JPH0459094A - Treatment of waste water containing ammonium nitrate - Google Patents

Treatment of waste water containing ammonium nitrate

Info

Publication number
JPH0459094A
JPH0459094A JP2165113A JP16511390A JPH0459094A JP H0459094 A JPH0459094 A JP H0459094A JP 2165113 A JP2165113 A JP 2165113A JP 16511390 A JP16511390 A JP 16511390A JP H0459094 A JPH0459094 A JP H0459094A
Authority
JP
Japan
Prior art keywords
wet
wastewater
oxygen
line
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2165113A
Other languages
Japanese (ja)
Inventor
Yoshiaki Harada
原田 吉明
Kenichi Yamazaki
健一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2165113A priority Critical patent/JPH0459094A/en
Publication of JPH0459094A publication Critical patent/JPH0459094A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To efficiently decompose not only NH4<+> but also NO3<-> by performing wet-type thermal decomposition for waste water in the absence of oxygen and performing wet-type oxidative decomposition therefor. CONSTITUTION:High-temp. water to be treated which has been subjected to wet-type oxidative decomposition is sent to a heat exchanger 9 via a line 27. After pretreatment of waste raw water is performed herein, it is sent to a cooler 31 via a line 29 and cooled. A water supply line 33 and a drainage line 35 are connected to the cooler 31. Supply of cooling water and discharge of drainage are always performed. The treated water discharged from the cooler 31 is sent to a gas-liquid separator 39 via a line 37 and separated into a liquid phase discharged from a line 41 and a gas phase discharged from a line 43. Further in order to control the pressure in the system during reaction treatment, a pressure detection device 57 is provided to the gas-liquid separator 39. Thereby the degree of opening of a valve 49 is controlled in accordance with the pressure of the inside of the gas-liquid separator 39.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、硝酸アンモニウム含有廃水の処理方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for treating wastewater containing ammonium nitrate.

従来技術及びその問題点 近年、水質規制の観点から化学的酸素要求物質(COD
成分)のみならず、窒素成分(特にアンモニア態窒素)
の除去も重要な課題となって来た。
Prior art and its problems In recent years, chemical oxygen demand substances (COD) have been increasing from the viewpoint of water quality regulation.
components) as well as nitrogen components (especially ammonia nitrogen)
Removal of this has also become an important issue.

本発明者等は、アンモニア含有廃水の処理方法について
長期にわたり種々研究を重ねた結果、特定の触媒の存在
下且つ特定の条件下に湿式酸化処理を行なうことにより
、操作容易にして実用上の経済性を備えたアンモニア含
有廃水の処理方法を完成した(特公昭59−19757
号、特公昭5642992号、特公昭57−42391
号、特公昭58−27999号、特公昭57−3332
0号等)。
As a result of long-term research on various methods for treating ammonia-containing wastewater, the present inventors have discovered that wet oxidation treatment can be carried out in the presence of a specific catalyst and under specific conditions, making it easy to operate and practical and economical. Completed a method for treating ammonia-containing wastewater with
No., Special Publication No. 5642992, Special Publication No. 57-42391
No., Special Publication No. 58-27999, Special Publication No. 57-3332
0 etc.).

最近、発電業界における原子力発電の比重が増大するに
従って、ウラン原料の処理及び使用済みウラン燃料の再
処理工程から排出されるNH4N03含有廃水の処理が
重要な技術的課題となりつつある。本発明者は、この様
なNH4NO3含有廃水の処理に上記一連のアンモニア
含有廃水の処理技術(以下先願技術−■という)を応用
することを試みた。この試みにおいて、NI(、+イオ
ンは極めて高い効率で分解されるものの、NO3−イオ
ンについては必ずしも満足すべきものとは言い難い場合
もあることが判明した。
Recently, as the proportion of nuclear power generation in the power generation industry has increased, the treatment of NH4N03-containing wastewater discharged from the processing of uranium raw materials and the reprocessing process of spent uranium fuel is becoming an important technical issue. The present inventor attempted to apply the above-mentioned series of ammonia-containing wastewater treatment technologies (hereinafter referred to as "prior application technology - (2)") to the treatment of such NH4NO3-containing wastewater. In this attempt, it was found that although NI(+) ions were decomposed with extremely high efficiency, the decomposition of NO3- ions was not always satisfactory.

これは、上記廃水中のNH4No3濃度が1%(100
00ppm )から10%(100000ppm )程
度にも達する場合があることによるものと推測される。
This means that the NH4No3 concentration in the wastewater is 1% (100
This is presumed to be due to the fact that it can reach from 10% (100,000 ppm) to about 10% (100,000 ppm).

本発明者らは、さらに研究を重ねた結果、先願技術を実
施するに際し、添加する酸素量を減少させることにより
、高濃度NH4NO3含有廃水中のNH4+イオンのみ
ならず、NO3−イオンをも高い効率で分解することに
成功した(特開昭61−222585号参照:以下これ
に開示された技術を先願発明−■という)。
As a result of further research, the present inventors found that by implementing the prior art technology, by reducing the amount of oxygen added, not only NH4+ ions but also NO3- ions in wastewater containing high concentration NH4NO3 were increased. It was successfully decomposed efficiently (see Japanese Patent Application Laid-Open No. 61-222585; hereinafter, the technology disclosed therein will be referred to as the prior invention - (2)).

しかしながら、高濃度NH4NO3含有廃水の処理にお
いては、特に実用上の観点から、処理効率の改善のみな
らず、さらに−層のコスト低下(設備費および運転費の
減少など)が望まれている。
However, in the treatment of wastewater containing high concentration NH4NO3, particularly from a practical standpoint, it is desired not only to improve the treatment efficiency but also to lower the cost (reduction in equipment costs, operating costs, etc.).

問題点を解決するための手段 本発明者は、上記の如き現状に鑑みて更に種々研究を重
ねた結果、NH4NCh含有廃水中のアンモニア成分、
有機性物質及び無機性物質を分解するに必要な理論酸素
量未満の酸素の存在下に該NH4NO3含有廃水の湿式
熱分解を行なう先願−■の方法に代えて、酸素の不存在
下に廃水の湿式熱分解を行ない、次いで湿式酸化分解を
行なう場合には、NH,+イオンのみならず、No3イ
オンをも効率良(分解し得るという全く予想外の事実を
見出した。
Means for Solving the Problems In view of the above-mentioned current situation, the inventor of the present invention has further conducted various studies, and as a result, the ammonia component in the NH4NCh-containing wastewater,
Instead of the method of the previous application-■, in which the wet pyrolysis of the NH4NO3-containing wastewater is carried out in the presence of oxygen that is less than the theoretical amount of oxygen necessary to decompose organic and inorganic substances, the wastewater is subjected to wet pyrolysis in the absence of oxygen. We have discovered the completely unexpected fact that when carrying out wet thermal decomposition and then wet oxidative decomposition, not only NH and + ions but also No3 ions can be efficiently decomposed.

更に、本発明者の引き続く研究によれば、廃水+1.1
 <NH3−N/N03−N≦2  (−E−ル比)と
なる様にアンモニアを加えるとともに、酸素の不存在下
に廃水の湿式熱分解を行ない、次いで湿式酸化分解を行
なう場合には、NH,+イオン及びNO3−イオンの分
解効率がより一層改善されることを見出した。
Furthermore, according to the inventor's subsequent research, wastewater +1.1
When adding ammonia so that <NH3-N/N03-N≦2 (-E-R ratio) and performing wet thermal decomposition of wastewater in the absence of oxygen, and then performing wet oxidative decomposition, It has been found that the decomposition efficiency of NH, + ions and NO3 - ions is further improved.

さらに、本発明者の引き続く研究によれば、酸および酸
生成物質の少なくとも一種を加えたNH4NO3含有廃
水を上記と同様にして湿式熱分解に供し、引続き湿式酸
化分解を行なう場合にも、分解効率がより一層改善され
ることを見出した。
Furthermore, according to the inventor's subsequent research, when NH4NO3-containing wastewater to which an acid and at least one acid-generating substance has been added is subjected to wet thermal decomposition in the same manner as described above, and subsequently wet oxidative decomposition is performed, the decomposition efficiency is was found to be further improved.

