JPS61222587A - Treatment of waste water containing ammonium nitrate - Google Patents

Treatment of waste water containing ammonium nitrate

Info

Publication number
JPS61222587A
JPS61222587A JP6422985A JP6422985A JPS61222587A JP S61222587 A JPS61222587 A JP S61222587A JP 6422985 A JP6422985 A JP 6422985A JP 6422985 A JP6422985 A JP 6422985A JP S61222587 A JPS61222587 A JP S61222587A
Authority
JP
Japan
Prior art keywords
treatment
wastewater
oxygen
ammonium nitrate
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6422985A
Other languages
Japanese (ja)
Other versions
JPH0647100B2 (en
Inventor
Yoshiaki Harada
原田 吉明
Teizo Okino
沖野 貞造
Kenichi Yamazaki
健一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP60064229A priority Critical patent/JPH0647100B2/en
Priority to US06/843,677 priority patent/US4654149A/en
Priority to EP86104065A priority patent/EP0196597B1/en
Priority to DE8686104065T priority patent/DE3685674T2/en
Priority to CA000505221A priority patent/CA1275511C/en
Priority to CN86102728A priority patent/CN1012570B/en
Publication of JPS61222587A publication Critical patent/JPS61222587A/en
Publication of JPH0647100B2 publication Critical patent/JPH0647100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To efficiently decompose ammonia, org. substance and inorg. substance, by applying wet thermal decomposition treatment to waste water containing ammonium nitrate in the presence of a specific catalyst before performing the wet oxidation of said waste water in an atmosphere containing a specific amount of oxygen. CONSTITUTION:In the treatment of waste water with NH4NO3-concn. of 10% or more discharged from an uranium stock material treatment process, said waste water is at first subjected to wet thermal decomposition in the presence of a supported catalyst containing platinum, gold, ruthenium or rhodium sulfide as catalytically active components under a pH condition of 3-11.5 at 100-370 deg.C. Next, this treated water is subjected to wet oxidation treatment not only in the presence of a supported catalyst containing iron, cobalt, rhodium and compounds thereof as active components but also in the presence of gas containing oxygen in an amount 1-1.5 times a theoretical oxygen amount necessary for decomposing the ammonia, org. substance and inorg. substance in the treated water under a pH condition of 8-11.5 at 100-370 deg.C.

Description

【発明の詳細な説明】 Llよ立五亙遣1 本発明は、硝酸アンモニウム含有廃水の処理方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater containing ammonium nitrate.

びその間 近年、水質規制の観点から化学的酸素要求物質(COD
成分)のみならず、窒素成分(特にアンモニア態窒素)
の除去も重要なrR題となって来た。
In recent years, chemical oxygen demand substances (COD) have been
components) as well as nitrogen components (especially ammonia nitrogen)
The removal of has also become an important rR issue.

本発明者等は、アンモニア含有廃水の処理方法について
長期にわたり種々研究を重ねた結果、特定の触媒の存在
下且つ特定の条件下に湿式酸化処理を行なうことにより
、操作容易にして実用上の経済性を備えたアンモニア含
有廃水の処理方法を完成した(特公昭59−19757
号、特公昭56−42992号、特公昭57−4239
1号、特公昭58−27999号、特公昭57−333
20号等)。
As a result of long-term research on various methods for treating ammonia-containing wastewater, the present inventors have discovered that wet oxidation treatment can be carried out in the presence of a specific catalyst and under specific conditions, making it easy to operate and practical and economical. Completed a method for treating ammonia-containing wastewater with
No., Special Publication No. 56-42992, Special Publication No. 57-4239
1, Special Publication No. 58-27999, Special Publication No. 57-333
No. 20, etc.).

最近、発電業界における原子力発電の比重が増大するに
従って、ウラン原料の処理及び使用済みウラン燃料の再
処理工程から排出されるNHaNOa含有廃水の処理が
重要な技術的課題となりつつある。本発明者は、この様
なNHaNOs含有廃水の処理に上記一連のアンモニア
含有廃水の処理技術(以下先願技術という)を応用する
ことを試みた。この試みにおいて、NHA+イオンは極
めて高い効率で分解されるものの、NO3−イオンにつ
いては必ずしも満足すべきものとは言い難い場合もある
ことが判明した。
Recently, as the importance of nuclear power generation in the power generation industry increases, the treatment of NHaNOa-containing wastewater discharged from the processing of uranium raw materials and the reprocessing process of spent uranium fuel is becoming an important technical issue. The present inventor attempted to apply the above-mentioned series of ammonia-containing wastewater treatment technologies (hereinafter referred to as prior art) to the treatment of such NHaNOs-containing wastewater. In this attempt, it was found that although NHA+ ions were decomposed with extremely high efficiency, the decomposition of NO3- ions was not always satisfactory.

