JPS61257290A - Treatment of waste water containing ammonium nitrate - Google Patents

Treatment of waste water containing ammonium nitrate

Info

Publication number
JPS61257290A
JPS61257290A JP9743585A JP9743585A JPS61257290A JP S61257290 A JPS61257290 A JP S61257290A JP 9743585 A JP9743585 A JP 9743585A JP 9743585 A JP9743585 A JP 9743585A JP S61257290 A JPS61257290 A JP S61257290A
Authority
JP
Japan
Prior art keywords
noble metal
wastewater
catalyst
ammonium nitrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9743585A
Other languages
Japanese (ja)
Other versions
JPH0696151B2 (en
Inventor
Yoshiaki Harada
原田 吉明
Teizo Okino
沖野 貞造
Kenichi Yamazaki
健一 山崎
Yasushi Doi
土井 康史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP60097435A priority Critical patent/JPH0696151B2/en
Publication of JPS61257290A publication Critical patent/JPS61257290A/en
Publication of JPH0696151B2 publication Critical patent/JPH0696151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To reduce the concn. of NH4<+> ion and NO3<-> ion remarkably thermally decomposing waste water contg. NH4NO3 by the wet process in the presence of catalyst contg. a noble metal, etc., as active components at a specified pH, and specified temp. CONSTITUTION:Waste water contg. NH4NO3 is thermally decomposed by the wet process in the presence of a catalyst contg. at least one among noble metal, noble metal ion, and soluble noble metal compd. as active components, at ca. -11.5pH and 100-370 deg.C. As the result, waste water contg. NH4NO3 at high concn. is treated effectively, and the concn. of NH4<+> ion and NO3<-> ion are reduced remarkably. Accordingly, treatment of waste water having frequently above 10% NH4NO3, which, for example, discharged from a treating stage of raw material of uranium, or retreating stage of used uranium fuel, can be easily performed with a simple apparatus.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、硝酸アンモニウム含有廃水の処理方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for treating wastewater containing ammonium nitrate.

従来 術及びその 題 近年、水質規制の観点から化学的酸素要求物質(COD
成分)のみならず、窒素成分(特にアンモニア態窒素)
の除去も重要な課題となって来た。
Conventional techniques and their issues In recent years, chemical oxygen demand substances (CODs) have been
components) as well as nitrogen components (especially ammonia nitrogen)
Removal of this has also become an important issue.

本発明者等は、アンモニア含有廃水の処理方法について
長期にわたり種々研究を重ねた結果、特定の触媒の存在
下且つ特定の条件下に湿式酸化処理を行なうことにより
、操作容易にして実用上の経済性を備えたアンモニア含
有廃水の処理方法を完成したく特公昭59−19757
号、特公昭56−42992号、特公昭57−4239
1号、特公昭58−27999号、特公昭57−333
20号等)。
As a result of long-term research on various methods for treating ammonia-containing wastewater, the present inventors have discovered that wet oxidation treatment can be carried out in the presence of a specific catalyst and under specific conditions, making it easy to operate and practical and economical. Special Publication No. 59-19757 to complete the treatment method of ammonia-containing wastewater with
No., Special Publication No. 56-42992, Special Publication No. 57-4239
1, Special Publication No. 58-27999, Special Publication No. 57-333
No. 20, etc.).

最近、発電業界における原子力発電の比重が増大するに
従って、ウラン原料の処理及び使用済みウラン燃料の再
処理工程から排出されるNHaNO3含有廃水の処理が
重要な技術的課題となりつつある。本発明者は、この様
なNHANO3含有廃水の処理に上記一連のアンモニア
含有廃水の処理技術(以下先願技術という)を応用する
ことを試みた。この試みにおいて、NHム+イオンは極
めて高い効率で分解されるものの、NO3−イオンにつ
いては必ずしも満足すべきものとは言い難い場合もある
ことが判明した。
Recently, as the proportion of nuclear power generation in the power generation industry increases, the treatment of NHaNO3-containing wastewater discharged from the processing of uranium raw materials and the reprocessing process of spent uranium fuel is becoming an important technical issue. The present inventor attempted to apply the above-mentioned series of ammonia-containing wastewater treatment technologies (hereinafter referred to as prior art) to the treatment of such NHANO3-containing wastewater. In this trial, it was found that although NH + ions were decomposed with extremely high efficiency, the decomposition of NO3 - ions was not always satisfactory.

これは、上記廃水中のNHzNOs11度が1%(10
0001)+)■)から10%(100000pp■)
程度にも達する場合があることによるものと推測される
This means that NHzNOs 11 degrees in the wastewater is 1% (10
0001)+)■) to 10% (100000pp■)
It is assumed that this is due to the fact that it may even reach a certain degree.

問題点を解決するための手 本発明者は、上記の如き現状に鑑みて更に種々研究を重
ねた結果、廃水中のアンモニア、有機性物質及び無機性
物質を分解するに必要な理論酸素量以上の酸素を使用し
て湿式酸化を行なう先願技術に代えて、貴金属、貴金属
イオン及び可溶性貴金属化合物の少なくとも1種からな
る触媒の存在下に実質的に酸素を供給することなく該N
HLNOa含有廃水の湿式熱分解を行なう場合には、N
O3〜イオンが特に効率良く分解されることを見出した
。更に本発明者の研究によれば、上記の湿式熱分解処理
により得られ°た処理液を引続き湿式酸化反応に供する
場合には、残存するアンモニア、有機性物質及び無機性
物質が実質上完全に分解されることを見出した。即ち、
本発明は、下記の3種の廃水処理方法を提供するもので
ある。
As a result of further various studies in view of the current situation as described above, the inventor of the present invention has determined that the amount of oxygen exceeds the theoretical amount necessary to decompose ammonia, organic substances, and inorganic substances in wastewater. Instead of the prior art in which wet oxidation is carried out using oxygen, the N
When performing wet pyrolysis of wastewater containing HLNOa, N
It has been found that O3~ ions are decomposed particularly efficiently. Furthermore, according to the research of the present inventor, when the treated liquid obtained by the above-mentioned wet pyrolysis treatment is subsequently subjected to a wet oxidation reaction, remaining ammonia, organic substances and inorganic substances are substantially completely removed. It was found that it was decomposed. That is,
The present invention provides the following three types of wastewater treatment methods.

