysis, the movement of the neutral point and the The position, value, etc. of the residual magnetic flux distribution between the magnetic poles of the magnetized material can be set arbitrarily. Also,
The magnetization method according to the present invention has a unique effect that it is possible to obtain a uniform single magnetic pole on the circumferential surface of a bar magnet or the like, that is, a magnetic pole having only an N pole or an S pole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は被磁化材料を着磁した後の磁石の磁束
分布を示すグラフ、第2図〜第5図はいずれも本
発明の実施例を示す図である。 1……被磁化材料、2……高透磁性体。
FIG. 1 is a graph showing the magnetic flux distribution of the magnet after the magnetized material has been magnetized, and FIGS. 2 to 5 are diagrams showing examples of the present invention. 1... Material to be magnetized, 2... Highly permeable material.

Claims (1)

【特許請求の範囲】 1 被磁化材料を着磁する際に、該被磁化材料よ
りも透磁率が高く、かつ磁場解析によつて求めら
れた所定の形状を有する磁性材を局部的に密着さ
せ、被磁化材料の磁極間の磁束分布があらかじめ
設定した特性となるように制御されていることを
特徴とする永久磁石。 2 被磁化材料より透磁率の高い磁性材を局部的
に密着させ着磁させる際に、所望する磁極間の磁
束分布の特性に対応するため高透磁性材の形状を
磁場解析によつて求め、所定の形状に設定するこ
とを特徴とする永久磁石の製造方法。
[Claims] 1. When magnetizing a material to be magnetized, a magnetic material having a magnetic permeability higher than that of the material to be magnetized and having a predetermined shape determined by magnetic field analysis is closely attached locally. , a permanent magnet characterized in that the magnetic flux distribution between the magnetic poles of a magnetized material is controlled so as to have preset characteristics. 2. When locally magnetizing a magnetic material with higher magnetic permeability than the material to be magnetized, the shape of the highly permeable material is determined by magnetic field analysis in order to correspond to the desired magnetic flux distribution characteristics between the magnetic poles. A method for producing a permanent magnet, the method comprising forming a permanent magnet into a predetermined shape.
JP22195285A 1985-10-07 1985-10-07 Permanent magnet and manufacture thereof Granted JPS6281706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22195285A JPS6281706A (en) 1985-10-07 1985-10-07 Permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22195285A JPS6281706A (en) 1985-10-07 1985-10-07 Permanent magnet and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6281706A JPS6281706A (en) 1987-04-15
JPH0459761B2 true JPH0459761B2 (en) 1992-09-24

Family

ID=16774727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22195285A Granted JPS6281706A (en) 1985-10-07 1985-10-07 Permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6281706A (en)

Also Published As

Publication number Publication date
JPS6281706A (en) 1987-04-15

Similar Documents

Publication Publication Date Title
US5635889A (en) Dipole permanent magnet structure
US6236125B1 (en) Linear actuator
JPS6427208A (en) Cylindrical permanent magnet, motor using same and manufacture thereof
JP2000182829A (en) Apparatus and method for magnetization
CN109195079A (en) The assemble method and magnetic charging system of magnetic circuit system
JPS6150368B2 (en)
JPH02246102A (en) Magnetic circuit
JPS6134249B2 (en)
JPH0459761B2 (en)
EP0026014A1 (en) Method of manufacturing a permanent magnet assembly which is to be arranged in an air gap of a transformer core
JPS62139304A (en) Magnetic circuit with excellent uniformity of magnetic field
WO1994018682A1 (en) Permanent magnet
JP7140357B2 (en) Water activation device and manufacturing method thereof
DE1174418B (en) Permanent magnetic stator
JPS5927508A (en) Magnetization method
JP3056883B2 (en) Magnetic field generator for MRI
JP3664271B2 (en) Multipolar magnetizing yoke
JP4135127B2 (en) Assembly method of magnetic field generator
JPWO2004077413A1 (en) Magnetic field heat treatment equipment
JPS57170502A (en) Production of magneto roll
JPH0638501A (en) Magnetic circuit
JPS6210004B2 (en)
EP0596353A2 (en) Method for manufacturing magnetisable bodies with preferred orientations
JPH09131025A (en) Method of magnetizing permanent magnet
JPS5814057B2 (en) Demagnetization method