JP2969477B2 - Treatment method for wastewater containing ammonium nitrate - Google Patents

Treatment method for wastewater containing ammonium nitrate

Info

Publication number
JP2969477B2
JP2969477B2 JP33576890A JP33576890A JP2969477B2 JP 2969477 B2 JP2969477 B2 JP 2969477B2 JP 33576890 A JP33576890 A JP 33576890A JP 33576890 A JP33576890 A JP 33576890A JP 2969477 B2 JP2969477 B2 JP 2969477B2
Authority
JP
Japan
Prior art keywords
wastewater
added
ammonium nitrate
noble metal
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33576890A
Other languages
Japanese (ja)
Other versions
JPH04200692A (en
Inventor
吉明 原田
康史 土井
信祐 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA GASU KK
Original Assignee
OOSAKA GASU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA GASU KK filed Critical OOSAKA GASU KK
Priority to JP33576890A priority Critical patent/JP2969477B2/en
Publication of JPH04200692A publication Critical patent/JPH04200692A/en
Application granted granted Critical
Publication of JP2969477B2 publication Critical patent/JP2969477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、硝酸アンモニウム含有廃水の処理方法に関
する。
The present invention relates to a method for treating wastewater containing ammonium nitrate.

なお、本明細書において、“NH3−N"とあるのは、
“アンモニア態窒素”を意味し、“NO3−N"とあるの
は、“硝酸態窒素”を意味する。また、“%”とあるの
は、“重量%”を意味する。
In the present specification, “NH 3 —N” refers to
Means "ammonia nitrogen", "NO 3 -N" shall be deemed to be replaced, which means "nitrate nitrogen". Further, “%” means “% by weight”.

従来技術及びその問題点 近年、水質規制の観点から化学的酸素要求物質(COD
成分)のみならず、窒素成分(特にアンモニア態窒素)
の除去も重要な課題となつて来た。本発明者らは、アン
モニア含有廃水の処理方法について長期にわたり種々研
究を重ねた結果、特定の触媒の存在下且つ特定の条件
(温度、圧力、供給酸素量など)で湿式酸化処理を行な
うことにより、操作容易にして実用上の経済性を備えた
アンモニア含有廃水の処理方法を完成した(特公昭56−
42992号、特公昭57−33320号、特公昭57−42391号、特
公昭58−27999号、特公昭59−19757号等)。
Conventional technology and its problems In recent years, chemical oxygen demanding substances (COD
Component) as well as nitrogen components (especially ammonia nitrogen)
Removal has also become an important issue. The present inventors have conducted various studies on a method for treating ammonia-containing wastewater over a long period of time. As a result, the present inventors have conducted a wet oxidation treatment in the presence of a specific catalyst and under specific conditions (temperature, pressure, amount of supplied oxygen, etc.). Completed a method for treating ammonia-containing wastewater that is easy to operate and has practical economic efficiency (Japanese Patent Publication No.
42992, JP-B-57-33320, JP-B-57-42391, JP-B-58-27999, JP-B-59-19757, etc.).

最近、発電業界における原子力発電の比重が増大する
に従つて、ウラン原料の処理及び使用済みウラン燃料の
再処理工程から排出されるNH4NO3含有廃水の処理が重要
な技術的課題となりつつある。本発明者らは、この様な
NH4NO3含有廃水の処理に上記一連のアンモニア含有廃水
の処理技術(以下先頭技術−Iという)を応用すること
を試みた。この試みにおいて、NH4 +イオンは極めて高い
効率で分解されるものの、NO3 -イオンの処理については
必ずしも満足すべき結果が得られない場合もあることが
判明した。これは、上記廃水中のNH4NO3濃度が1%(10
000ppm)から10%(100000ppm)程度にも達する場合が
あることによるものと推測される。
Recently, as the specific gravity of nuclear power generation in the power generation industry increases, the treatment of uranium raw materials and the treatment of NH 4 NO 3 containing wastewater discharged from the reprocessing of spent uranium fuel are becoming important technical issues. . The present inventors have proposed such
NH 4 NO 3 was in the process of waste water containing tried to apply the above-described series of ammonia-containing wastewater treatment technology (hereinafter referred to as the top technology -I). In this attempt, it was found that NH 4 + ions are decomposed with very high efficiency, but that the treatment of NO 3 - ions may not always give satisfactory results. This is because the concentration of NH 4 NO 3 in the wastewater is 1% (10
000 ppm) to as high as 10% (100,000 ppm).