■ 硝酸アンモニウム含″有廃水を貴金属、貴金属イオ
ン及び可溶性貴金属化合物の少なくとも1種を活性成分
とする触媒の存在下にpH約3〜11.5、温度100
〜370℃で湿式熱分解することを特徴とする硝酸アン
モニウム含有廃水の処理方法。
■ Ammonium nitrate-containing wastewater is heated to a pH of about 3 to 11.5 and a temperature of 100 in the presence of a catalyst containing at least one of a noble metal, a noble metal ion, and a soluble noble metal compound as an active ingredient.
A method for treating ammonium nitrate-containing wastewater, characterized by wet pyrolysis at ~370°C.

■ 硝酸アンモニウム含有廃水を貴金属、貴金属イオン
及び可溶性貴金属化合物の少なくとも1種を活性成分と
する触媒の存在下にpH約3〜11.5、温度100〜
370℃で湿式熱分解した後、処理液を鉄、コバルト、
ニッケル、ルテニウム、ロジウム、パラジウム、オスミ
ウム、イリジウム、白金、銅、金、タングステン及びそ
の不溶性又は難溶性化合物の少なくとも1種を活性成分
とする担持触媒の存在下且つ処理液中のアンモニア、有
機性物質及び無機性物質を分解するに必要な理論酸素量
の1〜1.5倍量の酸素を含有する気体の存在下にpH
約8〜11.5、温度100〜370℃で湿式酸化分解
することを特徴とする514mアンモニウム含有廃水の
処理方法。
■ Ammonium nitrate-containing wastewater is heated to a pH of about 3 to 11.5 and a temperature of 100 to 100 in the presence of a catalyst containing at least one of a noble metal, a noble metal ion, and a soluble noble metal compound as an active ingredient.
After wet pyrolysis at 370°C, the treatment solution was used to decompose iron, cobalt,
Ammonia and organic substances in the treatment liquid in the presence of a supported catalyst containing at least one of nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, gold, tungsten, and insoluble or poorly soluble compounds thereof as an active ingredient. and pH in the presence of a gas containing 1 to 1.5 times the theoretical amount of oxygen required to decompose the inorganic substance.
A method for treating wastewater containing 514m ammonium, characterized by wet oxidative decomposition at a temperature of about 8 to 11.5°C and a temperature of 100 to 370°C.

■ 硝酸アンモニウム含有廃水を貴金属、貴金属イオン
及び可溶性貴金属化合物の少なくとも1種を活性成分と
する触媒の存在下にpH約3〜11.5、温度100〜
370℃で湿式熱分解した後、処理液を貴金属、貴金属
イオン及び可溶性化合物の少なくとも1種を活性成分と
する触媒の存在下且つ処g!液中のアンモニア、有機性
物質及び無機性物質を分解するに必要な理論酸素量の1
〜1.5倍量の酸素を含有する気体の存在下にpH約8
〜11.5、温度100〜370℃で湿式酸化分解する
ことを特徴とする硝酸アンモニウム含有廃水の処理方法
■ Ammonium nitrate-containing wastewater is heated to a pH of about 3 to 11.5 and a temperature of 100 to 100 in the presence of a catalyst containing at least one of a noble metal, a noble metal ion, and a soluble noble metal compound as an active ingredient.
After wet pyrolysis at 370°C, the treatment solution is treated in the presence of a catalyst containing at least one of a noble metal, a noble metal ion, and a soluble compound as an active ingredient. 1 of the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances in liquid
pH approximately 8 in the presence of ~1.5 times the amount of oxygen-containing gas
~11.5, a method for treating ammonium nitrate-containing wastewater, characterized by wet oxidative decomposition at a temperature of 100 to 370°C.

本発明は、NHzNO3を含む全ての廃水を処理の対象
とするものであり、特にNHムNO3温度が1%以上の
高温度廃水の処理に好適である。
The present invention targets all wastewater containing NHzNO3, and is particularly suitable for treating high-temperature wastewater with an NHzNO3 temperature of 1% or higher.

尚、廃水は、有機性物質及び無機性物質を併せて含んで
いても良い。本発明方法は、pH約3〜11.5、より
好ましくは5〜11で効率良〈実施されるので、必要な
らば、水酸化ナトリウム、炭酸ナトリウム、水酸化カル
シウム等のアルカリ性物質により廃水のpHK!!!整
を予め行なっても良い。
Note that the wastewater may contain both organic substances and inorganic substances. Since the method of the present invention is carried out efficiently at a pH of about 3 to 11.5, more preferably 5 to 11, if necessary, the pH of the wastewater is ! ! ! Adjustments may be made in advance.

尚、N Ht N O3含有廃水にアンモニアを加え、
熱分解する場合には、分解効率が一層向上する。
Furthermore, by adding ammonia to the N Ht N O3-containing wastewater,
In the case of thermal decomposition, the decomposition efficiency is further improved.

この場合、アンモニアの添加量は、廃水が1くNH3−
N/No、−N≦5(モル比)となる様にすることが好
ましい。
In this case, the amount of ammonia added is 1 NH3-
It is preferable that N/No, -N≦5 (molar ratio).

本発明で使用する触媒成分としては、ルテニウム、ロジ
ウム、パラジウム、オスミウム、イリジウム、白金及び
金等の貴金属及びそのイオン並びにこれ等貴金属の水に
対し可溶性の化合物が挙げられ、これ等の1種又は2種
以上を使用することが出来る。貴金属としてはルテニウ
ムブラック、パラジウムブラック等が例示される。貴金
属イオンとしては、アンモニア、塩素、シアン、ナトリ
ウム、カリウム等を配位子として錯化合物の形態にある
ものが挙げられ、錯化合物としては、(NHa >2 
 (RuC95(H2O))、(RLJ  (NHs 
 )6  )CQ2  、(RuC12(NH3))s
  CQlN a a  (P d CQ t  )、
(NHa  )2  (PdCQt  ) 、(Pd 
 (NH3)A  )CQ2  、K2  (Pd  
(NO2)t  )2H20、K2  (Pd (ON
)a )3820等が例示される。
Catalyst components used in the present invention include noble metals such as ruthenium, rhodium, palladium, osmium, iridium, platinum, and gold, their ions, and water-soluble compounds of these noble metals, and one or more of these metals may be used. Two or more types can be used. Examples of noble metals include ruthenium black and palladium black. Examples of noble metal ions include those in the form of complex compounds with ammonia, chlorine, cyanide, sodium, potassium, etc. as ligands, and complex compounds include (NHa > 2
(RuC95(H2O)), (RLJ (NHs
)6)CQ2, (RuC12(NH3))s
CQlN a a (P d CQ t ),
(NHa)2 (PdCQt), (Pd
(NH3)A )CQ2 ,K2 (Pd
(NO2)t )2H20,K2 (Pd (ON
)a) 3820 etc. are exemplified.