これは、上記廃水中のNHaNOs濃度が1%(100
00pp1)から10% (1000000D■)程度
にも達する場合があることによるものと推測される。
This means that the NHaNOs concentration in the wastewater is 1% (100
This is presumed to be due to the fact that it can reach as much as 10% (1000000D■) from 00pp1).

を   るための 本発明者は、上記の如き現状に鑑みて更に種々研究を重
ねた結果、廃水中のアンモニア、有機性物質及び無機性
物質を分解するに必要な理論酸素量以上の酸素を使用し
て湿式酸化を行なう先願技術に代えて、貴金属及びその
不溶性又は難溶性化合物の少なくとも1種を活性成分と
する担持触媒の存在下に酸素を実質的に供給することな
く該NHaNOs含有廃水の湿式熱分解を行なう場合に
は、NO3−イオンが特に効率良く分解されることを見
出した。更に本発明者の研究によれば、上記の湿式熱分
解処理により得られた処理液を引続き先願技術による湿
式酸化反応に供する場合には、残存するアンモニア、有
機性物質及び無機性物質が実質上完全に分解されること
を見出した。
In view of the above-mentioned current situation, the inventor of the present invention has further conducted various studies and determined that the amount of oxygen used is more than the theoretical amount necessary to decompose ammonia, organic substances, and inorganic substances in wastewater. Instead of the prior art in which wet oxidation is carried out using a noble metal and at least one of its insoluble or sparingly soluble compounds, the NHaNOs-containing wastewater is oxidized without substantially supplying oxygen in the presence of a supported catalyst containing at least one of noble metals and its insoluble or sparingly soluble compounds as an active ingredient. It has been found that NO3- ions are decomposed particularly efficiently when wet thermal decomposition is performed. Furthermore, according to the research of the present inventor, when the treated liquid obtained by the above wet pyrolysis treatment is subsequently subjected to the wet oxidation reaction according to the prior art, remaining ammonia, organic substances and inorganic substances are substantially removed. It was found that the upper part was completely decomposed.

即ち、本発明は、下記の2種の廃水処理方法を提供する
ものである。
That is, the present invention provides the following two types of wastewater treatment methods.

■ 硝酸アンモニウム含有廃水を貴金属及びその不溶性
又は難溶性化合物の少なくとも1種を活性成分とする担
持触媒の存在下にOH約3〜11.5、温度100〜3
70℃で湿式熱分解することを特徴とする硝酸アンモニ
ウム含有廃水の処理方法、及び ■ 硝酸アンモニウム含有廃水を貴金属及びその不溶性
又は難溶性化合物の少なくとも1種を活性成分とする担
持触媒の存在下にpH約3〜11.5、温度100〜3
70℃で湿式熱分解した後、処理液を鉄、コバルト、ニ
ッケル、ルテニウム、ロジウム、パラジウム、オスミウ
ム、イリジウム、白金、銅、金、タングステン及びその
不溶性又は難溶性化合物の少なくとも1種を活性成分と
する担持触媒の存在下且つ処理液中のアンモニア、有機
性物質及び無機性物質を分解するに必要な理論酸素量の
1〜1.5倍量の酸素を含有する気体の存在下にpH約
8〜11.5、温度と100〜370℃で湿式酸化する
ことを特徴とする硝酸アンモニウム含有廃水の処理方法
■ Ammonium nitrate-containing wastewater is heated at an OH of approximately 3 to 11.5 mL and a temperature of 100 to 3 mL in the presence of a supported catalyst containing at least one noble metal and its insoluble or sparingly soluble compounds as an active ingredient.
A method for treating wastewater containing ammonium nitrate, characterized by wet thermal decomposition at 70°C; 3-11.5, temperature 100-3
After wet pyrolysis at 70°C, the treatment solution is treated with at least one of iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, gold, tungsten and insoluble or sparingly soluble compounds thereof as an active ingredient. pH of approximately 8 in the presence of a supported catalyst and in the presence of a gas containing 1 to 1.5 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances in the treatment liquid. ~11.5. A method for treating wastewater containing ammonium nitrate, characterized by wet oxidation at a temperature of 100 to 370°C.

本発明は、NH4NO2を含む全ての廃水を対象とする
ものであり、特にNHa NOs濃度が1%以上の高濃
度廃水の処理に好適である。尚、廃水は、有機性物質及
び無機性物質を併せて含んでいても良い。本発明方法は
、pH約3〜11.5、より好ましくは5〜11で効率
良〈実施されるので、必要ならば、水酸化ナトリウム、
炭酸ナトリウム、水酸化カルシウム等のアルカリ性物質
により廃水のpH調整を予め行なっても良い。
The present invention targets all wastewater containing NH4NO2, and is particularly suitable for treating high-concentration wastewater with a NHaNOs concentration of 1% or more. Note that the wastewater may contain both organic substances and inorganic substances. Since the method of the present invention is efficiently carried out at a pH of about 3 to 11.5, more preferably 5 to 11, if necessary, sodium hydroxide,
The pH of the wastewater may be adjusted in advance using an alkaline substance such as sodium carbonate or calcium hydroxide.