本発明者らは、さらに研究を進めた結果、先願技術を
実施するに際し、添加する酸素量を減少させることによ
り、NH4NO3含有廃水中のNH4 +イオンのみならずNO3 -イオ
ンをも高い効率で分解することに成功した(特開昭61−
222585号参照:以下これに開示された技術を先願発明−
IIという)。
The present inventors have as a result of further investigation, when carrying out the prior application techniques, by reducing the amount of oxygen to be added, NH 4 NO 3 not only NH 4 + ions in the wastewater containing NO 3 - ions Has been successfully decomposed with high efficiency (Japanese Unexamined Patent Publication No.
See No. 222585: The technology disclosed in the following is applied to the prior invention-
II).

しかしながら、NH4NO3含有廃水の処理においては、特
に実用上の観点から、処理効率の改善のみならず、さら
に一層のコスト低下(設備費および運転費の減少)が望
まれている。
However, in the treatment of NH 4 NO 3 -containing wastewater, not only improvement in treatment efficiency but also further cost reduction (reduction of equipment cost and operation cost) is desired from a practical viewpoint.

問題点を解決するための手段 本発明者は、上記の如き現状に鑑みて更に種々研究を
重ねた結果、NH4NO3含有廃水中のアンモニア成分、有機
性物質及び無機性物質を分解するに必要な理論酸素量未
満の酸素の存在下に該NH4NO3含有廃水の湿式熱分解を行
なう先願−IIの方法に代えて、NH4NO3含有廃水に有機物
(COD成分)を加え且つ実質的に酸素の不存在下に同様
の処理を行なう場合にも、NH4 +イオンのみならず、NO3 -
イオンをも効率良く分解し得るという予想外の事実を見
出した。
Means for Solving the Problems The present inventor has conducted various studies in view of the current situation as described above, and as a result, has found that ammonia, organic and inorganic substances in NH 4 NO 3 -containing wastewater can be decomposed. An organic substance (COD component) is added to the NH 4 NO 3 -containing wastewater instead of the method of the prior application II in which the wet pyrolysis of the NH 4 NO 3 -containing wastewater is performed in the presence of oxygen less than the required theoretical oxygen amount, and even when substantially performs the same process in the absence of oxygen, not NH 4 + ions only, NO 3 -
We have found the unexpected fact that ions can be efficiently decomposed.

さらに、本発明者の引き続く研究によれば、COD成分
とアンモニアとを加えたNH4NO3含有廃水を上記と同様に
して湿式熱分解に供する場合には、分解効率がより一層
改善されることを見出した。
Furthermore, according to the inventor of subsequent research, when subjecting the NH 4 NO 3 containing waste water were added and the COD components and ammonia with the wet thermal decomposition in the same manner as above, the decomposition efficiency is more improved further Was found.

さらにまた、NH4NO3含有廃水は、Na、Kなどのアルカ
リ金属の塩乃至イオンを含有していることがあり、これ
らの塩乃至イオンが、湿式熱分解時に一部NH4 +イオンの
NO3 +イオンへの転換反応の促進作用、当初の廃水中に含
まれていたNO3 +イオン及び生成NO3 -イオンの安定化作用
などを発揮するために、全窒素成分分解率が若干低下す
る場合がある。この様な場合には、COD成分と酸または
処理条件下に酸を生成し得る物質とを加えたNH4NO3含有
廃水を上記と同様にして湿式熱分解に供することによ
り、分解効率がさらに一層向上することを見出した。
Furthermore, the NH 4 NO 3 containing wastewater may contain salts or ions of alkali metals such as Na and K, and these salts or ions may partially form NH 4 + ions during wet pyrolysis.
Promoting action of conversion reaction to NO 3 + ions, the initial NO 3 + ions and product contained in the wastewater NO 3 - in order to exert and stabilizing action of ions, total nitrogen component decomposition rate is slightly lower May be. In such a case, the decomposition efficiency is further increased by subjecting the NH 4 NO 3 -containing wastewater containing the COD component and the acid or a substance capable of generating an acid under the treatment conditions to wet pyrolysis in the same manner as described above. It has been found that it is further improved.