水に可溶性の化合物としては、Ru CQ 3、RLI
CQt ・5H20、PtC9t 、PdCQ2、Pd
CQ2・2 H20、Rh CQ 3 ・3H20,0
5CQz、IrC92等が例示される。触媒成分は、処
理開始後しばらくの間部水500ccに対し通常0.0
1〜0.2g程度の割合で反応槽に供給する。反応槽内
には、接触面積を増大して反応を均一に進行させる為に
、チタニア、ジルコニア、アルミナ、シリカ、アルミナ
−シリカ、活性炭、或いは鉄、ニッケル、ニッケルーク
ロム、ニッケルークロム−アルミニウム、ニッケルーク
ロム−鉄等の金属多孔体等の球体又は粉体(破砕片、粉
粒体、ベレット、円柱体等)を充填しておいても良い。
As water-soluble compounds, Ru CQ 3, RLI
CQt ・5H20, PtC9t, PdCQ2, Pd
CQ2・2 H20, Rh CQ 3・3H20,0
Examples include 5CQz and IrC92. The catalyst component is usually 0.0% per 500cc of water for a while after the start of treatment.
It is supplied to the reaction tank at a rate of about 1 to 0.2 g. In order to increase the contact area and make the reaction proceed uniformly, the reaction tank contains titania, zirconia, alumina, silica, alumina-silica, activated carbon, or iron, nickel, nickel-chromium, nickel-chromium-aluminum, It may be filled with spheres or powder (crushed pieces, granules, pellets, cylinders, etc.) such as porous metal bodies such as nickel-chromium-iron.

反応の進行とともに反応槽内表面又は球体或いは粉体の
表面に貴金属ブラックが付着形成され、これが触媒とし
ての作用を発揮し始めるので、この時点で触媒の供給を
停止すれば良い。更に時間の経過とともに上記の貴金属
ブラックの触媒活性が低下すれば、触媒成分の供給を再
開する。反応を回分式で行なう場合には、前記の3〜5
倍量程度の触媒成分を使用することが好ましい。
As the reaction progresses, noble metal black is deposited on the inner surface of the reaction vessel or on the surface of the spheres or powder, and this begins to act as a catalyst, so it is sufficient to stop supplying the catalyst at this point. Furthermore, if the catalytic activity of the noble metal black decreases with the passage of time, the supply of the catalyst component is restarted. When the reaction is carried out batchwise, steps 3 to 5 above
It is preferable to use approximately double the amount of the catalyst component.

熱分解反応時の温度は、通常100〜370℃、より好
ましくは200〜300℃とする。反応時の温度が高い
程、NH&+イオン及びNO3−イオンの除去率が高ま
り且つ反応塔内での廃水の滞留時間も短縮されるが、反
面に於て設備費が大となるので、廃水の種類、要求され
る処理の程度、運転費、建設費等を総合的に考慮して定
めれば良い。尚、反応塔内には、液相を保つために飽和
蓋 。
The temperature during the thermal decomposition reaction is usually 100 to 370°C, more preferably 200 to 300°C. The higher the reaction temperature, the higher the removal rate of NH&+ ions and NO3- ions, and the shorter the residence time of wastewater in the reaction tower, but on the other hand, the equipment cost increases, so the type of wastewater , should be determined by comprehensively considering the level of processing required, operating costs, construction costs, etc. Note that a saturated lid is placed inside the reaction tower to maintain the liquid phase.

気圧を上回る程度の少量の気体を存在させておけば良く
、この様なガスとしては空気、窒素等が挙げられる。
A small amount of gas that exceeds the atmospheric pressure may be present, and such gases include air, nitrogen, and the like.

上記の熱分解反応により、廃水中のNH&+イオン及び
NO3−イオン、特にNO3−イオンが高度に分解され
る。若し、処理水中のアンモニア、有機性物質及び無機
性物質を更に分解除去する必要がある場合には、処理水
を前記先願技術の方法に準じて更に湿式酸化分解するこ
とが出来る。
The above thermal decomposition reaction decomposes NH&+ ions and NO3- ions, particularly NO3- ions, in the wastewater to a high degree. If it is necessary to further decompose and remove ammonia, organic substances, and inorganic substances in the treated water, the treated water can be further subjected to wet oxidative decomposition according to the method of the prior art.

湿式酸化は、l)H約8〜11.5、より好ましくは9
〜11で効率良く進行するので、前段湿式熱分解からの
処理水は、必要ならば、前記と同様のアルカリ性物質に
よりpHII整を予め行なう。
Wet oxidation involves: l) H about 8 to 11.5, more preferably 9
Since the process proceeds efficiently in steps 1 to 11, the treated water from the first stage wet pyrolysis is subjected to pHII adjustment in advance using the same alkaline substance as described above, if necessary.

湿式酸化において使用する触媒活性成分としては、鉄、
コバルト、ニッケル、ルテニウム、ロジウム、パラジウ
ム、オスミウム、イリジウム、白金、銅、金、タングス
テン、並びにこれ等金属の酸化物、二塩化ルテニウム、
二塩化白金等の塩化物、硫化ロジウム、硫化ルテニウム
等の硫化物等の水に対し不溶性又は難溶性の化合物が挙
げられ、これ等の1種又は2種以上を使用する。これ等
の触媒活性成分は、常法に従ってチタニア、ジルコニア
、アルミナ、シリカ、アルミナ−シリカ、活性炭、或い
は鉄、ニッケル、ニッケルークロム、ニッケルークロム
−アルミニウム、ニッケルークロム−鉄等の金属多孔体
等の担体に担持して使用する。担持量は、通常担体重量
の0.05〜25%、好ましくは0.5〜3%である。
Catalytic active components used in wet oxidation include iron,
Cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, gold, tungsten, and oxides of these metals, ruthenium dichloride,
Examples include compounds that are insoluble or sparingly soluble in water, such as chlorides such as platinum dichloride, sulfides such as rhodium sulfide, and ruthenium sulfide, and one or more of these may be used. These catalytically active components can be prepared using conventional methods such as titania, zirconia, alumina, silica, alumina-silica, activated carbon, or porous metals such as iron, nickel, nickel-chromium, nickel-chromium-aluminum, and nickel-chromium-iron. It is used by supporting it on a carrier such as The amount supported is usually 0.05 to 25%, preferably 0.5 to 3% of the weight of the carrier.