さらにまた、0.1 <NH3−N/NCh −N≦2
 (モル比)となる様にアンモニアを加え且つ酸および
酸生成物質の少なくとも一種を加えたNH4NO3含有
廃水を湿式酸化分解に供し、弓続き湿式酸化分解を行な
う場合には、分解効率がさらに一層改善されることを見
出した。
Furthermore, 0.1 <NH3-N/NCh-N≦2
When NH4NO3-containing wastewater is subjected to wet oxidative decomposition to which ammonia and at least one of an acid and an acid-generating substance are added such that the molar ratio becomes I found out that it can be done.

即ち、本発明は、下記の4種の廃水処理方法を提供する
ものである。
That is, the present invention provides the following four types of wastewater treatment methods.

■ 硝酸アンモニウム含有廃水を貴金属及びその不溶性
又は難溶性化合物並びに卑金属からなる群から選ばれた
少なくとも1種を活性成分とする担持触媒の存在下且つ
酸素の不存在下にpH約1〜11.5、温度100〜3
70℃で湿式熱分解した後、処理液を貴金属及びその不
溶性又は難溶性化合物並びに卑金属からなる群から選ば
れた少なくとも1種を活性成分とする担持触媒の存在下
且つ処理液中のアンモニア、有機性物質及び無機性物質
を分解するに必要な理論酸素量の1〜1,5倍量の酸素
を含有する気体の存在下にpH約1〜11.5、温度1
00〜370℃で湿式酸化することを徴とする硝酸アン
モニウム含有廃水の処理方法。
(ii) Ammonium nitrate-containing wastewater is heated to a pH of about 1 to 11.5 in the presence of a supported catalyst containing at least one active ingredient selected from the group consisting of noble metals, their insoluble or sparingly soluble compounds, and base metals, and in the absence of oxygen. Temperature 100-3
After wet pyrolysis at 70°C, the treatment solution is treated in the presence of a supported catalyst containing at least one active ingredient selected from the group consisting of noble metals, their insoluble or poorly soluble compounds, and base metals, and in the presence of ammonia and organic compounds in the treatment solution. in the presence of a gas containing 1 to 1.5 times the theoretical amount of oxygen required to decompose organic and inorganic substances, at a pH of about 1 to 11.5 and a temperature of 1.
A method for treating wastewater containing ammonium nitrate, comprising wet oxidation at 00 to 370°C.

■ 0.1 < N H3N/ N O3N≦2 (モ
ル比)となる様にアンモニアを加えた硝酸アンモニウム
含有廃水を貴金属及びその不溶性又は難溶性化合物並び
に卑金属からなる群から選ばれた少なくとも1種を活性
成分とする担持触媒の存在下且つ酸素の不存在下にpH
約1〜11.5、温度100〜3700Cで湿式熱分解
した後、処理液を貴金属及びその不溶性又は難溶性化合
物並びに卑金属からなる群から選ばれた少なくとも1種
を活性成分とする担持触媒の存在下且つ処理液中のアン
モニア、有機性物質及び無機性物質を分解するに必要な
理論酸素量の1〜1.5倍量の酸素を含有する気体の存
在下にpH約1〜11.5、温度100〜370℃で湿
式酸化することを特徴とする硝酸アンモニウム含有廃水
の処理方法。
■ Ammonium nitrate-containing wastewater to which ammonia has been added so that the molar ratio is 0.1 < N H3N/N O3N≦2 is activated with at least one selected from the group consisting of noble metals, their insoluble or sparingly soluble compounds, and base metals. pH in the presence of a supported catalyst as a component and in the absence of oxygen.
After wet pyrolysis at a temperature of about 1 to 11.5 and a temperature of 100 to 3700 C, the treatment liquid is treated with a supported catalyst containing at least one selected from the group consisting of noble metals, insoluble or poorly soluble compounds thereof, and base metals as an active component. pH approximately 1 to 11.5 in the presence of a gas containing oxygen in an amount of 1 to 1.5 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances in the treatment liquid. A method for treating wastewater containing ammonium nitrate, comprising wet oxidation at a temperature of 100 to 370°C.

■ 酸および酸生成物質の少なくとも一種を加えた硝酸
アンモニウム含有廃水を貴金属及びその不溶性又は難溶
性化合物並びに卑金属からなる群から選ばれた少なくと
も1種を活性成分とする担持触媒の存在下且つ酸素の不
存在下にpH約1〜11.5、温度100〜370℃で
湿式熱分解した後、処理液を貴金属及びその不溶性又は
難溶性化合物並びに卑金属からなる群から選ばれた少な
くとも1種を活性成分とする担持触媒の存在下且つ処理
液中のアンモニア、有機性物質及び無機性物質を分解す
るに必要な理論酸素量の1〜1.5倍量の酸素を含有す
る気体の存在下にpH約1〜11.5、温度100〜3
70℃で湿式酸化することを特徴とする硝酸アンモニウ
ム含有廃水の処理方法。
■ Ammonium nitrate-containing wastewater to which an acid and at least one acid-generating substance has been added is treated in the presence of a supported catalyst containing at least one active ingredient selected from the group consisting of noble metals, their insoluble or sparingly soluble compounds, and base metals, and After wet pyrolysis at a pH of about 1 to 11.5 and a temperature of 100 to 370°C, the treatment solution is treated with at least one active ingredient selected from the group consisting of noble metals and their insoluble or sparingly soluble compounds, and base metals. pH of approximately 1 in the presence of a supported catalyst and a gas containing 1 to 1.5 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances in the treatment liquid. ~11.5, temperature 100~3
A method for treating wastewater containing ammonium nitrate, characterized by wet oxidation at 70°C.

■ 0.1 <NH3−N/NO3−N≦2 (モル比
)となる様にアンモニアを加え且つ酸及び酸生成物質の
少なくとも1種を添加した硝酸アンモニウム含有廃水を
貴金属及びその不溶性又は難溶性化合物並びに卑金属か
らなる群から選ばれた少なくとも1種を活性成分とする
担持触媒の存在下且つ酸素の不存在下にpH約1〜11
.5、温度100〜370℃で湿式熱分解した後、処理
液を貴金属及びその不溶性又は難溶性化合物並びに卑金
属からなる群から選ばれた少なくとも1種を活性成分と
する担持触媒の存在下且つ処理液中のアンモニア、有機
性物質及び無機性物質を分解するに必要な理論酸素量の
1〜1.5倍量の酸素を含有する気体の存在下にpH約
1〜11.5、温度100〜370℃で湿式酸化するこ
とを特徴とする硝酸アンモニウム含有廃水の処理方法。
■ Ammonium nitrate-containing wastewater to which ammonia and at least one acid and acid-generating substance have been added so that the molar ratio is 0.1 <NH3-N/NO3-N≦2 is mixed with precious metals and their insoluble or sparingly soluble compounds. and a supported catalyst containing at least one selected from the group consisting of base metals as an active ingredient and in the absence of oxygen to a pH of about 1 to 11.
.. 5. After wet pyrolysis at a temperature of 100 to 370°C, the treatment liquid is treated in the presence of a supported catalyst containing at least one active ingredient selected from the group consisting of noble metals, insoluble or poorly soluble compounds thereof, and base metals. In the presence of a gas containing oxygen in an amount of 1 to 1.5 times the theoretical amount of oxygen necessary to decompose ammonia, organic substances, and inorganic substances, pH is approximately 1 to 11.5, and temperature is 100 to 370. A method for treating wastewater containing ammonium nitrate, characterized by wet oxidation at ℃.

以下においては、」−2■、■、■及び0項に記載され
た方法をそれぞれ「本願第一方法」、1本願第二方法」
、「本願第三方法」及び「本願第四方法」といい、これ
らを総括する場合には、単に本発明或いは本発明方法と
いう。
In the following, the methods described in ``-2■, ■, ■, and 0 are respectively referred to as the ``first method of the present application'' and 1 the second method of the present application''.
, "the third method of the present application" and "the fourth method of the present application", and when these are collectively referred to as the present invention or the present invention method.

本発明は、NH,1NO3を含む全ての廃水を対象とす
るものであり、特にNH,、NO3濃度が1%以上の高
濃度廃水の処理に好適である。尚、廃水は、有機性物質
及び無機性物質を併せて含んでいても良い。
The present invention targets all wastewater containing NH and 1NO3, and is particularly suitable for treating high-concentration wastewater with NH and NO3 concentrations of 1% or more. Note that the wastewater may contain both organic substances and inorganic substances.

また、本発明の湿式熱分解工程及び湿式酸化工程は、い
ずれも廃水のpH約1〜11.5、より好ましくは3〜
9で効率良〈実施される。
In addition, in both the wet pyrolysis step and the wet oxidation step of the present invention, the pH of the wastewater is about 1 to 11.5, more preferably 3 to 11.5.
9 is efficient (implemented).