尚、NHANO3含有廃水にアンモニアを加え、熱分解
する場合には、分解効率が一層向上する。
Incidentally, when ammonia is added to the NHAN03-containing wastewater for thermal decomposition, the decomposition efficiency is further improved.

この場合、アンモニアの添加量は、 1くNH3−N/No3−N≦5(モル比)となる様に
することが好ましい。
In this case, it is preferable that the amount of ammonia added be such that 1.NH3-N/No3-N≦5 (molar ratio).

本発明で使用する触媒活性成分としては、ルテニウム、
ロジウム、パラジウム、オスミウム、イリジウム、白金
及び金並びにこれ等の水に対し不溶性乃至難溶性の化合
物が挙げられ、これ等の1稽又は2種以上を使用するこ
とが出来る。不溶性乃至難溶性の化合物としては、二塩
化ルテニウム。
The catalytically active components used in the present invention include ruthenium,
Examples include rhodium, palladium, osmium, iridium, platinum, gold, and compounds that are insoluble or sparingly soluble in water, and one or more of these may be used. Ruthenium dichloride is an insoluble or poorly soluble compound.

二塩化白金、硫化ルテニウム、硫化ロジウムなどが例示
される。これ等の触媒活性成分は、常法に従ってチタニ
ア、ジルコニア、アルミナ、シリカ、アルミナ−シリカ
、活性炭、或いはニッケル、ニッケルークロム、ニッケ
ルークロム−アルミニウム、ニッケルークロム−鉄等の
金属多孔体等の担体に担持して使用する。担持量は、通
常担体臆量の0.05〜25%、好ましくは0.5〜3
%である。触媒は、球状、ベレット状、円柱状、破砕片
状、粉末状等の種々の形態で使用可能である。
Examples include platinum dichloride, ruthenium sulfide, and rhodium sulfide. These catalytically active components can be prepared using conventional methods such as titania, zirconia, alumina, silica, alumina-silica, activated carbon, or metal porous bodies such as nickel, nickel-chromium, nickel-chromium-aluminum, and nickel-chromium-iron. It is used by supporting it on a carrier. The supported amount is usually 0.05 to 25% of the carrier amount, preferably 0.5 to 3%.
%. The catalyst can be used in various forms such as spherical, pellet, cylindrical, crushed pieces, and powder.

反応塔容積は、固定床の場合には、液の空間速度が0.
5〜10’/、、(空塔基準)、より好ましくは1〜5
  ’/h、(空塔基準)となる様にするのが良い。固
定床で使用する触媒の大きさは通常的3〜50■―、よ
り好ましくは約5〜25i+nである。
In the case of a fixed bed, the reaction column volume is determined when the space velocity of the liquid is 0.
5 to 10'/, (sky tower standard), more preferably 1 to 5
'/h, (sky tower standard). The size of the catalyst used in the fixed bed is typically from 3 to 50 cm, more preferably from about 5 to 25 cm.

流動床の場合には、反応塔内で触媒が流動床を形成し得
る量、通常0.5〜20311%、より好ましくは0.
5〜10重量%を廃水にスラリー状に懸濁させ、使用す
る。流動床における実用上の操作に当っては触媒を廃水
中にスラリー状に懸濁させた状態で反応塔に供給し、反
応終了後排出させた処理済廃水から触媒を沈降、遠心分
離等の適当な方法で分離回収し、再度使用する。従って
処理済廃水からの触媒分離の容易さを考慮すれば、流動
床に使用する触媒の粒度は約0.15〜約0.5m−程
度とすることがより好ましい。
In the case of a fluidized bed, the amount of catalyst that can form a fluidized bed in the reaction column is usually 0.5 to 20311%, more preferably 0.5%.
It is used by suspending 5 to 10% by weight in slurry in waste water. In practical operation in a fluidized bed, the catalyst is supplied to the reaction tower in the form of a slurry suspended in wastewater, and after the reaction is completed, the catalyst is separated from the treated wastewater discharged through appropriate methods such as sedimentation and centrifugation. Separate and recover using appropriate methods and use again. Therefore, considering the ease of catalyst separation from treated wastewater, it is more preferable that the particle size of the catalyst used in the fluidized bed is about 0.15 to about 0.5 m.