触媒は、球状、ベレット状、円柱状、破砕片状、粉末状
等の種々の形態で使用可能である。反応塔容積は、固定
床の場合には、液の空間速度が0.5〜10’/h、(
空塔基準)、より好ましくは・1〜5 /1、(空塔基
準)となる様にするのが良い。固定床で使用する触媒の
大きさは通常的3〜50III11より好ましくは約5
〜251m1である。流動床の場合には、反応塔内で触
媒が流動床を形成し得る量、通常0.5〜20重量%、
より好ましくは0.5〜10重量%を廃水にスラリー状
に懸濁させ、使用する。流動床における実用上の操作に
当っては触媒を廃水中にスラリー状に懸濁させた状態で
反応塔に供給し、反応終了後排出させた処理済廃水から
触媒を沈降、遠心分離等の適当な方法で分離回収し、再
度使用する。従って処理済廃水からの触媒分離の容易さ
を考慮すれば、流動床に使用する触媒の粒度は約0.1
5〜約0.5Il程度とすることがより好ましい。
The catalyst can be used in various forms such as spherical, pellet, cylindrical, crushed pieces, and powder. In the case of a fixed bed, the reaction column volume is determined by a liquid space velocity of 0.5 to 10'/h, (
It is preferable to set the ratio to be 1 to 5/1 (based on the empty tower), and more preferably 1 to 5/1 (based on the empty tower). The size of the catalyst used in the fixed bed is typically 3 to 50 III, preferably about 5
~251m1. In the case of a fluidized bed, the amount of catalyst that can form a fluidized bed in the reaction column, usually 0.5 to 20% by weight,
More preferably, 0.5 to 10% by weight is suspended in waste water in the form of a slurry and used. In practical operation in a fluidized bed, the catalyst is supplied to the reaction tower in the form of a slurry suspended in wastewater, and after the reaction is completed, the catalyst is separated from the treated wastewater discharged through appropriate methods such as sedimentation and centrifugation. Separate and recover using appropriate methods and use again. Therefore, considering the ease of catalyst separation from treated wastewater, the particle size of the catalyst used in the fluidized bed is approximately 0.1
More preferably, it is about 5 to about 0.5 Il.

又、湿式酸化における触媒を非担持触媒の形態で使用す
る場合は、前記と同様の貴金属、貴金属イオン又は可溶
性貴金属化合物を使用する。
Further, when the catalyst in wet oxidation is used in the form of an unsupported catalyst, the same noble metal, noble metal ion or soluble noble metal compound as mentioned above is used.

NHA+イオン含有処理水の湿式酸化工程が、NHzN
Os含有廃水の熱分解処理とは本質的に興なる点は、処
理水中のNHム+イオンを分解するに必要な理論量の1
〜1.5倍の酸素を必要とすることである。酸素源とし
て使用するガスとしては、空気、酸素富化空気、酸素、
更には不純物としてシアン化水素、硫化水素、アンモニ
ア、硫黄酸化物、有機硫黄化合物、窒素酸化物、炭化水
素等の少なくとも1種を含有する酸素含有廃ガスが挙げ
られる。これ等ガスの供給量は、廃水中のアンモニア、
有機性物質及び無機性物質(I!素源として廃ガスを使
用する場合には、更に含有不純物)をN2、CO2及び
H2Oにまで分解するに必要な理論酸素量を基準として
定められ、より好ましくは理論酸素量の1゜05〜1.
2倍の酸素が反応系に存在する様にする。散索源として
酸素含有廃ガスを使用する場合には、ガス中の有害成分
も同時に分解無害化される。酸素含有ガスは、一度に供
給しても良く或いは複数回に分けて供給しても良い。
The wet oxidation process of treated water containing NHA+ ions is performed using NHzN
The essential point of thermal decomposition treatment of Os-containing wastewater is that the theoretical amount of 1
~1.5 times more oxygen is required. Gases used as oxygen sources include air, oxygen-enriched air, oxygen,
Further examples include oxygen-containing waste gas containing at least one of hydrogen cyanide, hydrogen sulfide, ammonia, sulfur oxides, organic sulfur compounds, nitrogen oxides, hydrocarbons, and the like as impurities. The supply amount of these gases is based on ammonia in wastewater,
It is determined based on the theoretical amount of oxygen necessary to decompose organic substances and inorganic substances (I! When waste gas is used as a source, further containing impurities) to N2, CO2 and H2O, and is more preferable. is the theoretical oxygen amount of 1°05 to 1.
Make sure that twice as much oxygen is present in the reaction system. When oxygen-containing waste gas is used as a scattering source, harmful components in the gas are also decomposed and rendered harmless. The oxygen-containing gas may be supplied at once, or may be supplied in multiple doses.

湿式酸化時の温度は、やはり100〜370℃程度、よ
り好ましくは200〜jOO℃程度である。又、圧力は
、処理水が液相を保持する圧力とすれば良い。
The temperature during wet oxidation is also about 100-370°C, more preferably about 200-jOO°C. Moreover, the pressure may be a pressure at which the treated water maintains a liquid phase.

湿式酸化後の液のpHが5未満となる場合には、湿式酸
化反応装置内にアルカリ物質を供給し、処理済液のpH
を5〜8程度となる様に調整することが好ましい。かく
して、触媒の消耗又は劣化、反応器、配管、熱交換器等
の損傷等が防止され、放流に先立つ処理済液の中和が不
要となる。
If the pH of the liquid after wet oxidation is less than 5, an alkaline substance is supplied into the wet oxidation reactor to adjust the pH of the treated liquid.
is preferably adjusted to about 5 to 8. In this way, exhaustion or deterioration of the catalyst, damage to reactors, piping, heat exchangers, etc. are prevented, and neutralization of the treated liquid prior to discharge is not required.