即ち、本発明は、下記の4種の廃水処理方法を提供す
るものである。
That is, the present invention provides the following four types of wastewater treatment methods.

0.1<有機物/NO3−N≦0.5(モル比)となる様に有
機物を加えた硝酸アンモニウム含有廃水を貴金属、貴金
属イオンおよび可溶性貴金属化合物の少なくとも1種か
らなる触媒の存在下且つ酸素の実質的な不存在下にpH約
1〜11.5、温度100〜370℃で湿式熱分解することを特徴
とする硝酸アンモニウム含有廃水の処理方法。
An ammonium nitrate-containing wastewater to which an organic substance is added so that 0.1 <organic substance / NO 3 −N ≦ 0.5 (molar ratio) is mixed with a substantial amount of oxygen in the presence of a catalyst comprising at least one of a noble metal, a noble metal ion and a soluble noble metal compound. A method for treating wastewater containing ammonium nitrate, wherein the wastewater is subjected to wet pyrolysis at a pH of about 1 to 11.5 and a temperature of 100 to 370C in the absence.

0.1<有機物/NO3−N≦0.5(モル比)となる様に有
機物を加え且つ 0.1<NH3−N/NO3−N≦2(モル比)となる様にアンモ
ニアを加えた硝酸アンモニウム含有廃水を貴金属、貴金
属イオンおよび可溶性貴金属化合物の少なくとも1種か
らなる触媒の存在下且つ酸素の実質的な不存在下にpH約
1〜11.5、温度100〜370℃で湿式熱分解することを特徴
とする硝酸アンモニウム含有廃水の処理方法。
0.1 <organics / NO 3 -N ≦ 0.5 (molar ratio) the organics as a plus and 0.1 <NH 3 -N / NO 3 -N ≦ 2 ammonium nitrate-containing waste water by adding ammonia as a (molar ratio) Is subjected to wet pyrolysis in the presence of a catalyst comprising at least one of a noble metal, a noble metal ion and a soluble noble metal compound at a pH of about 1 to 11.5 and a temperature of 100 to 370 ° C. in the substantial absence of oxygen. A method for treating wastewater containing ammonium nitrate.

0.1<有機物/NO3−N≦0.5(モル比)となる様に有
機物を加え且つ酸及び酸生成物質の少なくとも1種を添
加した硝酸アンモニウム含有廃水を貴金属、貴金属イオ
ンおよび可溶性貴金属化合物の少なくとも1種からなる
触媒の存在下且つ酸素の実質的な不存在下にpH約1〜1
1.5、温度100〜370℃で湿式熱分解することを特徴とす
る硝酸アンモニウム含有廃水の処理方法。
An ammonium nitrate-containing wastewater to which an organic substance is added and at least one of an acid and an acid-generating substance is added so that 0.1 <organic substance / NO 3 -N ≦ 0.5 (molar ratio) is mixed with at least one of a noble metal, a noble metal ion, and a soluble noble metal compound PH of about 1 to 1 in the presence of a catalyst consisting of
1.5. A method for treating wastewater containing ammonium nitrate, comprising performing wet pyrolysis at a temperature of 100 to 370 ° C.