熱分解反応時の温度は、通常100〜370’C1より
好ましくは200〜300℃とする。反応時の温度が高
い程、NHL÷イオン及びNOs”″イオンの除去率が
高まり且つ反応塔内での廃水の滞留時間も短縮されるが
、反面に於て設備費が大となるので、廃水の種類、要求
される処理の程度、運転費、建設費等を総合的に考慮し
て定めれば良い。尚、反応塔内には、液相を保つために
飽和蒸気圧を上回る程度の少量の気体を存在させておけ
ば良く、この様なガスとしては空気、窒素等が挙げられ
る。
The temperature during the thermal decomposition reaction is generally 100 to 370'C1, preferably 200 to 300C. The higher the reaction temperature, the higher the removal rate of NHL ÷ ions and NOs'' ions, and the shorter the residence time of wastewater in the reaction tower. It should be determined by comprehensively considering the type of treatment, the degree of processing required, operating costs, construction costs, etc. Incidentally, in order to maintain the liquid phase, a small amount of gas that exceeds the saturated vapor pressure may be present in the reaction tower, and such gases include air, nitrogen, and the like.

蒸気の熱分解反応により、廃水中のNHa+イオン及び
NO3″″イオン、特にN0s−イオンが高度に分解さ
れる。若し、処理水中のアンモニア、有機性物質及び無
機性物質を更に分解除去する必要がある場合には、処理
水を前記先願技術の方法により湿式酸化分解することが
出来る。
Due to the steam thermal decomposition reaction, NHa+ ions and NO3'' ions, especially NOs- ions, in the wastewater are highly decomposed. If it is necessary to further decompose and remove ammonia, organic substances, and inorganic substances in the treated water, the treated water can be subjected to wet oxidative decomposition using the method of the prior art.

湿式酸化は、pH約8〜11.5、より好ましくは9〜
11で効率良く進行するので、前段湿式熱分解からの処
理水は、必要ならば、前記と同様のアルカリ性物質によ
りpHII整を予め行なう。
Wet oxidation is carried out at a pH of about 8-11.5, more preferably 9-11.5.
Since the process proceeds efficiently in Step 11, the treated water from the first stage wet pyrolysis is, if necessary, subjected to pHII adjustment in advance using the same alkaline substance as described above.

湿式酸化において使用する触媒活性成分としては、鉄、
コバルト、ニッケル、ルテニウム、ロジウム、パラジウ
ム、オスミウム、イリジウム、白金、銅、金、タングス
テン、並びにこれ等金属の酸化物、二塩化ルテニウム、
二塩化白金等の塩化物、硫化ロジウム、硫化ルテニウム
等の硫化物等の水に対し不溶性又は難溶性の化合物が挙
げられ、これ等の1種又は2種以上を使用する。触媒担
体、担体に対する触媒活性成分の担持量、触媒の形状、
寸法及び使用方法等は、前記熱分解工程の場合と同様で
良い。
Catalytic active components used in wet oxidation include iron,
Cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, gold, tungsten, and oxides of these metals, ruthenium dichloride,
Examples include compounds that are insoluble or sparingly soluble in water, such as chlorides such as platinum dichloride, sulfides such as rhodium sulfide, and ruthenium sulfide, and one or more of these may be used. Catalyst carrier, amount of catalytically active component supported on the carrier, shape of catalyst,
The dimensions, method of use, etc. may be the same as in the case of the thermal decomposition process.

NHa÷イオン含有処理水の湿式酸化工程が、NHaN
Os含有廃水の熱分解処理とは本質的に興なる点は、処
理水中のNHt+イオンを分解するに必要な理論量の1
〜1.5倍の酸素を必要とすることである。酸素源とし
て使用するガスとしては、空気、酸素富化空気、酸素、
更には不純物としてシアン化水素、硫化水素、アンモニ
ア、硫黄酸化物、有機硫黄化合物、窒素酸化物、炭化水
素等の少なくとも1種を含有する酸素含有廃ガスが挙げ
られる。これ等ガスの供給量は6、廃水中のアンモニア
、有機性物質及び無機性物質(酸素源として廃ガスを使
用する場合には、更に含有不純物)をN2 、CO2及
びH2Oにまで分解するに必要な理論酸素量を基準とし
て定められ、より好ましくは理論酸素量の1.05〜1
.2倍の酸素が反応系に存在する様にする。酸素源とし
て酸素含有廃ガスを使用する場合には、ガス中の有害成
分も同時に分解無害化される。酸素含有ガスは、一度に
供給しても良く或いは複数回に分けて供給しても良い。
The wet oxidation process of NHa÷ion-containing treated water is NHaN
The essential point of thermal decomposition treatment of Os-containing wastewater is that the theoretical amount of 1
~1.5 times more oxygen is required. Gases used as oxygen sources include air, oxygen-enriched air, oxygen,
Further examples include oxygen-containing waste gas containing at least one of hydrogen cyanide, hydrogen sulfide, ammonia, sulfur oxides, organic sulfur compounds, nitrogen oxides, hydrocarbons, and the like as impurities. The amount of supply of these gases is 6, necessary to decompose ammonia, organic substances and inorganic substances in the wastewater (and additionally contained impurities if waste gas is used as an oxygen source) into N2, CO2 and H2O. It is determined based on the theoretical oxygen amount, more preferably 1.05 to 1 of the theoretical oxygen amount.
.. Make sure that twice as much oxygen is present in the reaction system. When oxygen-containing waste gas is used as an oxygen source, harmful components in the gas are also decomposed and rendered harmless. The oxygen-containing gas may be supplied at once, or may be supplied in multiple doses.