以下、「本願第一方法」、1本願第二方法」、「本願第
三方法」及び「本願第四方法」について、それぞれ詳細
に説明する。
Hereinafter, the "first method of the present application," the "second method of the present application," the "third method of the present application," and the "fourth method of the present application" will be explained in detail, respectively.

■2本本願第三方 法A)湿式熱分解工程 本願第一方法の湿式熱分解で使用する触媒活性成分とし
ては、貴金属系としては、ルテニウム、ロジウム、パラ
ジウム、オスミウム、イリジウム、白金及び金並びにこ
れ等の水に対し不溶性乃至難溶性の化合物が挙げられ、
卑金属系としては、鉄、コバルl−、マンガン、タング
ステン、銅、ニッケルおよびマグネシウムが挙げられ、
これ等の1種又は2種以」−を使用することが出来る。
■2 The third method of the present application A) Wet pyrolysis process The catalytic active components used in the wet pyrolysis of the first method of the present application include ruthenium, rhodium, palladium, osmium, iridium, platinum, and gold as precious metals. Compounds that are insoluble or poorly soluble in water such as
Base metals include iron, cobal l-, manganese, tungsten, copper, nickel and magnesium;
One or more of these can be used.

不溶性乃至難溶性の貴金属化合物としては、二塩化ルテ
ニウム、二塩化白金、硫化ルテニウム、硫化ロジウムな
どが例示される。また、必要に応じて、これらの触媒活
性成分にはテルル、セレン、ランタンなどの助触媒成分
を併用することにより、処理活性成分の活性増大、触媒
体の耐熱性、耐久性、機械的強度の向−1−などを図る
ことができる。これ等の触媒活性成分及び助触媒成分は
、常法に従って、チタニア、ジルコニア、アルミナ、シ
リカ、アルミナーンリカ、活性炭、或いはニッケル、ニ
ッケルークロム、ニッケルークロム−アルミニウム、ニ
ッケルークロム−鉄等の金属多孔体等の担体に担持して
使用する。触媒活性成分の担持量は、通常担体重量の0
.05〜25%、好ましくは0.5〜3%である。また
、助触媒成分は、触媒活性成分に対し、0.01〜30
%程度の範囲で使用される。触媒は、球状、ペレット状
、円柱状、破砕片状、粉末状、ハニカム状等の種々の形
態の1■体に担持した状態で使用する。反応塔容積は、
固定床の場合には、液の空間速度が0.5〜101/h
r(空塔基準)、より好ましく・は1〜5’/hr(空
塔基準)となる様にするのが良い。固定床で使用する触
媒の大きさは通常約3〜50II1m1より好ましくは
約5〜25mmである。流動床の場合には、反応塔内で
触媒が流動床を形成し得る量、通常0.5〜20重量%
、より好ましくは0.5〜10重量%を廃水にスラリー
状に懸濁させ、使用する。流動床における実用」二の操
作に当っては触媒を廃水中にスラリー状に懸濁させた状
態で反応塔に供給し、反応終了後排出させた処理済廃水
から触媒を沈降、遠心分離等の適当な方法で分離回収し
、再度使用する。従って処理済廃水からの触媒分離の容
易さを考慮すれば、流動床に使用する触媒の粒度は約0
.15〜約0.5 mm程度とすることがより好ましい
Examples of insoluble or poorly soluble noble metal compounds include ruthenium dichloride, platinum dichloride, ruthenium sulfide, and rhodium sulfide. In addition, if necessary, co-catalyst components such as tellurium, selenium, and lanthanum can be used in conjunction with these catalytic active components to increase the activity of the processing active components and improve the heat resistance, durability, and mechanical strength of the catalyst. Direction-1- etc. can be aimed at. These catalytically active components and co-catalyst components can be prepared using conventional methods such as titania, zirconia, alumina, silica, aluminium oxide, activated carbon, or nickel, nickel-chromium, nickel-chromium-aluminum, nickel-chromium-iron, etc. It is used by being supported on a carrier such as a porous metal body. The amount of catalyst active component supported is usually 0 of the carrier weight.
.. 05-25%, preferably 0.5-3%. In addition, the co-catalyst component is 0.01 to 30% relative to the catalytically active component.
It is used within a range of about %. The catalyst is used in a state where it is supported in various forms such as spheres, pellets, cylinders, crushed pieces, powders, and honeycombs. The reaction column volume is
In the case of a fixed bed, the space velocity of the liquid is 0.5 to 101/h.
r (empty column basis), more preferably 1 to 5'/hr (empty column basis). The size of the catalyst used in the fixed bed is usually about 3 to 50 mm, preferably about 5 to 25 mm. In the case of a fluidized bed, the amount of catalyst that can form a fluidized bed in the reaction column, usually 0.5 to 20% by weight.
, more preferably 0.5 to 10% by weight, is used by suspending it in the form of a slurry in waste water. In the second operation of "Practical use in a fluidized bed," the catalyst is supplied to the reaction tower in the form of a slurry suspended in wastewater, and after the reaction is completed, the catalyst is separated from the treated wastewater discharged through sedimentation, centrifugation, etc. Separate and recover using an appropriate method and use again. Therefore, considering the ease of catalyst separation from treated wastewater, the particle size of the catalyst used in the fluidized bed is approximately 0.
.. More preferably, the thickness is about 15 to about 0.5 mm.

熱分解反応時の温度は、通常100〜370℃1より好
ましくは200〜300℃とする。反応時の温度が高い
程、NH4+イオン及びNO3−イオンの除去率が高ま
り且つ反応塔内での廃水の滞留時間も短縮されるが、反
面に於て設倫費か大となるので、廃水の種類、要求され
る処理の程度、運転費、建設費等を総合的に考慮して定
めれば良い。尚、反応塔内には、液相を保つために飽和
蒸気圧を」―回る程度の少量の気体を存在させておけば
良く、この様なガスとしては、窒素等が挙げられる。
The temperature during the thermal decomposition reaction is usually 100 to 370°C, preferably 200 to 300°C. The higher the reaction temperature, the higher the removal rate of NH4+ ions and NO3- ions, and the shorter the residence time of wastewater in the reaction tower. It may be determined by comprehensively considering the type, degree of processing required, operating costs, construction costs, etc. Incidentally, in order to maintain the liquid phase, a small amount of gas sufficient to exceed the saturated vapor pressure may be present in the reaction tower, and examples of such gas include nitrogen.

上記の熱分解反応により、廃水中のNH4+イオン及び
N09−イオン、特にNO3−イオンが高度に分解され
る。
The above thermal decomposition reaction decomposes NH4+ ions and N09- ions, especially NO3- ions, in the wastewater to a high degree.

(B)湿式酸化分解工程 本願第一方法では、処理水中のNH,+イオン、有機性
物質及び無機性物質を更に分解除去するために、湿式熱
分解工程における処理水を引続き湿式酸化分解する。
(B) Wet oxidative decomposition step In the first method of the present application, the treated water in the wet pyrolysis step is subsequently subjected to wet oxidative decomposition in order to further decompose and remove NH, + ions, organic substances, and inorganic substances in the treated water.

湿式酸化は、pH約1〜11.5、より好ましくは3〜
9で効率良く進行する。
Wet oxidation is carried out at a pH of about 1 to 11.5, more preferably 3 to 11.5.
9 to progress efficiently.

湿式酸化において使用する触媒活性成分としては、湿式
熱分解で使用するものと同様のものが挙げられる。また
、これらの触媒活性成分にもテルル、セレン、ランタン
などの助触媒成分を併用することにより、処理効果をさ
らに改善することができる。触媒担体、担体に対する触
媒活性成分の担持量、触媒の形状、寸法及び使用方法等
は、前記湿式熱分解工程(A)の場合と同様で良い。
The catalytically active components used in wet oxidation include those similar to those used in wet pyrolysis. Further, by using co-catalyst components such as tellurium, selenium, and lanthanum in combination with these catalytically active components, the treatment effect can be further improved. The catalyst carrier, the amount of the catalytically active component supported on the carrier, the shape and dimensions of the catalyst, the method of use, etc. may be the same as in the wet thermal decomposition step (A).