0.1<有機物/NO3−N≦0.5(モル比)となる様に有
機物を加え、 0.1<NH3−N/NO3−N≦2(モル比)となる様にアンモ
ニアを加え且つ酸及び酸生成物質の少なくとも1種を添
加した硝酸アンモニウム含有廃水を貴金属、貴金属イオ
ンおよび可溶性貴金属化合物の少なくとも1種からなる
触媒の存在下且つ酸素の実質的な不存在下にpH約1〜1
1.5、温度100〜370℃で湿式熱分解することを特徴とす
る硝酸アンモニウム含有廃水の処理方法。
0.1 <organics / NO 3 -N ≦ 0.5 (molar ratio) and becomes an organic substance as addition, 0.1 <NH 3 -N / NO 3 -N ≦ 2 adding ammonia as a (molar ratio) and acids and acid The ammonium nitrate-containing wastewater to which at least one of the product substances has been added is subjected to a pH of about 1 to 1 in the presence of a catalyst comprising at least one of a noble metal, a noble metal ion and a soluble noble metal compound and in the substantial absence of oxygen.
1.5. A method for treating wastewater containing ammonium nitrate, comprising performing wet pyrolysis at a temperature of 100 to 370 ° C.

なお、本発明において、“酸素の実質的な不存在下
に”なる表現は、処理すべき廃水に積極的に酸素を供給
しないことを意味するものであり、処理すべき廃水中に
少量の酸素が溶存している場合をも包含するものであ
る。
In the present invention, the expression "in the substantial absence of oxygen" means that oxygen is not actively supplied to the wastewater to be treated, and a small amount of oxygen is contained in the wastewater to be treated. Is also included.

本発明が対象とする廃水は、NH4NO3を含む全ての廃水
であり、特にNH4NO3濃度が1%以上の高濃度廃水が好適
である。本発明においては、この様な廃水に有機物(CO
D成分)を添加して、熱分解処理に供する。COD成分とし
ては、メタノール、エタノール、蟻酸、酢酸、フェノー
ルなどが例示される。COD成分の添加量は、廃水中に含
まれるNO3 -イオンモル数に対して等モル以下、より好ま
しくは0.1〜0.5モル程度である。メタノールをCOD成分
とする場合の反応は、下式で表わされる。
Wastewater to which the present invention is directed are all wastewater containing NH 4 NO 3, is particularly preferred NH 4 NO 3 high-concentration waste water concentration of 1% or more. In the present invention, such wastewater is treated with organic matter (CO
D)) and subject to thermal decomposition. Examples of the COD component include methanol, ethanol, formic acid, acetic acid, and phenol. Amount of COD components, NO 3 contained in the waste water - equimolar to ion molar number or less, more preferably about 0.1 to 0.5 moles. The reaction when methanol is used as the COD component is represented by the following formula.

NH4NO3+1/3CH3OH→ N2+1/3CO2+8/3H2O 本発明方法は、pH約1〜11.5、より好ましくは3〜9
で効率良く実施される。
NH 4 NO 3 + 1 / 3CH 3 OH → N 2 + 1 / 3CO 2 + 8 / 3H 2 O The method of the present invention is carried out at a pH of about 1 to 11.5, more preferably 3 to 9
Is implemented efficiently.