湿式酸化時の温度は、やはり100〜370℃程度、よ
り好ましくは200〜300℃程度である。又、圧力は
、処理水が液相を保持する圧力とすれば良い。
The temperature during wet oxidation is also about 100 to 370°C, more preferably about 200 to 300°C. Moreover, the pressure may be a pressure at which the treated water maintains a liquid phase.

湿式酸化後の液のpHが5未満となる場合には、湿式酸
化反応装置内にアルカリ物質を供給し、処理済液のpH
を5〜8程度となる様に調整することが好ましい。かく
して、触媒の消耗又は劣化、反応器、配管、熱交換器等
の損傷等が防止され、放流に先立つ処理済液の中和が不
要となる。
If the pH of the liquid after wet oxidation is less than 5, an alkaline substance is supplied into the wet oxidation reactor to adjust the pH of the treated liquid.
is preferably adjusted to about 5 to 8. In this way, exhaustion or deterioration of the catalyst, damage to reactors, piping, heat exchangers, etc. are prevented, and neutralization of the treated liquid prior to discharge is not required.

11立豆1 本発明によれば、NH4NO2を高濃度で含有する廃水
を効率良く処理し、NHa+イオン及びN0s−イオン
濃度を大幅に低下させることが出来る。従って、例えば
、ウラン原料の処理工程又は使用済みウラン燃料の再処
理工程から排出され、NHANO31度が10%以上に
も達することがある廃水等の処理を簡易な設備により容
易に行なうことが出来る。
11 Standing Beans 1 According to the present invention, it is possible to efficiently treat wastewater containing a high concentration of NH4NO2 and to significantly reduce the concentrations of NHa+ ions and NOs- ions. Therefore, for example, wastewater discharged from a uranium raw material processing process or a spent uranium fuel reprocessing process and whose NHANO31 degree may reach 10% or more can be easily treated using simple equipment.

衷−」L−舅 以下実施例を示し、本発明の特徴とするところをより一
層明らかにする。
EXAMPLES Examples will be given below to further clarify the features of the present invention.

実施例1 pH10、NH4NO3濃度10% (NH3−N/No3−N−1)の廃水ioomを容1
300mのステンレススチール製オートクレーブに収容
し、250℃で60分間熱分解処理した。尚、反応器に
は、処理に先立って空気が封入されており、これは廃水
中のアンモニア、有機性物質及び無機性物質を分解する
に必要な理論酸素量の約0.01倍に相当する酸素を含
有していた。又、該反応器には、チタニア担体にルテニ
ウム2重量%を担持させた径5mmの触媒10gが充填
されていた。
Example 1 1 volume of wastewater ioom with pH 10 and NH4NO3 concentration 10% (NH3-N/No3-N-1)
It was placed in a 300 m stainless steel autoclave and subjected to thermal decomposition treatment at 250°C for 60 minutes. The reactor is filled with air prior to treatment, which is equivalent to approximately 0.01 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances in wastewater. It contained oxygen. Further, the reactor was filled with 10 g of a catalyst having a diameter of 5 mm and having 2% by weight of ruthenium supported on a titania carrier.

NHa÷、N0s−及び全窒素成分の分解率を実施例2
〜4の結果とともに第1表に示す。
Example 2 shows the decomposition rate of NHa÷, N0s- and total nitrogen components.
It is shown in Table 1 together with the results of 4 to 4.

実施例2 実施例1で熱分解したと同様のNHaNOs含有廃水に
所定量のNH4OHを加えてN83  N/N0s−N
(モル比)を調整した後、実施例1と同様にして熱分解
処理に供した。
Example 2 A predetermined amount of NH4OH was added to the same NHaNOs-containing wastewater that was thermally decomposed in Example 1 to produce N83N/N0s-N.
After adjusting the molar ratio, the mixture was subjected to thermal decomposition treatment in the same manner as in Example 1.

実施例3 ルテニウム担持触媒に代えてチタニア担体にパラジウム
1重量%を担持させた径5履■の触媒を使用する以外は
実施例1と同様にしてNHaNOa含有廃水の熱分解処
理を行なった。
Example 3 Thermal decomposition treatment of NHaNOa-containing wastewater was carried out in the same manner as in Example 1, except that a catalyst with a diameter of 5 mm in which 1% by weight of palladium was supported on a titania carrier was used in place of the ruthenium-supported catalyst.