本湿式酸化工程(B)が、NH,NO3含有廃水の湿式
熱分解工程(A)と本質的に異なる点は、処理水中のN
H,+イオンを分解するに必要な理論量の1〜1.5倍
の酸素を必要とすることである。
This wet oxidation process (B) is essentially different from the wet pyrolysis process (A) of wastewater containing NH and NO3.
One to 1.5 times the theoretical amount of oxygen required to decompose H,+ ions is required.

酸素源として使用するガスとしては、空気、酸素富化空
気、酸素、更には不純物としてシアン化水素、硫化水素
、アンモニア、硫黄酸化物、有機硫黄化合物、窒素酸化
物、炭化水素等の少なくとも1種を含有する酸素含有廃
ガスが挙げられる。これ等ガスの供給量は、処理中のア
ンモニア、有機性物質及び無機性物質(酸素源として廃
ガスを使用する場合には、更に含有不純物)をN2、C
O2及びN20にまで分解するに必要な理論酸素■を基
準として定められ、より好ましくは理論酸素量の1.0
5〜1.2倍の酸素が反応系に存在する様にする。酸素
源として酸素含有廃ガスを使用する場合には、ガス中の
有害成分も同時に分解無害化される。酸素含有ガスは、
−度に供給しても良く或いは複数回に分けて供給しても
良い。
The gas used as the oxygen source includes air, oxygen-enriched air, oxygen, and at least one impurity such as hydrogen cyanide, hydrogen sulfide, ammonia, sulfur oxides, organic sulfur compounds, nitrogen oxides, and hydrocarbons. Examples include oxygen-containing waste gas. The amount of supply of these gases is such that ammonia, organic substances, and inorganic substances (if waste gas is used as an oxygen source, additionally contained impurities) are mixed with N2, C, and
It is determined based on the theoretical oxygen required for decomposition into O2 and N20, and more preferably 1.0 of the theoretical oxygen amount.
Make sure that 5 to 1.2 times as much oxygen is present in the reaction system. When oxygen-containing waste gas is used as an oxygen source, harmful components in the gas are also decomposed and rendered harmless. Oxygen-containing gas is
- It may be supplied at once, or it may be supplied in multiple doses.

湿式酸化工程での温度は、やはり100〜370℃程度
、より好ましくは200〜300℃程度である。
The temperature in the wet oxidation step is also about 100 to 370°C, more preferably about 200 to 300°C.

又、圧力は、処理水が液相を保持する圧力とすれば良い
Moreover, the pressure may be a pressure at which the treated water maintains a liquid phase.

■0本本願第一発 明A)湿式熱分解工程 本願第二方法では、0.1 <NH3−N/N03−N
≦2 (モル比)となる様にアンモニアを加えたNH4
NO3含有廃水を本願第一発明におけると同様の条件下
に湿式熱分解に供する。
■0 First invention of the present application A) Wet pyrolysis process In the second method of the present application, 0.1 <NH3-N/N03-N
NH4 with ammonia added so that ≦2 (molar ratio)
The NO3-containing wastewater is subjected to wet pyrolysis under the same conditions as in the first invention.

NH4NO3含有廃水にアンモニアを添加した場合の反
応は、下式(1)により表わされる。
The reaction when ammonia is added to NH4NO3-containing wastewater is expressed by the following formula (1).

NH,、No3+2/3 No3+2 /3 N2 +3 N20       (1)ただし
、NH4NO3含有廃水に当初から少量の酸素が溶存し
ている場合には、一部下記の反応も行われているものと
推測される。
NH,, No3+2/3 No3+2 /3 N2 +3 N20 (1) However, if a small amount of oxygen is dissolved in the NH4NO3-containing wastewater from the beginning, it is assumed that some of the following reactions are also taking place. .

NH4No3千NH3″ +1/402→3/2 N2
 +1/2 N20       (2)(B、)湿式
酸化分解工程 本願第二方法では、上記湿式熱分解工程からの処理液を
本願第一方法と同様の条件下に湿式酸化処理に供する。
NH4No3,000NH3″ +1/402→3/2 N2
+1/2 N20 (2) (B,) Wet oxidation decomposition step In the second method of the present application, the treatment liquid from the above wet pyrolysis step is subjected to wet oxidation treatment under the same conditions as in the first method of the present application.

■9本本願第一発 明A)湿式熱分解工程 本願第三方法では、酸又は処理条件下に酸を生成する物
質(酸生成物質)を加えたNH4NO3含有廃水を本願
第一発明におけると同様の条件下に湿式熱分解に供する
■9 First Invention A) Wet Pyrolysis Process In the third method of the present application, NH4NO3-containing wastewater to which an acid or a substance that generates an acid under treatment conditions (acid-generating substance) is added to the same method as in the first invention of the present application. Subject to wet pyrolysis under conditions.

使用する酸としては、硫酸、硝酸、塩酸などがあり、硫
酸が最も好ましい。酸生成物質としては、硫黄、硫黄化
合物(チオ尿素、チオ硫酸、チオシアン酸、チオエーテ
ル、チオフェノールなど)が例示される。或いは、コー
クス炉ガス精製装置などから排出される硫黄化合物含有
廃水を酸生成物質源としても良い。
Examples of acids used include sulfuric acid, nitric acid, and hydrochloric acid, with sulfuric acid being the most preferred. Examples of acid generating substances include sulfur and sulfur compounds (thiourea, thiosulfuric acid, thiocyanic acid, thioether, thiophenol, etc.). Alternatively, sulfur compound-containing wastewater discharged from a coke oven gas purification device or the like may be used as the source of the acid generating substance.

硝酸および硝酸を形成しうる物質は、廃水中のNO3−
イオン量を増大させるので、硫酸と併用するか、或いは
COD成分含有量の高い廃水への添加成分として使用す
ることが好ましい。また、塩酸および塩酸を形成し得る
物質は、窒素化合物の分解には有効であるが、COD成
分の分解能は、他の酸に比して、若干劣る。これら酸お
よび酸形成物質のNH4NO3含有廃水に対する配合量
は、杯水中に含まれるNaXKなどのアルカリ金属の塩
乃至イオンの量の合計モル数に相当する帝程度とする。
Nitric acid and substances that can form nitric acid are NO3- in wastewater.
Since it increases the amount of ions, it is preferable to use it in combination with sulfuric acid or as an added component to wastewater with a high content of COD components. Furthermore, although hydrochloric acid and substances capable of forming hydrochloric acid are effective in decomposing nitrogen compounds, their ability to decompose COD components is slightly inferior to that of other acids. The amount of these acids and acid-forming substances added to the NH4NO3-containing wastewater is approximately equal to the total number of moles of alkali metal salts or ions such as NaXK contained in the glass water.

(B)湿式酸化分解工程 本願第三方法では、」二記湿式熱分解工程からの処理液
を本願第一方法と同様の条件下に湿式酸化処理に供する
(B) Wet oxidation decomposition step In the third method of the present application, the treatment liquid from the wet pyrolysis step 2 is subjected to wet oxidation treatment under the same conditions as in the first method of the present application.

■1本本願第一発 明A)湿式熱分解工程 本願第四方法では、0.1. <NH3N/NO3−N
≦2 (モル比)となる様にアンモニアを加え且つ酸お
よび酸生成物質の少なくとも一種を加えたNH4No3
含有廃水を本願第一方法におけると同様の条件下に湿式
熱分解に供する。ア1つ ンモニアの添加量は、本願第二方法の湿式酸化工程の場
合と同様であり、また、酸および酸生成物質並びにその
添加量などは、本願第三方法の湿式酸化工程の場合と同
様である。
■1 First invention of the present application A) Wet pyrolysis step In the fourth method of the present application, 0.1. <NH3N/NO3-N
NH4No3 to which ammonia is added and at least one of an acid and an acid-generating substance is added so that the molar ratio is ≦2 (molar ratio)
The containing wastewater is subjected to wet pyrolysis under the same conditions as in the first method of the present application. A. The amount of ammonia added is the same as in the wet oxidation step of the second method of the present application, and the acid, acid-generating substance, and the amount added are the same as in the wet oxidation step of the third method of the present application. It is.

(B)湿式酸化分解工程 本願第四方法では、」二記湿式熱分解工程からの処理液
を本願第一方法と同様の条件下に湿式酸化処理に供する
(B) Wet oxidative decomposition step In the fourth method of the present application, the treatment liquid from the wet pyrolysis step 2 is subjected to wet oxidation treatment under the same conditions as in the first method of the present invention.

以下図面を参照しつつ、本発明をさらに詳細に説明する
The present invention will be described in more detail below with reference to the drawings.