11立11 本発明によれば、NHaNOaを高温度で含有する廃水
を効率良く処理し、NHa+イオン及びNO3−イオン
温度を大幅に低下させることが出来る。従って、例えば
、ウラン原料の処理工程又は使用済みウラン燃料の再処
理工程から排出され、NHANO3温度が10%以上に
も達することがある廃水等の処理を簡易な設備により容
易に行なうことが出来る。
According to the present invention, wastewater containing NHaNOa at high temperature can be efficiently treated, and the temperatures of NHa+ ions and NO3- ions can be significantly lowered. Therefore, for example, wastewater discharged from a uranium raw material treatment process or a spent uranium fuel reprocessing process and whose NHANO3 temperature can reach 10% or more can be easily treated using simple equipment.

友−LJW 以下実施例を示し、本発明の特徴とするところをより一
層明らかにする。
Tomo-LJW Examples will be shown below to further clarify the features of the present invention.

実施例1 pH10、NHt NO3温度10% (”H3−N/No、−N−1)の廃水10C1を容量
300mGのステンレススチール製オートクレーブに収
容し、250℃で60分間熱分解処理した。尚、反応器
には、処理に先立って空気が封入されており、これはア
ンモニア、有機性物質及び無機性物質を分解するに必要
な理論酸素量の約0.01倍に相当する酸素を含有して
いた。又、該反応器には、RuQQ3o、5gを触媒と
して加えた。
Example 1 10C1 of wastewater with pH 10 and NHt NO3 temperature 10% ("H3-N/No, -N-1) was placed in a stainless steel autoclave with a capacity of 300 mG and thermally decomposed at 250°C for 60 minutes. The reactor is filled with air prior to treatment, which contains oxygen equivalent to approximately 0.01 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances. Additionally, 5 g of RuQQ3o was added to the reactor as a catalyst.

NH3、NO3及び全窒素成分の分解率を実施例2〜4
の結果とともに第1表に示す。
The decomposition rates of NH3, NO3 and total nitrogen components were measured in Examples 2 to 4.
The results are shown in Table 1.

実施例2 実施例1で処理したと同様のNHLNO3含有廃水IC
所定1t(7)NHA OH!加えてNH3−N/NO
3N(モル比)を調整して2とした後、実施例1と同様
にして熱分解処理に供した。
Example 2 NHLNO3-containing wastewater IC similar to that treated in Example 1
Predetermined 1t (7) NHA OH! In addition, NH3-N/NO
After adjusting the 3N (mole ratio) to 2, it was subjected to thermal decomposition treatment in the same manner as in Example 1.

実施例3 RuCQ3に代えてPdCQtを使用する以外は実施例
1と同様にして廃水の処理を行なった。
Example 3 Wastewater was treated in the same manner as in Example 1 except that PdCQt was used in place of RuCQ3.

実施例4 RuCQ3に代えてPdCe2を使用する以外は実施例
2と同様にしてNH4NO3含有廃水の熱分解処理を行
なった。
Example 4 The thermal decomposition treatment of NH4NO3-containing wastewater was carried out in the same manner as in Example 2 except that PdCe2 was used instead of RuCQ3.

実施例5 NHA NO3m1度10%の廃水にNHA OHを加
えてpH10且つNH3−N /No3− N=2とし
た後、これを空間速度1.33  /h、(空塔基準)
として高ニツケル鋼製円筒型反応器下部に供給しつつ、
空気を空間速度7.0 ’/h、(空塔基準、標準状態
換算)として該反応器下部に供給して熱分解処理を行な
った。液の質量速度は、3、08  ton/m2−h
rt”あり1.供給空気は、アンモニア、有機性物質及
び無機性物質を分解するに必要な理論酸素量の約0.2
4倍に相当する酸素を含有していた。又、反応器には、
径5■のチタニア球体が充填されており、Ru CQ 
sを1時間当り0.8gの割合で廃水に加え、熱分解は
、温度250℃、圧カフ 0 k<1/ ci2の条件
下に行な(われだ。
Example 5 NHA OH was added to 10% NHA NO3ml wastewater to adjust the pH to 10 and NH3-N/No3-N=2, and then the space velocity was set to 1.33/h (sky column standard).
While supplying it to the lower part of the high nickel steel cylindrical reactor,
Thermal decomposition treatment was carried out by supplying air to the lower part of the reactor at a space velocity of 7.0'/h (on the basis of the sky column, in terms of standard conditions). The mass velocity of the liquid is 3.08 ton/m2-h
rt" 1. The supply air is approximately 0.2 of the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances.
It contained four times as much oxygen. Also, in the reactor,
Filled with titania spheres with a diameter of 5 cm, Ru CQ
s was added to the wastewater at a rate of 0.8 g per hour, and thermal decomposition was carried out at a temperature of 250°C and a pressure cuff of 0 k<1/ci2.

反応を終えた気液混合相を熱回収に供した侵、気液分離
器に導き、分離された気相及び液相をそれぞれ間接冷却
後、系外に取り出した。
After the reaction, the gas-liquid mixed phase was subjected to heat recovery and led to a gas-liquid separator, and the separated gas and liquid phases were each indirectly cooled and then taken out of the system.

第2表にNH3、NO3及び全窒素成分の分解率を示す
Table 2 shows the decomposition rates of NH3, NO3 and total nitrogen components.

尚、気相中には、NOx及びSOxは検出されなかった
Note that NOx and SOx were not detected in the gas phase.

実施例6 RuC123に代えてP d CQ 2を使用する以外
は実施例5と同様にしてNHANO3含有廃水の熱分解
処理を行なった。
Example 6 NHANO3-containing wastewater was thermally decomposed in the same manner as in Example 5 except that P d CQ 2 was used in place of RuC123.

結果を第2表に示す。気相中には、NOx及びSOxは
やはり検出されなかった。
The results are shown in Table 2. NOx and SOx were also not detected in the gas phase.

第   2   表 実施例7 実施例5における熱分解により得られた処理済液(残留
NH3−N  3150g1pm 、 I)88.1 
)を水酸化ナトリウム溶液によりpH8,5に調整した
後、空間速度41/h、(空塔基準)として高ニツケル
m製円筒型反応器下部に供給しつつ、空気を空間速度3
0.6  /h、(空塔基準、標準状態換算)として該
反応器下部に供給して湿式酸化分解を行なった。液の質
量速度は、9.3  ton/m2・hrであり、供給
空気は、アンモニア、有機性物質及び無機性物質をN2
、CO2及びH2Oにまで分解するに必要な理論酸素量
の約1.1倍に相当する酸素を含有していた。
Table 2 Example 7 Treated liquid obtained by thermal decomposition in Example 5 (residual NH3-N 3150g1pm, I) 88.1
) was adjusted to pH 8.5 with a sodium hydroxide solution, and air was then supplied to the lower part of a high nickel m cylindrical reactor at a space velocity of 41/h (based on the sky column) while air was adjusted to a space velocity of 3/h.
Wet oxidative decomposition was carried out by supplying the reactor to the lower part of the reactor at a rate of 0.6/h (empty column basis, standard state conversion). The mass velocity of the liquid is 9.3 ton/m2·hr, and the supply air is a mixture of ammonia, organic substances, and inorganic substances with N2
It contained about 1.1 times the theoretical amount of oxygen required to decompose it into , CO2 and H2O.