実施例4 NHaOHを加えてNH3−N/No3−Nのモル比を
調整した以外は実施例3と同様にしてNHANO3含有
廃水の熱分解処理を行なった。
Example 4 NHAN03-containing wastewater was thermally decomposed in the same manner as in Example 3, except that NHaOH was added to adjust the molar ratio of NH3-N/No3-N.

実施例5 NHa NO3濃度10%の廃水にNH40)−1をつ
pH10とし、これを空間速度1.33  ’/h。
Example 5 NH40)-1 was added to wastewater with a 10% NHa NO3 concentration to adjust the pH to 10, and the space velocity was 1.33'/h.

(空塔基準)として高ニツケル鋼製円筒型反応器下部に
供給しつつ、空気を空間速度7.01/r (空塔基準、標準状態換算)として該反応器下部に供給
して熱分解処理を行なった。液の質量速度は、3.08
 ton/m2−hrであり、供給空気は、アンモニア
、有機性物質及び無機性物質を分解するに必要な理論酸
素量の約0.05倍に相当する酸素を含有していた。又
、反応器には、チタニア担体にパラジウム2重量%を担
持させた径5+esの球形触媒が充填されており、熱分
解は、温度250℃、圧カフ 0 kQ/ cm2の条
件下に行なわれた。
Thermal decomposition treatment is carried out by supplying air to the lower part of the reactor at a space velocity of 7.01/r (empty tower standard, standard state conversion) while supplying air to the lower part of the reactor at a space velocity of 7.01/r (empty tower standard). I did this. The mass velocity of the liquid is 3.08
ton/m2-hr, and the feed air contained approximately 0.05 times the theoretical amount of oxygen required to decompose ammonia, organic materials, and inorganic materials. In addition, the reactor was filled with a spherical catalyst with a diameter of 5+es in which 2% by weight of palladium was supported on a titania carrier, and thermal decomposition was carried out at a temperature of 250°C and a pressure cuff of 0 kQ/cm2. .

反応を終えた気液混合相を熱回収に供した後、気液分離
器に導き、分離された気相及び液相をそれぞれ間接冷却
後、系外に取り出した。
After the gas-liquid mixed phase that had completed the reaction was subjected to heat recovery, it was led to a gas-liquid separator, and the separated gas and liquid phases were each indirectly cooled and then taken out of the system.

実施例5及び6におけるNHs%NOs及び全窒素成分
の分解率を第2表に示す。
The decomposition rates of NHs%NOs and total nitrogen components in Examples 5 and 6 are shown in Table 2.

尚、気相中には、NOx及びSOxは検出されなかった
Note that NOx and SOx were not detected in the gas phase.

実施例6 廃水の空間速度を0.517hr(空塔基準)、質量速
度を、1 、16 ton/m2− hr1空気の空開
速度を3.5/h、(空塔基準、標準状態換算)、空気
中の酸素量をアンモニア、有機性物質及び無機性物質を
分解するに必要な理論酸素量の約0.05倍、反応器内
温度及び圧力を200℃及び45kMc■2とする以外
は、実施例1と同様にしてNHANO3含有廃水の熱分
解処理を行なった。
Example 6 The space velocity of wastewater was 0.517 hr (based on the sky column), the mass velocity was 1.16 ton/m2-hr1, and the space velocity of air was 3.5/h (based on the sky column, converted to standard conditions). , except that the amount of oxygen in the air was approximately 0.05 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances, and the temperature and pressure inside the reactor were 200°C and 45kMc2. The thermal decomposition treatment of NHANO3-containing wastewater was carried out in the same manner as in Example 1.

気相中にN Ox及びSOxは検出されなかった。NOx and SOx were not detected in the gas phase.

第     2     表 実施例7 (I)  廃水の空間速度を21/、、(空塔基準)、
質量速度を、4.6 ton/m2−hr、空気の空間
速度を14  /、、(空塔基準、標準状態換算)、空
気中の酸素量をアンモニア、有機性物質及び無機性物質
を分解するに必要な理論酸素量の約0.05倍、反応器
内温度及び圧力を200℃及び45 kQ/ cm2と
する以外は、実施例1と同様にしτNHzNO@含有廃
水の熱分解処理を行なった。
Table 2 Example 7 (I) Space velocity of wastewater is 21/, (sky tower standard),
The mass velocity is 4.6 ton/m2-hr, the space velocity of air is 14/, (sky tower standard, standard state conversion), and the amount of oxygen in the air is to decompose ammonia, organic substances, and inorganic substances. The thermal decomposition treatment of τNHZNO@-containing wastewater was carried out in the same manner as in Example 1, except that the temperature and pressure inside the reactor were set to about 0.05 times the theoretical amount of oxygen required for

気液分離後の気相中には、NOX及びSOxは検出され
なかった。
NOX and SOx were not detected in the gas phase after gas-liquid separation.

第3表にNHs、NO3及び全窒素成分の分解率を示す
Table 3 shows the decomposition rates of NHs, NO3 and total nitrogen components.