第1図は、本発明方法の一実施態様のフローチャートを
示す。
FIG. 1 shows a flowchart of one embodiment of the method of the invention.

第1図において、タンク(1)に収容された廃水原水は
、ライン(3)を通り、昇圧ポンプ(5)によりライン
(7)を経て熱交換器(9)に送られ、後述する湿式酸
化分解反応塔(23)からの高温処理水により加熱され
た後、ライン(11)を経て、ボイラー(13)を付設
された加熱器(15)に送給され、所定の温度まで、加
熱される。反応により所定の温度に維持することができ
る定常状態に到達した場合には、ボイラー(13)によ
る加熱は停止される。所定の反応温度まで加熱された廃
水は、次いで、ライン(17)を経て、担持触媒を収容
した湿式熱分解反応塔(19)に入り、酸素の不存在下
に湿式熱分解処理に供される。湿式熱分解処理された高
温の処理水は、次いで、ライン(21)を通って、担持
触媒を収容した湿式酸化分解反応塔(23)に供給され
、空気圧縮機(24)を経てライン(25)から供給さ
れる酸素含有ガス(図面では空気)の存在下に湿式酸化
分解に供される。湿式酸化分解反応塔(23)内での気
液接触効率を改善し、湿式酸化分解反応率の向上を図る
ためには、気液混和中の気泡を微細化することが好まし
い。この様な気泡微細化方法は、例えば、特開昭49−
49873号、特開昭4’149874号などに記載さ
れている。湿式酸化分解された高温の処理水は、ライン
(27)を経て熱交換器(9)に送られ、ここで廃水原
水の予備処理を行なった後、ライン(29)を経て、冷
却器(31)に送られ、冷却される。冷却器(31)に
は、給水ライン(33)および排水ライン(35)が接
続されており、冷却水の供給及び排水が常時行なわれて
いる。冷却器(31)を出た処理水は、ライン(37)
を経て気液分離器(39)に送られ、ライン(41)か
らの液相とライン(43)からの気相とに分離される。
In Figure 1, wastewater raw water contained in a tank (1) passes through a line (3) and is sent to a heat exchanger (9) via a line (7) by a booster pump (5), and is then sent to a heat exchanger (9) using a wet oxidation method as described below. After being heated by the high-temperature treated water from the decomposition reaction tower (23), it is fed through a line (11) to a heater (15) attached to a boiler (13), where it is heated to a predetermined temperature. . When a steady state is reached in which the reaction can maintain a predetermined temperature, heating by the boiler (13) is stopped. The wastewater heated to a predetermined reaction temperature then passes through a line (17) and enters a wet pyrolysis reaction tower (19) containing a supported catalyst, where it is subjected to wet pyrolysis treatment in the absence of oxygen. . The high-temperature treated water subjected to the wet pyrolysis treatment is then supplied to the wet oxidation decomposition reaction tower (23) containing the supported catalyst through the line (21), and then to the line (25) through the air compressor (24). ) is subjected to wet oxidative decomposition in the presence of an oxygen-containing gas (air in the drawing) supplied from In order to improve the gas-liquid contact efficiency in the wet oxidative decomposition reaction tower (23) and increase the wet oxidative decomposition reaction rate, it is preferable to make the bubbles during gas-liquid mixing fine. Such a bubble refinement method is described, for example, in Japanese Patent Application Laid-Open No. 49-1999.
No. 49873, Japanese Unexamined Patent Publication No. 4'149874, etc. The high-temperature treated water subjected to wet oxidative decomposition is sent to the heat exchanger (9) via the line (27), where it undergoes preliminary treatment of raw wastewater, and then passes through the line (29) to the cooler (31). ) and cooled. A water supply line (33) and a drain line (35) are connected to the cooler (31), and cooling water is constantly supplied and drained. The treated water leaving the cooler (31) is transferred to the line (37)
The liquid is sent to the gas-liquid separator (39), where it is separated into a liquid phase from line (41) and a gas phase from line (43).

液相のpHが低すぎる場合には、ライン(45)からの
pn調整剤(図示の実施態様では、NaOH水溶液)が
添加された後、バルブ(47)を経て系外に取り出され
る。一方、ライン(43)からの気相は、バルブ(49
)を経て系外に取り出される。
If the pH of the liquid phase is too low, a pn adjuster (in the illustrated embodiment, an aqueous NaOH solution) is added from line (45) and then removed from the system via valve (47). On the other hand, the gas phase from the line (43) is transferred to the valve (49).
) and then taken out of the system.

なお、湿式酸化分解反応塔(23)には、温度検知装置
(51)を付設しておくことにより、反応塔(23)内
の温度に応じて、バルブ(53)を開き、ライン(7)
を通る廃水の一部をバイパスライン(55)を経て湿式
熱分解反応塔(19)に直接供給することができる。
In addition, by attaching a temperature detection device (51) to the wet oxidative decomposition reaction tower (23), the valve (53) is opened depending on the temperature inside the reaction tower (23), and the line (7) is opened.
A portion of the wastewater passing through can be directly fed to the wet pyrolysis reaction tower (19) via a bypass line (55).

また、反応処理中の系内の圧力を制御するためには、気
液分離器(39)に圧力検知装置(57)を付設してお
くことにより、気液分離器(39)内の圧力に応じて、
バルブ(49)の開閉度を調節することができる。
In addition, in order to control the pressure inside the system during reaction processing, a pressure detection device (57) is attached to the gas-liquid separator (39), so that the pressure inside the gas-liquid separator (39) can be adjusted. depending on,
The degree of opening and closing of the valve (49) can be adjusted.

本願第二発明において、廃水にアンモニアを添加する場
合には、例えば、ライン(59)からライン(3)内を
通る廃水に混合すれば良い。湿式熱分解処理に先立つ廃
水へのアンモニアの添加位置は、特に限定されず、任意
の個所で行なうことができる。
In the second invention of the present application, when ammonia is added to wastewater, it may be mixed with the wastewater passing through the line (3) from the line (59), for example. The location at which ammonia is added to the wastewater prior to the wet pyrolysis treatment is not particularly limited and can be added at any location.

また、本願第三発明において、廃水に酸または酸生成物
質を添加する場合にも、ライン(61)からライン(3
)内を通る廃水に混合すれば良い。
Further, in the third invention of the present application, when adding an acid or an acid generating substance to wastewater, the line (61) to the line (3)
) can be mixed with the wastewater passing through it.

湿式熱分解処理に先立つ廃水への酸または酸生成物質の
添加位置も、特に限定されず、やはり任意の個所で行な
うことができる。
The location at which the acid or acid-generating substance is added to the wastewater prior to the wet pyrolysis treatment is also not particularly limited, and it can be added at any location.

さらにまた、本願第四発明において、廃水にアンモニア
ならびに酸または酸生成物質を添加する場合には、ライ
ン(59)およびライン(61)からそれぞれライン(
3)内を通る廃水に供給すればよい。
Furthermore, in the fourth invention of the present application, when adding ammonia and acid or an acid generating substance to the wastewater, the line (59) and the line (61) are connected to the line (59) and the line (61), respectively.
3) It can be supplied to the wastewater flowing inside.

本願第二発明乃至第四発明においても、湿式熱分解処理
後の処理水は、本願第一発明の場合と同様にして、湿式
酸化分解処理に供される。
Also in the second to fourth inventions of the present application, the treated water after the wet pyrolysis treatment is subjected to the wet oxidative decomposition treatment in the same manner as in the first invention of the present application.

発明の効果 本発明によれは、NH4NO3を高濃度で含有する廃水
を効率良く処理し、NH,l+イオン及びNO,−イオ
ン濃度を大幅に低下させることが出来る。従って、例え
ば、ウラン原料の処理工程又は使用済みウラン燃料の再
処理工程から排出され、NH4NO3濃度が10%以上
にも達することがある廃水等の処理を簡易な設備により
容易に行なうことが出来る。
Effects of the Invention According to the present invention, wastewater containing a high concentration of NH4NO3 can be efficiently treated, and the concentrations of NH, l+ ions and NO, - ions can be significantly reduced. Therefore, for example, wastewater discharged from a uranium raw material treatment process or a spent uranium fuel reprocessing process and whose NH4NO3 concentration can reach 10% or more can be easily treated using simple equipment.

実施例 以下実施例を示し、本発明の特徴とするところをより一
層明らかにする。
EXAMPLES Hereinafter, examples will be shown to further clarify the features of the present invention.