本発明で使用する触媒活性成分としては、白金、ルテ
ニウム、ロジウム、パラジウム、オスミウム、イリジウ
ムなどの貴金属、これら貴金属のイオンおよび水に対し
可溶性の貴金属化合物が挙げられ、これらの1種又は2
種以上を使用することが出来る。貴金属としては、ルテ
ニウムブラック、パラジウムブラックなどが例示され
る。貴金属イオンとしては、アンモニア、塩素、シア
ン、ナトリウム、カリウムなどを配位子として錯化合物
の形態にあるものが挙げられ、錯化合物としては、 (NH4(RuCl5(H2O))、 (Ru(NH3)Cl2、 (RuCl(NH3))5Cl、 Na2(PdCl4)、 (NH4(PdCl4)、 (Pd(NH3)Cl2、 K2(Pd(NO2)2H2O、 K2(Pd(CN))3H2O等が例示される。水に可溶性の化
合物としては、RuCl3、RuCl4・5H2O、PtCl4、PdCl2、Pb
Cl2・2H2O、RhCl3・3H2O、OsCl4、IrCl2などが例示され
る。触媒成分は、処理開始後しばらくの間廃水500ccに
対して通常0.01〜0.2g程度の割合で反応槽に供給する。
反応槽内には、接触面積を増大して反応を均一に進行さ
せるために、チタニア、ジルコニア、アルミナ、シリ
カ、アルミナ−シリカ、活性炭、或いは鉄、ニッケル、
ニッケル−クロム、ニッケル−クロム−アルミニウム、
ニッケル−クロム−鉄などの金属多孔体などの球体また
は粉体(破砕片、粉粒体、ペレット、円柱体など)を充
填しておいても良い。反応の進行とともに反応槽内表面
に貴金属ブラックが付着形成され、これが触媒としての
作用を発揮し始めるので、この時点で触媒の供給を停止
すれば良い。さらに時間の経過とともに上記の貴金属ブ
ラックの触媒活性が低下すれば、触媒成分の供給を再開
する。反応を回分式で行なう場合には、前記の3〜5倍
程度の触媒成分を使用することが好ましい。
Examples of the catalytically active component used in the present invention include noble metals such as platinum, ruthenium, rhodium, palladium, osmium, and iridium, and ions of these noble metals and noble metal compounds soluble in water.
More than one species can be used. Examples of the noble metal include ruthenium black and palladium black. Examples of the noble metal ion include those in the form of a complex compound using ammonia, chlorine, cyan, sodium, potassium, and the like as ligands. Examples of the complex compound include (NH 4 ) 2 (RuCl 5 (H 2 O)) , (Ru (NH 3 ) 6 ) Cl 2 , (RuCl (NH 3 )) 5 Cl, Na 2 (PdCl 4 ), (NH 4 ) 2 (PdCl 4 ), (Pd (NH 3 ) 4 ) Cl 2 , K 2 (Pd (NO 2 ) 4 ) 2 H 2 O, K 2 (Pd (CN) 4 ) 3 H 2 O and the like are exemplified. As soluble compounds in water, RuCl 3, RuCl 4 · 5H 2 O, PtCl 4, PdCl 2, Pb
Cl 2 · 2H 2 O, RhCl 3 · 3H 2 O, etc. OsCl 4, IrCl 2 are exemplified. The catalyst component is usually supplied to the reaction tank at a rate of about 0.01 to 0.2 g with respect to 500 cc of wastewater for a while after the treatment is started.
In the reaction vessel, in order to increase the contact area and promote the reaction uniformly, titania, zirconia, alumina, silica, alumina-silica, activated carbon, or iron, nickel,
Nickel-chromium, nickel-chromium-aluminum,
A sphere such as a porous metal such as nickel-chromium-iron or powder (crushed pieces, powder, pellets, cylinders, etc.) may be filled in advance. With the progress of the reaction, noble metal black is formed on the inner surface of the reaction tank and starts to exert its effect as a catalyst. At this point, the supply of the catalyst may be stopped. If the catalytic activity of the above-mentioned noble metal black decreases over time, supply of the catalyst component is restarted. When the reaction is carried out batchwise, it is preferable to use about 3 to 5 times the amount of the catalyst component described above.

反応時の温度は、通常100〜370℃、より好ましくは20
0〜300℃とする。反応時の温度が高い程、NH4 +イオン及
びNO3 -イオンの除去率が高まり且つ反応塔内での廃水の
滞留時間も短縮されるが、反面に於て設備費が大となる
ので、廃水の種類、要求される処理の程度、運転費、建
設費等を総合的に考慮して定めれば良い。従つて反応時
の圧力は、最低限所定温度に於て廃水が液相を保つ圧力
であれば良い。
The temperature during the reaction is usually 100 to 370 ° C., more preferably 20 to 370 ° C.
0-300 ° C. Higher temperature during the reaction, NH 4 + ions and NO 3 - but is shortened residence time of the waste water removal rate is increased and reaction column of ion, because equipment costs become large At a contrary, It may be determined by comprehensively considering the type of wastewater, the required degree of treatment, operating costs, construction costs, and the like. Therefore, the pressure during the reaction may be a pressure at which the wastewater keeps a liquid phase at a predetermined temperature.

NH4NO3含有廃水にCOD成分とともにアンモニアを加え
て0.1<NH3−N/NO3−N≦2(モル比)とした廃水を湿
式熱分解する場合の反応条件も上記と同様で良い。
NH 4 NO 3 reaction conditions for the wastewater was the waste water containing ammonia is added to with COD components 0.1 <NH 3 -N / NO 3 -N ≦ 2 ( molar ratio) decomposing wet heat also may be the same as described above.