第     3     表 (II)  上記(I)で得られた処理済水中の残留N
Hs  Nは52091)l、pHは7.3であった。
Table 3 (II) Residual N in treated water obtained in (I) above
HsN was 52091)l, and pH was 7.3.

該処理済水にNaOH1液を加えてDHを8.5とした
後、空間速度3 /hr(空塔基準)として高ニツケル
鋼製円筒型反応器最下部に供給しつつ、空気を空間速度
4.31/h、(空塔基準、標準状態換算)として該反
応器下部に供給して湿式酸化分解を行なった。液の質量
速度は、5.9 ton/m2・hrであり、供給空気
は、アンモニア、有機性物質及び無機性物質をN*、C
02及びH2Oにまで分解するに必要な理論酸素量の約
1.1倍に相当する酸素を含有していた。
After adding 1 solution of NaOH to the treated water to adjust the DH to 8.5, air was supplied to the lowest part of the high nickel steel cylindrical reactor at a space velocity of 3/hr (empty column standard), while air was raised to a space velocity of 4/hr. Wet oxidative decomposition was carried out by feeding the reactor to the lower part of the reactor at a rate of .31/h (empty column basis, standard state conversion). The mass velocity of the liquid is 5.9 ton/m2・hr, and the supply air contains ammonia, organic substances, and inorganic substances such as N*, C
It contained oxygen equivalent to about 1.1 times the theoretical amount of oxygen required to decompose it into 02 and H2O.

反応器には、チタニア担体にパラジウム2Ii量%を担
持させた径5■の球形触媒が充填されており、反応時の
温度は200℃、圧力は45 ka/C■2であった。
The reactor was filled with a spherical catalyst having a diameter of 5 cm, in which % palladium 2Ii was supported on a titania carrier, and the temperature during the reaction was 200°C and the pressure was 45 ka/C2.

気液分離後の気相中からはNOx及びSOxは検出され
なかった。
NOx and SOx were not detected in the gas phase after gas-liquid separation.

一方、液のpHは6.7、NHs −Nは検出されず、
全窒素成分も1opp−未満であった。
On the other hand, the pH of the liquid was 6.7, and NHs -N was not detected.
The total nitrogen content was also less than 1 opp-.

(以 上) 代理人 弁理士 三 枝 英 二   ゛ニー・ノ 、−・2(that's all) Agent Patent Attorney Eiji Mitsuo “Ni No” , -・2

Claims (2)

【特許請求の範囲】[Claims] (1)硝酸アンモニウム含有廃水を貴金属及びその不溶
性又は難溶性化合物の少なくとも1種を活性成分とする
担持触媒の存在下にpH約3〜11.5、温度100〜
370℃で湿式熱分解することを特徴とする硝酸アンモ
ニウム含有廃水の処理方法。
(1) Ammonium nitrate-containing wastewater is heated at a pH of approximately 3 to 11.5 and at a temperature of 100 to 100, in the presence of a supported catalyst containing at least one noble metal and its insoluble or sparingly soluble compounds as an active ingredient.
A method for treating wastewater containing ammonium nitrate, characterized by wet thermal decomposition at 370°C.
(2)硝酸アンモニウム含有廃水を貴金属及びその不溶
性又は難溶性化合物の少なくとも1種を活性成分とする
担持触媒の存在下にpH約3〜11.5、温度100〜
370℃で湿式熱分解した後、処理液を鉄、コバルト、
ニッケル、ルテニウム、ロジウム、パラジウム、オスミ
ウム、イリジウム、白金、銅、金、タングステン及びそ
の不溶性又は難溶性化合物の少なくとも1種を活性成分
とする担持触媒の存在下且つ処理液中のアンモニア、有
機性物質及び無機性物質を分解するに必要な理論酸素量
の1〜1.5倍量の酸素を含有する気体の存在下にpH
約8〜11.5、温度100〜370℃で湿式酸化する
ことを特徴とする硝酸アンモニウム含有廃水の処理方法
(2) Ammonium nitrate-containing wastewater is heated at a pH of approximately 3 to 11.5 and at a temperature of 100 to 100, in the presence of a supported catalyst containing at least one noble metal and its insoluble or poorly soluble compounds as an active ingredient.
After wet pyrolysis at 370°C, the treatment solution was used to decompose iron, cobalt,
In the presence of a supported catalyst containing at least one of nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, gold, tungsten, and insoluble or poorly soluble compounds thereof as an active ingredient, ammonia and organic substances in the treatment liquid. and pH in the presence of a gas containing 1 to 1.5 times the theoretical amount of oxygen required to decompose the inorganic substance.
A method for treating wastewater containing ammonium nitrate, characterized by carrying out wet oxidation at a temperature of about 8 to 11.5°C and a temperature of 100 to 370°C.
JP60064229A 1985-03-28 1985-03-28 Method of treating wastewater containing ammonium nitrate Expired - Lifetime JPH0647100B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60064229A JPH0647100B2 (en) 1985-03-28 1985-03-28 Method of treating wastewater containing ammonium nitrate
US06/843,677 US4654149A (en) 1985-03-28 1986-03-25 Process for treating ammonium nitrate-containing waste water
EP86104065A EP0196597B1 (en) 1985-03-28 1986-03-25 Process for treating ammonium nitrate-containing waste water
DE8686104065T DE3685674T2 (en) 1985-03-28 1986-03-25 METHOD FOR TREATING AMMONIUM NITRATE-CONTAINING WASTE WATER.
CA000505221A CA1275511C (en) 1985-03-28 1986-03-26 Process for treating ammonium nitrate-containing waste water
CN86102728A CN1012570B (en) 1985-03-28 1986-03-28 Process for treating ammonium nitrate-centg. waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60064229A JPH0647100B2 (en) 1985-03-28 1985-03-28 Method of treating wastewater containing ammonium nitrate