実施例1 (a)湿式熱分解; pH10、NH4NO3濃度10%(NH3−N/N0
3−N=1)(7)廃水100m1を容量300 ml
のステンレススチール製オートクレーブに収容し、25
0℃で60分間熱分解処理した。該反応器には、チタニ
ア担体にルテニウム2重景%を担持させた径5mmの触
媒Logが充填されており、反応器内圧力は、70kg
/clfI−Gであった。
Example 1 (a) Wet pyrolysis; pH 10, NH4NO3 concentration 10% (NH3-N/N0
3-N=1) (7) 100ml of wastewater to a volume of 300ml
Housed in a stainless steel autoclave with 25
Thermal decomposition treatment was carried out at 0°C for 60 minutes. The reactor is filled with a catalyst Log with a diameter of 5 mm in which ruthenium 2% is supported on a titania carrier, and the pressure inside the reactor is 70 kg.
/clfI-G.

(b)湿式酸化分解; 次いで、湿式熱分解工程を終えたオートクレーブに理論
酸素量の1.1倍に相当する量の空気を装入し、30分
間にわたり湿式酸化処理を行なった。湿式酸化処理時の
その他の条件は、湿式熱分解時のそれと同様とした。
(b) Wet oxidative decomposition; Next, air in an amount equivalent to 1.1 times the theoretical oxygen amount was charged into the autoclave that had completed the wet pyrolysis step, and wet oxidation treatment was performed for 30 minutes. Other conditions during the wet oxidation treatment were the same as those during the wet pyrolysis.

(a)湿式熱分解後および(b)湿式酸化分解後の全窒
素成分の分解率を実施例2〜12および比較例1〜2の
結果とともに第1表に示す。
The decomposition rates of total nitrogen components after (a) wet thermal decomposition and (b) wet oxidative decomposition are shown in Table 1 together with the results of Examples 2 to 12 and Comparative Examples 1 to 2.

実施例2 NH,NO3含有廃水に廃水中のNa及びKと当量の硫
酸(0,012モル/Q)を添加する以外は実施例1と
同様にしてN、H,NO3含有廃水の湿式熱分解処理お
よび湿式酸化処理を行なった。
Example 2 Wet pyrolysis of N, H, NO3-containing wastewater in the same manner as in Example 1 except that sulfuric acid (0,012 mol/Q) equivalent to Na and K in the wastewater was added to the NH, NO3-containing wastewater. treatment and wet oxidation treatment.

実施例3〜6 実施例1で熱分解したと同様のNH4NO3含有廃水に
所定量のNH,、OHを加えてNH3−N/N03−N
 (モル比)を調整した後、実施例1と同様にして熱分
解処理し、湿式酸化処理を行なった。
Examples 3 to 6 A predetermined amount of NH,,OH was added to the same NH4NO3-containing wastewater as that thermally decomposed in Example 1 to produce NH3-N/N03-N.
After adjusting the molar ratio, thermal decomposition treatment and wet oxidation treatment were performed in the same manner as in Example 1.

実施例フ ルテニウム担持触媒に代えてチタニア担体にパラジウム
1重量%を担持させた径5mmの触媒を使用する以外は
実施例1と同様にしてNH4NO3含有廃水を熱分解処
理し、湿式酸化処理を行なった。
Example NH4NO3-containing wastewater was thermally decomposed and subjected to wet oxidation treatment in the same manner as in Example 1, except that a catalyst with a diameter of 5 mm in which 1% by weight of palladium was supported on a titania carrier was used in place of the fluthenium supported catalyst. Ta.

実施例8〜11 ルテニウム担持触媒に代えてチタニア担体にパラジウム
1重量%を担持さぜた径5+n+nの触媒を使用する以
外は実施例3〜6と同様にしてN H4N O3含有廃
水の熱分解処理および湿式酸化処理を行なった。
Examples 8-11 Thermal decomposition treatment of N H4N O3-containing wastewater in the same manner as Examples 3-6 except that a catalyst with a diameter of 5+n+n in which 1% by weight of palladium was supported on a titania carrier was used instead of the ruthenium-supported catalyst. and wet oxidation treatment.

比較例1 触媒を使用しない以外は実施例4と同様にしてNH4N
o、含有廃水の熱分解処理を行なった。
Comparative Example 1 NH4N was prepared in the same manner as in Example 4 except that no catalyst was used.
o. The contained wastewater was subjected to thermal decomposition treatment.

比較例2 ルテニウム担持触媒に代えて触媒活性成分を担持しない
径5mmのチタニア球体を使用する以外は実施例4と同
様にしてNH4N03含有廃水の熱分解処理を行なった
Comparative Example 2 Thermal decomposition treatment of NH4N03-containing wastewater was carried out in the same manner as in Example 4, except that titania spheres with a diameter of 5 mm that did not support a catalytically active component were used in place of the ruthenium-supported catalyst.

実施例]2 NH,,1NO3含有廃水に廃水中のNa及びKと当量
の硫酸(0,012モル/R)を添加する以外は実施例
4と同様にしてNH4N03含有廃水の湿式熱分解処理
および湿式酸化処理を行なった。
Example] 2 Wet pyrolysis treatment of NH4N03-containing wastewater and Wet oxidation treatment was performed.

なお、第1表および以下の表において、(a)及び(b
)とあるのは、それぞれ湿式熱分解後および湿式酸化分
解後の結果を示す。
In addition, in Table 1 and the following tables, (a) and (b)
) indicate the results after wet pyrolysis and wet oxidative decomposition, respectively.

第1表 実齢 触媒活 NTo −N/ NO3−N性成分  
(モル比) I    Ru    1 2    Ru    1 3    Ru    1. 3 4  Ru  1.7 5    Ru    2.0 6    Ru    2. 5 7    Pd    1.0 全窒素成分分解$(%) (a)     (b) (続き) N  全窒素成分分解i(%) (a)     (b) 92    >99 第1表 Nlh −N/N03 (モル比) 1.3 1.7 2.0 2.5 1.7 実施例   触媒活 性成分 8’    Pd 9    Pd 10    Pd 11    Pd 12    R’u 比較例 1                 1.7    
  4.0     6.92       Ti担体
      1.7      4.2     7.
4実施例13〜19 廃水のN H4N O3濃度およびpHならびに必要に
応じて触媒活性成分を代える以外は実施例1と同様にし
てNH4NO3含有廃水の熱分解処理及び湿式酸化処理
を行なった。結果を第2表に示す。
Table 1 Actual age Catalyst activity NTo -N/ NO3-N component
(Molar ratio) I Ru 1 2 Ru 1 3 Ru 1. 3 4 Ru 1.7 5 Ru 2.0 6 Ru 2. 5 7 Pd 1.0 Total nitrogen component decomposition $ (%) (a) (b) (continued) N Total nitrogen component decomposition i (%) (a) (b) 92 >99 Table 1 Nlh -N/N03 ( Molar ratio) 1.3 1.7 2.0 2.5 1.7 Example Catalyst active component 8' Pd 9 Pd 10 Pd 11 Pd 12 R'u Comparative example 1 1.7
4.0 6.92 Ti carrier 1.7 4.2 7.
4 Examples 13 to 19 Thermal decomposition treatment and wet oxidation treatment of NH4NO3-containing wastewater were carried out in the same manner as in Example 1, except that the N H4N O3 concentration and pH of the wastewater and the catalytic active component were changed as necessary. The results are shown in Table 2.

第2表 実施例   M 媒活  N03  NO4全窒素成分
分解率(%)性成分 濃度(%)  pH<a)   
(b)13     Ru        1.   
 9.2     72     9814     
 Ru        4    9.4     8
2     9915      Ru       
 7    9.4     83     9916
     Ru      10    9.6   
  8.3    >9917      Pd   
     1    9.2     78     
9918      Pd        4    
9.4     84>9919      Pd  
      7    9.4.     85>99
実施例20 pH10、NH4No3濃度(10%)の廃水(NH3
N/NO3N=1)l;l:NH4OHを添加し−cN
H3−N/NO3−N=1.7+:調整するとともに、
硫酸を0.01モル/Qの割合で添加してそのpHを9
.2とした。次いで、この廃水を空間速度6. 31/
hr (空塔基準)として高ニツケル鋼製円筒型反応器
下部に供給して4000時間にわたり、熱分解処理を行
なった。
Table 2 Example M Medium activity N03 NO4 Total nitrogen component decomposition rate (%) Concentration (%) pH<a)
(b) 13 Ru 1.
9.2 72 9814
Ru 4 9.4 8
2 9915 Ru
7 9.4 83 9916
Ru 10 9.6
8.3 >9917 Pd
1 9.2 78
9918 Pd 4
9.4 84>9919 Pd
7 9.4. 85>99
Example 20 Wastewater (NH3
N/NO3N=1)l;l: Add NH4OH and -cN
H3-N/NO3-N=1.7+: Adjust and
Sulfuric acid was added at a rate of 0.01 mol/Q to adjust the pH to 9.
.. It was set as 2. This wastewater is then subjected to a space velocity of 6. 31/
hr (empty column standard) was supplied to the lower part of a high nickel steel cylindrical reactor, and thermal decomposition treatment was performed for 4000 hours.