反応器には、チタニア担体にシフニラ42重伍%を担持
させた径5mmの球形触媒が充填されており、反応時の
温度は250℃、圧カフ Q kg/ cra2であっ
た。
The reactor was filled with a spherical catalyst with a diameter of 5 mm in which 42% by weight of Schifnira was supported on a titania carrier, and the temperature during the reaction was 250° C. and the pressure cuff was Q kg/cra2.

気液弁lI!を後の気相中からはNOx及びSOxは検
出されなかった。
Air-liquid valve lI! NOx and SOx were not detected in the subsequent gas phase.

一方、液のpHは6.8、N)I3−Nは検出されす、
全窒素成分も20 ppg+未満であった。
On the other hand, the pH of the solution is 6.8, and N) I3-N is detected.
Total nitrogen content was also less than 20 ppg+.

実施例8 実施例6で得られた処理済水中の残留NHs−Nは24
501)El■、pHは7.9であった。該処理済水に
NaOH溶液を加えてpHを8.5としま た後、空間速度4  /、、C空塔基準)とじて高二ッ
ケルW4製円筒型反応器下部に供給しつつ、空気を空間
速度24.41/hr(空塔基準、標準状態換算)とし
て該反応器下部に供給して湿式酸化分解を行なった。液
の質量速度は、9.3  ton/m2・hrであり、
供給空気は、アンモニア、有機性物質及び無機性物質を
N2、CO2及びN20にまで分解するに必要な理論酸
素量の約1.1倍に相当する酸素を含有していた。
Example 8 Residual NHs-N in the treated water obtained in Example 6 was 24
501) El■, pH was 7.9. A NaOH solution was added to the treated water to adjust the pH to 8.5, and then air was supplied to the lower part of a high nickel W4 cylindrical reactor at a space velocity of 4/, C (based on the empty column), while air was Wet oxidative decomposition was carried out by feeding the reactor to the lower part of the reactor at a rate of 24.41/hr (empty column basis, standard state conversion). The mass velocity of the liquid is 9.3 ton/m2·hr,
The feed air contained approximately 1.1 times the theoretical amount of oxygen required to decompose ammonia, organic materials, and inorganic materials to N2, CO2, and N20.

反応器には、チタニア担体にルテニウム2重量%を担持
させた径5■■の球形触媒が充填されており、反応時の
m度は250℃、圧カフ 0 kill/ CI2であ
った。
The reactor was filled with a spherical catalyst having a diameter of 5 mm in which 2% by weight of ruthenium was supported on a titania carrier, and the temperature during the reaction was 250° C. and the pressure cuff was 0 kill/CI2.

気液分離後の気相中からはNOx及びSOxは検出され
なかった。
NOx and SOx were not detected in the gas phase after gas-liquid separation.

一方、液のpHは6.5、NH3Nは検出されず、全窒
素成分もioppm未満であった。
On the other hand, the pH of the liquid was 6.5, NH3N was not detected, and the total nitrogen content was less than ioppm.

実施例9 NHa NOa 11度10%の廃水にNH4OHを加
えてpHl0且つNH3−N/No3−N−2とした後
、これを空間速度21/、r(空塔基準)として高ニツ
ケル鋼製円筒型反応器下部に供給しつつ、空気を空間速
度141/hr(空塔基準、標準状態換算)として該反
応器下部に供給して熱分解処理を行なった。液の質量速
度は、4,5ton/ I2 ・h「であり、供給空気
は、アンモニア、有機性物質及び無機性物質を分解する
に必要な理論酸素量の約0.05倍に相当する酸素を含
有していた。又、反応器には、径5mmのチタニア球体
が充填されており、RuC11aを1時間当り1.8Q
の割合で廃水に加え、熱分解は、温度200℃、圧力4
5 kMc12の条件下に行なわれた。
Example 9 After adding NH4OH to NHa NOa 11 degrees 10% waste water to make the pH 10 and NH3-N/No3-N-2, this was made into a high nickel steel cylinder with a space velocity of 21/, r (sky tower standard). Thermal decomposition treatment was carried out by supplying air to the lower part of the reactor at a space velocity of 141/hr (empty column standard, standard state conversion). The mass velocity of the liquid was 4.5 ton/I2·h, and the supplied air contained oxygen equivalent to approximately 0.05 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances. The reactor was filled with titania spheres with a diameter of 5 mm, and RuC11a was fed at 1.8Q per hour.
In addition to wastewater at a rate of
The test was carried out under conditions of 5 kMc12.

反応を終えた気液混合相を熱回収に供した後、気液分離
器に導き、分離された気相及び液相をそれぞれ間接冷却
後、系外に取り出した。
After the gas-liquid mixed phase that had completed the reaction was subjected to heat recovery, it was led to a gas-liquid separator, and the separated gas and liquid phases were each indirectly cooled and then taken out of the system.

NH3、NO3及び全窒素成分の分解率は、夫々90%
、99%以上及び99%以上であった。
The decomposition rate of NH3, NO3 and total nitrogen components is 90% each.
, 99% or more and 99% or more.

又、気相中には、NOx及びSOxは検出されなかった
Further, NOx and SOx were not detected in the gas phase.

実施例10 実施例9で得られた処理済液中の残留NH3−Nは35
00pp■、pHは8.9であった。該処理済水を空間
速度21/hr(空塔基準)として高ニツケル鋼製円筒
型反応器下部に供給しつつ、空気を空間速度17.1 
 ’/h、(空塔基準、標準状態換算)として該反応器
下部に供給して湿式酸化分解を行なった。液の質量速度
は、4.6 ton/m2 ・hrであり、供給空気は
、アンモニア、有機性物質及び無機性物質をN2 、C
O2及びN20にまで分解するに必要な理論酸素量の約
1.1倍に相当する酸素を含有していた。
Example 10 Residual NH3-N in the treated liquid obtained in Example 9 was 35
00pp■, pH was 8.9. While supplying the treated water to the lower part of the high nickel steel cylindrical reactor at a space velocity of 21/hr (sky column standard), air was supplied at a space velocity of 17.1/hr.
Wet oxidative decomposition was carried out by supplying the reactor to the lower part of the reactor at a rate of '/h (empty column standard, standard state conversion). The mass velocity of the liquid is 4.6 ton/m2 hr, and the supply air contains ammonia, organic substances, and inorganic substances with N2, C
It contained oxygen equivalent to about 1.1 times the theoretical amount of oxygen required to decompose it into O2 and N20.