Publications (2)

Publication Number Publication Date
JPS61222587A true JPS61222587A (en) 1986-10-03
JPH0647100B2 JPH0647100B2 (en) 1994-06-22

Family

ID=13252072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60064229A Expired - Lifetime JPH0647100B2 (en) 1985-03-28 1985-03-28 Method of treating wastewater containing ammonium nitrate

Country Status (1)

Country Link
JP (1) JPH0647100B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642992A (en) * 1979-09-14 1981-04-21 Matsushita Electric Works Ltd Discharge lamp circuit
JPS5742391A (en) * 1980-08-27 1982-03-09 Ichiro Teraoka Sealed body containing activated aluminum plate
JPS5827999A (en) * 1981-08-13 1983-02-18 Nippon Paint Co Ltd Temporary rust preventing treatment prior to electrodeposition painting
JPS5919757A (en) * 1982-07-22 1984-02-01 Sony Corp Friction drive gear for rotary body
JPH0645025A (en) * 1992-05-29 1994-02-18 Daini Shinano Polymer Kk Anisotropic conductive connector
JPH0647101A (en) * 1992-07-28 1994-02-22 Matsushita Electric Works Ltd Radio wave detecting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642992A (en) * 1979-09-14 1981-04-21 Matsushita Electric Works Ltd Discharge lamp circuit
JPS5742391A (en) * 1980-08-27 1982-03-09 Ichiro Teraoka Sealed body containing activated aluminum plate
JPS5827999A (en) * 1981-08-13 1983-02-18 Nippon Paint Co Ltd Temporary rust preventing treatment prior to electrodeposition painting
JPS5919757A (en) * 1982-07-22 1984-02-01 Sony Corp Friction drive gear for rotary body
JPH0645025A (en) * 1992-05-29 1994-02-18 Daini Shinano Polymer Kk Anisotropic conductive connector
JPH0647101A (en) * 1992-07-28 1994-02-22 Matsushita Electric Works Ltd Radio wave detecting device

Also Published As

Publication number Publication date
JPH0647100B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
Fortuny et al. Wet air oxidation of phenol using active carbon as catalyst
JP2628089B2 (en) Wastewater treatment method
EP0224905A2 (en) Process for treating waste water by wet oxidations
US4654149A (en) Process for treating ammonium nitrate-containing waste water
JPS5929317B2 (en) Wastewater treatment method
JPS61257291A (en) Treatment of waste water containing ammonium nitrate
JPS61222587A (en) Treatment of waste water containing ammonium nitrate
JPS61257292A (en) Treatment of waste water containing ammonium nitrate
JP2969467B2 (en) Treatment method for wastewater containing ammonium nitrate
JP2899719B2 (en) Treatment method for wastewater containing ammonium nitrate
JPH0227035B2 (en)
JPH0645025B2 (en) Method of treating wastewater containing ammonium nitrate
JPH0461987A (en) Treatment of waste water containing ammonium nitrate
JP2969478B2 (en) Treatment method for wastewater containing ammonium nitrate
JPS61222589A (en) Treatment of waste water containing ammonium nitrate
JPH0459094A (en) Treatment of waste water containing ammonium nitrate
JPS61257290A (en) Treatment of waste water containing ammonium nitrate
JP2969477B2 (en) Treatment method for wastewater containing ammonium nitrate
JPS61222586A (en) Treatment of waste water containing ammonium nitrate
JPS61222588A (en) Treatment of waste water containing ammonium nitrate
JPS61245883A (en) Treatment of waste water containing ammonium nitrate
JPH0454515B2 (en)
JPH0645028B2 (en) Method of treating wastewater containing ammonium nitrate
CN111375289B (en) Treatment method of VOCs waste gas containing water-soluble organic matters
JPS6351730B2 (en)