液の質量速度は、2.8 ton /m2・hrであり
、反応器には、チタニア担体にパラジウム2重量%を担
持させた径5mmの球形触媒が充填されており、反応器
内温度及び圧力は250℃及び70kg/cm2であっ
た。
The mass velocity of the liquid is 2.8 ton/m2・hr, and the reactor is filled with a spherical catalyst with a diameter of 5 mm in which 2% by weight of palladium is supported on a titania carrier. was 250°C and 70 kg/cm2.

次いで、熱分解工程を終えた反応器に理論酸素量の11
.1倍に相当する量の空気を装入するとともに、空間速
度を10.2’/hrとして、湿式酸化処理を行なった
。湿式酸化処理時のその他の条件は、熱分解時のそれと
同様とした。
Next, the theoretical amount of oxygen was added to the reactor after the thermal decomposition process.
.. Wet oxidation treatment was carried out by charging air in an amount equivalent to 1 times the amount and setting the space velocity to 10.2'/hr. Other conditions during the wet oxidation treatment were the same as those during thermal decomposition.

反応終了後の気液混合相を熱回収に供した後、生成した
窒素ガスを分離するための気液分離機に導き、分離され
た気相及び液相をそれぞれ間接冷却後、系外に取り出し
た。
After the gas-liquid mixed phase after the reaction is completed is subjected to heat recovery, it is led to a gas-liquid separator to separate the generated nitrogen gas, and the separated gas and liquid phases are indirectly cooled and then taken out of the system. Ta.

第3表にN H3、N O3及び全窒素成分の分解率を
示す。
Table 3 shows the decomposition rates of N H3, N O3 and total nitrogen components.

気液分離後の液相中には、CODM9及びTOCは検出
されなかった。
CODM9 and TOC were not detected in the liquid phase after gas-liquid separation.

また、気相中にも、NOx及びSOxは検出されなかっ
た。
Furthermore, NOx and SOx were not detected in the gas phase either.

第3表にNH3、NO3及び全窒素成分の分解率を示す
Table 3 shows the decomposition rates of NH3, NO3 and total nitrogen components.

NH3 分解率 (%) (a)   85 (b)  >99 第    3 O3 分解率 (%) 〉99 表 全窒素成分 分解率 (%) 〉99 例20と同様にして、廃水の処理を行なった。NH3 Decomposition rate (%) (a) 85 (b) >99 Part 3 O3 Decomposition rate (%) 〉99 table Total nitrogen content Decomposition rate (%) 〉99 The wastewater was treated in the same manner as in Example 20.

結果は、第4表に示す通りである。The results are shown in Table 4.

*廃水の性状及び反応条件: NH4NO3濃度−5% pH=9. 9 全窒素濃度−17500mg/Q 温度−270℃ 圧力−90kg/cd 廃水の空間速度−1,5’/hr (湿式熱分解及び湿式酸化分解ともに同じ)実施例21
〜37 下記の廃水を使用し且つ反応条件を採用するとともに、
触媒(湿式熱分解及び湿式酸化分解ともに同じ)を第4
表に示すものに代える以外は実施第4表 第 4 表(続き) 2%Ru−TiO2 2%Ru−Zr02 1%Rh−Ti02 1%0s−TiO3 1%Ir−TiO2 0,3%Pt、(iCh 1%Au−TiO2 5%Fe TiO2 5%Ni−Ti0□ 5%W −TiO2 10%Mn−TiO2 5%Mn・5%Ce−’lIO2 〉99 〉99 〉99 33  5%Cu−Ti0770 3410%Co−Ti0284 35  5%Ce・5%Ce−Ti028536  5
%C0・5%Te−TiO2853715%Mg Ti
O273
*Properties of wastewater and reaction conditions: NH4NO3 concentration -5% pH = 9. 9 Total nitrogen concentration - 17,500 mg/Q Temperature - 270°C Pressure - 90 kg/cd Space velocity of waste water - 1,5'/hr (same for both wet pyrolysis and wet oxidative decomposition) Example 21
~37 Using the following wastewater and adopting the reaction conditions,
The catalyst (same for both wet pyrolysis and wet oxidative decomposition) was added to the fourth
Table 4 Table 4 (continued) 2%Ru-TiO2 2%Ru-Zr02 1%Rh-Ti02 1%0s-TiO3 1%Ir-TiO2 0.3%Pt, ( iCh 1%Au-TiO2 5%Fe TiO2 5%Ni-Ti0□ 5%W -TiO2 10%Mn-TiO2 5%Mn・5%Ce-'lIO2 〉99 〉99 〉99 33 5%Cu-Ti0770 3410% Co-Ti0284 35 5%Ce・5%Ce-Ti028536 5
%C0・5%Te-TiO2853715%MgTi
O273

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法の概要を示すフローチャートであ
る。 (1)・・・廃水タンク (5)・・・昇圧ポンプ (9)・・・熱交換器 (13)・・・ボイラー (15)・・・加熱器 (19)・・・湿式熱分解反応塔 (23)・・・湿式酸化反応塔 (24)・・・空気圧縮機 (25)・・・空気供給ライン (31)・・・冷却機 (33)・・・給水ライン (35)・・排水ライン (39)・・・気液分離機 (41)・・・液相ライン (43)・・・液H相うイン (43)・・・温度検知装置 (45)・・・pH調整剤供給ライン (51)・・・圧力検知装置 (55)・・・バイパスライン (59)・・・アンモニア供給ライン (61)・・・酸または酸生成物質供給ライン(以 上
FIG. 1 is a flowchart outlining the method of the present invention. (1)...Wastewater tank (5)...Boost pump (9)...Heat exchanger (13)...Boiler (15)...Heater (19)...Wet pyrolysis reaction Tower (23)...Wet oxidation reaction tower (24)...Air compressor (25)...Air supply line (31)...Cooler (33)...Water supply line (35)... Drainage line (39)... Gas-liquid separator (41)... Liquid phase line (43)... Liquid H phase in (43)... Temperature detection device (45)... pH adjuster Supply line (51)...Pressure detection device (55)...Bypass line (59)...Ammonia supply line (61)...Acid or acid generating substance supply line (and above)

Claims (1)