反応器には、チタニア担体にパラジウム2重量%を担持
させた径5■の球形触媒が充填されており、反応時の温
度は200℃、圧力45kg/c■2であった。
The reactor was filled with a spherical catalyst having a diameter of 5 cm, in which 2% by weight of palladium was supported on a titania carrier, and the temperature during the reaction was 200°C and the pressure was 45 kg/cm2.

気液分離後の気相中からはN Ox及びSOxは検出さ
れなかった。
NOx and SOx were not detected in the gas phase after gas-liquid separation.

一方、液のpHは6.5、NH3−Nは検出されず、全
窒素成分も10ppII+未満であった。
On the other hand, the pH of the liquid was 6.5, NH3-N was not detected, and the total nitrogen content was less than 10 ppII+.

実施例11 実施例5と同様にしてNH4NO3含有廃水を熱分解処
理して得た処理済液(残留N83  N3150p1)
l 、 pf−18,1)を水n化ナトリウム溶液によ
りp)18.5に調整した後、担持触媒に代えてRuC
Qaを1時間当り1.2Q供給する以外は実施例7と同
様にして湿式酸化分解を行なった。
Example 11 Treated liquid obtained by thermally decomposing wastewater containing NH4NO3 in the same manner as in Example 5 (residual N83 N3150p1)
After adjusting pf-18,1) to p)18.5 with a sodium hydride solution, RuC was added instead of the supported catalyst.
Wet oxidative decomposition was carried out in the same manner as in Example 7 except that 1.2 Q of Qa was supplied per hour.

気液分離後の気相中からはNOx及びSOxは検出され
ず、一方、液のpHは6.9、NH3−Nは検出されず
、全窒素成分も25 ppm以下であった。
NOx and SOx were not detected in the gas phase after gas-liquid separation, while the pH of the liquid was 6.9, NH3-N was not detected, and the total nitrogen component was 25 ppm or less.

実施例12 実!I!F!46と同様にしてNHtNOs含有廃水を
熱分解処理して得た処理済液(残留NHa  NN24
50pp 、pH7,9)を水酸化ナトリウム溶液によ
りpH8,5に調整した後、担持触媒に代えてPdCQ
2を1時間当り1.20供給する以外は実施例8と同様
にして湿式酸化分解を行なった。
Example 12 Fruit! I! F! Treated liquid obtained by thermally decomposing wastewater containing NHtNOs in the same manner as in 46 (residual NHa NN24
50pp, pH 7.9) was adjusted to pH 8.5 with sodium hydroxide solution, and PdCQ was added instead of the supported catalyst.
Wet oxidative decomposition was carried out in the same manner as in Example 8, except that 1.20% of 2 was fed per hour.

気液分離後の気相中からはNOx及びSOxは検出され
ず、一方、液のpHは6.6、NH3−Nは検出されず
、全窒素成分も20 ppm未満であった。
NOx and SOx were not detected in the gas phase after gas-liquid separation, while the pH of the liquid was 6.6, NH3-N was not detected, and the total nitrogen component was less than 20 ppm.

実施例13 実施例9と同様にしてNH4NO3含有廃水を熱分解処
理して得た処理済液(残留NHs −N35001)f
)■、 pH8,9)を、担持触媒に代えてRuCQa
を1時間当り0.6Q供給する以外は実施例10と同様
にして湿式酸化分解に供した。
Example 13 Treated liquid (residual NHs -N35001) obtained by thermally decomposing wastewater containing NH4NO3 in the same manner as in Example 9
)■, pH 8,9) using RuCQa instead of the supported catalyst.
It was subjected to wet oxidative decomposition in the same manner as in Example 10, except that 0.6Q of was supplied per hour.

気液分離後の気相中からはNOx及びSOxは検出され
ず、一方、液のpHは6.6、N83  Nは検出され
ず、全窒素成分も25 E)l)1以下であった。
NOx and SOx were not detected in the gas phase after gas-liquid separation, while the pH of the liquid was 6.6, N83N was not detected, and the total nitrogen component was 25E)l)1 or less.

(以 上)(that's all)

Claims (3)

【特許請求の範囲】[Claims] (1)硝酸アンモニウム含有廃水を貴金属、貴金属イオ
ン及び可溶性貴金属化合物の少なくとも1種を活性成分
とする触媒の存在下にpH約3〜11.5、温度100
〜370℃で湿式熱分解することを特徴とする硝酸アン
モニウム含有廃水の処理方法。
(1) Ammonium nitrate-containing wastewater is heated to a pH of about 3 to 11.5 and a temperature of 100 in the presence of a catalyst containing at least one of a noble metal, a noble metal ion, and a soluble noble metal compound as an active ingredient.
A method for treating ammonium nitrate-containing wastewater, characterized by wet pyrolysis at ~370°C.
(2)硝酸アンモニウム含有廃水を貴金属、貴金属イオ
ン及び可溶性貴金属化合物の少なくとも1種を活性成分
とする触媒の存在下にpH約3〜11.5、温度100
〜370℃で湿式熱分解した後、処理液を鉄、コバルト
、ニッケル、ルテニウム、ロジウム、パラジウム、オス
ミウム、イリジウム、白金、銅、金、タングステン及び
その不溶性又は難溶性化合物の少なくとも1種を活性成
分とする担持触媒の存在下且つ処理液中のアンモニア、
有機性物質及び無機性物質を分解するに必要な理論酸素
量の1〜1.5倍量の酸素を含有する気体の存在下にp
H約8〜11.5、温度100〜370℃で湿式酸化分
解することを特徴とする硝酸アンモニウム含有廃水の処
理方法。
(2) Ammonium nitrate-containing wastewater is heated to a pH of about 3 to 11.5 and a temperature of 100 in the presence of a catalyst containing at least one of a noble metal, a noble metal ion, and a soluble noble metal compound as an active ingredient.
After wet pyrolysis at ~370°C, the treatment solution is treated with at least one active ingredient of iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, gold, tungsten and their insoluble or sparingly soluble compounds. ammonia in the treatment liquid in the presence of a supported catalyst,
p in the presence of a gas containing 1 to 1.5 times the theoretical amount of oxygen required to decompose organic and inorganic substances.
A method for treating wastewater containing ammonium nitrate, characterized by carrying out wet oxidative decomposition at H of about 8 to 11.5 and a temperature of 100 to 370°C.
(3)硝酸アンモニウム含有廃水を貴金属、貴金属イオ
ン及び可溶性貴金属化合物の少なくとも1種を活性成分
とする触媒の存在下にpH約3〜11.5、温度100
〜370℃で湿式熱分解した後、処理液を貴金属、貴金
属イオン及び可溶性化合物の少なくとも1種を活性成分
とする触媒の存在下且つ処理液中のアンモニア、有機性
物質及び無機性物質を分解するに必要な理論酸素量の1
〜1.5倍量の酸素を含有する気体の存在下にpH約8
〜11.5、温度100〜370℃で湿式酸化分解する
ことを特徴とする硝酸アンモニウム含有廃水の処理方法
(3) Ammonium nitrate-containing wastewater is heated to a pH of about 3 to 11.5 and a temperature of 100 in the presence of a catalyst containing at least one of a noble metal, a noble metal ion, and a soluble noble metal compound as an active ingredient.
After wet pyrolysis at ~370°C, the treatment liquid is decomposed in the presence of a catalyst containing at least one of noble metals, noble metal ions, and soluble compounds as an active ingredient, and ammonia, organic substances, and inorganic substances in the treatment liquid. 1 of the theoretical amount of oxygen required for
pH approximately 8 in the presence of ~1.5 times the amount of oxygen-containing gas
~11.5, a method for treating ammonium nitrate-containing wastewater, characterized by wet oxidative decomposition at a temperature of 100 to 370°C.
JP60097435A 1985-05-08 1985-05-08 Treatment method of wastewater containing high concentration ammonium nitrate Expired - Lifetime JPH0696151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60097435A JPH0696151B2 (en) 1985-05-08 1985-05-08 Treatment method of wastewater containing high concentration ammonium nitrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097435A JPH0696151B2 (en) 1985-05-08 1985-05-08 Treatment method of wastewater containing high concentration ammonium nitrate

Publications (2)

Publication Number Publication Date
JPS61257290A true JPS61257290A (en) 1986-11-14
JPH0696151B2 JPH0696151B2 (en) 1994-11-30

Family

ID=14192291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097435A Expired - Lifetime JPH0696151B2 (en) 1985-05-08 1985-05-08 Treatment method of wastewater containing high concentration ammonium nitrate

Country Status (1)

Country Link
JP (1) JPH0696151B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320663A (en) * 1976-08-10 1978-02-25 Osaka Gas Co Ltd Method of treating waste water
JPS5442851A (en) * 1977-09-12 1979-04-05 Osaka Gas Co Ltd Method of simultaneously treating waste water and exhaust gas
JPS61245883A (en) * 1985-04-23 1986-11-01 Osaka Gas Co Ltd Treatment of waste water containing ammonium nitrate
JPH0645027A (en) * 1992-07-24 1994-02-18 Yazaki Corp Connector
JPH0647100A (en) * 1992-06-17 1994-02-22 Siemens Ag Apparatus for applying electric pulse to organic tissue
JPH06506391A (en) * 1991-04-12 1994-07-21 バッテル・メモリアル・インスティチュート Nitrogen water liquid removal from nitrogen compounds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320663A (en) * 1976-08-10 1978-02-25 Osaka Gas Co Ltd Method of treating waste water
JPS5442851A (en) * 1977-09-12 1979-04-05 Osaka Gas Co Ltd Method of simultaneously treating waste water and exhaust gas
JPS61245883A (en) * 1985-04-23 1986-11-01 Osaka Gas Co Ltd Treatment of waste water containing ammonium nitrate
JPH06506391A (en) * 1991-04-12 1994-07-21 バッテル・メモリアル・インスティチュート Nitrogen water liquid removal from nitrogen compounds
JPH0647100A (en) * 1992-06-17 1994-02-22 Siemens Ag Apparatus for applying electric pulse to organic tissue
JPH0645027A (en) * 1992-07-24 1994-02-18 Yazaki Corp Connector

Also Published As

Publication number Publication date
JPH0696151B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
EP0196597B1 (en) Process for treating ammonium nitrate-containing waste water
CN103977744A (en) Method for catalytic degradation of hexachlorobenzene
JPS61257291A (en) Treatment of waste water containing ammonium nitrate
JP5303263B2 (en) Solid catalyst for treating nitrate nitrogen-containing water and method for treating nitrate nitrogen-containing water using the catalyst
JPS61257290A (en) Treatment of waste water containing ammonium nitrate
JPS61257292A (en) Treatment of waste water containing ammonium nitrate
CN111151231B (en) Method for regenerating denitration ferric chloride adsorbent
JP2969467B2 (en) Treatment method for wastewater containing ammonium nitrate
JP2969478B2 (en) Treatment method for wastewater containing ammonium nitrate
JPH0459094A (en) Treatment of waste water containing ammonium nitrate
JPH0461987A (en) Treatment of waste water containing ammonium nitrate
JPS61222587A (en) Treatment of waste water containing ammonium nitrate
JPS61222585A (en) Treatment of waste water containing ammonium nitrate
JP2899719B2 (en) Treatment method for wastewater containing ammonium nitrate
JP2969477B2 (en) Treatment method for wastewater containing ammonium nitrate
JPH0227035B2 (en)
JPS61245883A (en) Treatment of waste water containing ammonium nitrate
JPS61222588A (en) Treatment of waste water containing ammonium nitrate
JPS61222589A (en) Treatment of waste water containing ammonium nitrate
JPS61222586A (en) Treatment of waste water containing ammonium nitrate
JP2001009481A (en) Treatment of waste water containing metal and ammonia
JPS61245884A (en) Treatment of waste water containing ammonium nitrate
CN113058639B (en) Noble metal catalyst with ZSM-5 as carrier and preparation method and application thereof
JP3263968B2 (en) Treatment of wastewater containing nitrate
JP3693354B2 (en) Treatment method of wastewater containing nitrate