【特許請求の範囲】 [1]硝酸アンモニウム含有廃水を貴金属及びその不溶
性又は難溶性化合物並びに卑金属からなる群から選ばれ
た少なくとも1種を活性成分とする担持触媒の存在下且
つ酸素の不存在下にpH約1〜11.5、温度100〜
370℃で湿式熱分解した後、処理液を貴金属及びその
不溶性又は難溶性化合物並びに卑金属からなる群から選
ばれた少なくとも1種を活性成分とする担持触媒の存在
下且つ処理液中のアンモニア、有機性物質及び無機性物
質を分解するに必要な理論酸素量の1〜1.5倍量の酸
素を含有する気体の存在下にpH約1〜11.5、温度
100〜370℃で湿式酸化することを特徴とする硝酸
アンモニウム含有廃水の処理方法。 [2]0.1<NH_3−N/NO_3−N≦2(モル
比)となる様にアンモニアを加えた硝酸アンモニウム含
有廃水を貴金属及びその不溶性又は難溶性化合物並びに
卑金属からなる群から選ばれた少なくとも1種を活性成
分とする担持触媒の存在下且つ酸素の不存在下にpH約
1〜11.5、温度100〜370℃で湿式熱分解した
後、処理液を貴金属及びその不溶性又は難溶性化合物並
びに卑金属からなる群から選ばれた少なくとも1種を活
性成分とする担持触媒の存在下且つ処理液中のアンモニ
ア、有機性物質及び無機性物質を分解するに必要な理論
酸素量の1〜1.5倍量の酸素を含有する気体の存在下
にpH約1〜11.5、温度100〜370℃で湿式酸
化することを特徴とする硝酸アンモニウム含有廃水の処
理方法。 [3]酸および酸生成物質の少なくとも一種を加えた硝
酸アンモニウム含有廃水を貴金属及びその不溶性又は難
溶性化合物並びに卑金属からなる群から選ばれた少なく
とも1種を活性成分とする担持触媒の存在下且つ酸素の
不存在下にpH約1〜11.5、温度100〜370℃
で湿式熱分解した後、処理液を貴金属及びその不溶性又
は難溶性化合物並びに卑金属からなる群から選ばれた少
なくとも1種を活性成分とする担持触媒の存在下且つ処
理液中のアンモニア、有機性物質及び無機性物質を分解
するに必要な理論酸素量の1〜1.5倍量の酸素を含有
する気体の存在下にpH約1〜11.5、温度100〜
370℃で湿式酸化することを特徴とする硝酸アンモニ
ウム含有廃水の処理方法。 [4]0.1<NH_3−N/NO_3−N≦2(モル
比)となる様にアンモニアを加え且つ酸及び酸生成物質
の少なくとも1種を添加した硝酸アンモニウム含有廃水
を貴金属及びその不溶性又は難溶性化合物並びに卑金属
からなる群から選ばれた少なくとも1種を活性成分とす
る担持触媒の存在下且つ酸素の不存在下にpH約1〜1
1.5、温度100〜370℃で湿式熱分解した後、処
理液を貴金属及びその不溶性又は難溶性化合物並びに卑
金属からなる群から選ばれた少なくとも1種を活性成分
とする担持触媒の存在下且つ処理液中のアンモニア、有
機性物質及び無機性物質を分解するに必要な理論酸素量
の1〜1.5倍量の酸素を含有する気体の存在下にpH
約1〜11.5、温度100〜370℃で湿式酸化する
ことを特徴とする硝酸アンモニウム含有廃水の処理方法
[Claims] [1] Ammonium nitrate-containing wastewater is treated in the presence of a supported catalyst containing at least one active ingredient selected from the group consisting of noble metals, insoluble or poorly soluble compounds thereof, and base metals, and in the absence of oxygen. pH about 1-11.5, temperature 100-
After wet thermal decomposition at 370°C, the treatment liquid is treated in the presence of a supported catalyst containing at least one active ingredient selected from the group consisting of noble metals, insoluble or poorly soluble compounds thereof, and base metals, and ammonia and organic Wet oxidation at a pH of about 1 to 11.5 and a temperature of 100 to 370°C in the presence of a gas containing 1 to 1.5 times the theoretical amount of oxygen required to decompose organic and inorganic substances. A method for treating wastewater containing ammonium nitrate. [2] Ammonium nitrate-containing wastewater to which ammonia has been added so that 0.1<NH_3-N/NO_3-N≦2 (molar ratio) After wet pyrolysis at a pH of approximately 1 to 11.5 and a temperature of 100 to 370°C in the presence of a supported catalyst containing one type of active ingredient and in the absence of oxygen, the treatment liquid is treated with noble metals and their insoluble or sparingly soluble compounds. and the theoretical amount of oxygen necessary to decompose ammonia, organic substances, and inorganic substances in the treatment liquid in the presence of a supported catalyst containing at least one selected from the group consisting of base metals as an active ingredient. A method for treating ammonium nitrate-containing wastewater, which comprises carrying out wet oxidation at a pH of about 1 to 11.5 and a temperature of 100 to 370°C in the presence of a gas containing five times as much oxygen. [3] Ammonium nitrate-containing wastewater to which at least one of an acid and an acid-generating substance has been added is mixed with oxygen in the presence of a supported catalyst containing at least one selected from the group consisting of noble metals, insoluble or poorly soluble compounds thereof, and base metals as an active ingredient. pH about 1-11.5, temperature 100-370°C in the absence of
After wet thermal decomposition, the treatment solution is treated in the presence of a supported catalyst containing at least one active ingredient selected from the group consisting of noble metals, insoluble or poorly soluble compounds thereof, and base metals, and in the presence of ammonia and organic substances in the treatment solution. and in the presence of a gas containing 1 to 1.5 times the theoretical amount of oxygen required to decompose the inorganic substance at a pH of approximately 1 to 11.5 and a temperature of 100 to 100.
A method for treating wastewater containing ammonium nitrate, characterized by wet oxidation at 370°C. [4] Ammonium nitrate-containing wastewater to which ammonia and at least one acid and acid-generating substance have been added so that 0.1<NH_3-N/NO_3-N≦2 (molar ratio) is pH of about 1 to 1 in the presence of a supported catalyst containing at least one active ingredient selected from the group consisting of soluble compounds and base metals and in the absence of oxygen.
1.5. After wet pyrolysis at a temperature of 100 to 370°C, the treatment liquid is treated in the presence of a supported catalyst containing at least one active ingredient selected from the group consisting of noble metals, insoluble or poorly soluble compounds thereof, and base metals. pH in the presence of a gas containing 1 to 1.5 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances in the treatment solution.
1 to 11.5 and wet oxidation at a temperature of 100 to 370°C.
JP2165113A 1990-06-22 1990-06-22 Treatment of waste water containing ammonium nitrate Pending JPH0459094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165113A JPH0459094A (en) 1990-06-22 1990-06-22 Treatment of waste water containing ammonium nitrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165113A JPH0459094A (en) 1990-06-22 1990-06-22 Treatment of waste water containing ammonium nitrate

Publications (1)

Publication Number Publication Date
JPH0459094A true JPH0459094A (en) 1992-02-25

Family

ID=15806157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165113A Pending JPH0459094A (en) 1990-06-22 1990-06-22 Treatment of waste water containing ammonium nitrate

Country Status (1)

Country Link
JP (1) JPH0459094A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641413A (en) * 1995-10-27 1997-06-24 Zimpro Environmental, Inc. Removal of nitrogen from wastewaters
US6902679B2 (en) 2001-03-21 2005-06-07 Air Products And Chemicals, Inc. Treatment of water containing organic wastes with aromatic amine nitrate salts
CN105692995A (en) * 2016-02-19 2016-06-22 浙江奇彩环境科技股份有限公司 Recycling treatment method of amino acid wastewater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641413A (en) * 1995-10-27 1997-06-24 Zimpro Environmental, Inc. Removal of nitrogen from wastewaters
US6902679B2 (en) 2001-03-21 2005-06-07 Air Products And Chemicals, Inc. Treatment of water containing organic wastes with aromatic amine nitrate salts
CN105692995A (en) * 2016-02-19 2016-06-22 浙江奇彩环境科技股份有限公司 Recycling treatment method of amino acid wastewater

Similar Documents

Publication Publication Date Title
EP0196597B1 (en) Process for treating ammonium nitrate-containing waste water
JPH0459094A (en) Treatment of waste water containing ammonium nitrate
JP3425000B2 (en) Treatment of flue gas desulfurization wastewater
JPH11502152A (en) Process and apparatus for wastewater treatment by oxidation in the presence of a heterogeneous catalyst
JPS61257291A (en) Treatment of waste water containing ammonium nitrate
JP2969467B2 (en) Treatment method for wastewater containing ammonium nitrate
JPH0461987A (en) Treatment of waste water containing ammonium nitrate
JP2969478B2 (en) Treatment method for wastewater containing ammonium nitrate
JP2969477B2 (en) Treatment method for wastewater containing ammonium nitrate
JPS61257292A (en) Treatment of waste water containing ammonium nitrate
JP2899719B2 (en) Treatment method for wastewater containing ammonium nitrate
JP4187845B2 (en) Method for treating ammonia-containing water
JPH11300374A (en) Treatment of waste water
JPH0227035B2 (en)
JPS61222585A (en) Treatment of waste water containing ammonium nitrate
JPS61245883A (en) Treatment of waste water containing ammonium nitrate
JPS61222586A (en) Treatment of waste water containing ammonium nitrate
JP4223706B2 (en) Wastewater treatment method
JP3693354B2 (en) Treatment method of wastewater containing nitrate
JPH02265695A (en) Treatment of waste water
JPS61257290A (en) Treatment of waste water containing ammonium nitrate
JPS61222589A (en) Treatment of waste water containing ammonium nitrate
JPS61222588A (en) Treatment of waste water containing ammonium nitrate
JPS61222587A (en) Treatment of waste water containing ammonium nitrate
JP2000167570A (en) Treatment of waste water