NH4NO3含有廃水にCOD成分とともに酸または処理条件
下に酸を形成する物質を添加して、廃水の湿式熱分解す
る場合の反応条件も上記と同様で良い。
NH 4 NO 3 in containing waste water by adding a substance which forms an acid to an acid or treated conditions with COD components, also the reaction conditions for wet thermal decomposition of the waste water may be the same as described above.

添加する酸としては、硫酸、硝酸、塩酸などがあり、
硫酸が最も好ましい。酸生成物質としては、硫黄、硫黄
化合物(チオ硫酸、チオシアン酸、チオ尿素、チオエー
テル、チオフェノールなど)が例示される。或いは、コ
ークス路ガス精製装置などから排出される硫黄化合物を
酸生成物質源としても良い。酸または処理条件下に酸を
形成する物質のNH4NO3含有廃水に対する配合量は、廃水
中に含まれるNa、Kなどのアルカリ金属の塩乃至イオン
の量の合計モル数に相当する程度の量とする。
Examples of the acid to be added include sulfuric acid, nitric acid, and hydrochloric acid.
Sulfuric acid is most preferred. Examples of the acid generating substance include sulfur and sulfur compounds (thiosulfuric acid, thiocyanic acid, thiourea, thioether, thiophenol and the like). Alternatively, a sulfur compound discharged from a coke gas purification device or the like may be used as the acid generating substance source. The amount of the acid or the substance that forms an acid under the treatment conditions with respect to the NH 4 NO 3 -containing wastewater is such that the amount corresponds to the total number of moles of salts or ions of alkali metals such as Na and K contained in the wastewater. Amount.

NH4NO3含有廃水にCOD成分およびアンモニアを加えて
0.1<NH3−N/NO3−N≦2(モル比)とし、更に酸若し
くは酸生成物質を加えた廃水を湿式熱分解する場合の反
応条件も上記と同様で良い。
Adding COD components and ammonia to NH 4 NO 3 containing waste water
The reaction conditions in the case of 0.1 <NH 3 -N / NO 3 -N ≦ 2 (molar ratio) and wet pyrolysis of wastewater to which an acid or an acid-generating substance is added may be the same as the above.

なお、本発明において、COD成分源或いはCOD成分源と
アンモニア源としても、これらを含む各種の廃水を使用
することが出来る。この場合には、コークス炉プラント
並びに石炭のガス化および液化プラントで副生するガス
液、これらプラントでのガス精製に伴って生ずる各種廃
水、湿式脱硫塔および湿式シアン塔からの廃水含油水、
活性汚泥処理水、沈降汚泥活性、化学工場廃水、石油工
場廃水、し尿、下水、下水汚泥などを同時に処理するこ
とが出来る。
In the present invention, various kinds of wastewater containing these can also be used as the COD component source or the COD component source and the ammonia source. In this case, gas liquid by-produced in a coke oven plant and a coal gasification and liquefaction plant, various wastewaters generated by gas purification in these plants, wastewater oil-containing water from a wet desulfurization tower and a wet cyan tower,
Activated sludge treated water, settled sludge activity, chemical factory wastewater, petroleum factory wastewater, night soil, sewage, sewage sludge, etc. can be simultaneously treated.

第1図は、本発明方法の一実施態様のフローチャート
を示す。
FIG. 1 shows a flowchart of one embodiment of the method of the present invention.

タンク(1)に収容された廃水原水は、ライン(3)
を通り、昇圧ポンプ(5)によりライン(7)を経て熱
交換器(9)に送られ、後述する反応塔(19)からの高
温処理水により加熱された後、ライン(11)を経て、ボ
イラー(13)を付設された加熱器(15)に送給され、所
定の温度まで、加熱される。触媒は、タンク(1)内へ
または反応塔(19)までの任意の位置に添加される。反
応が進行して、所定の温度に維持できる定常状態に到達
した場合には、ボイラー(13)による加熱は停止され
る。所定の反応温度まで加熱された廃水は、次いで、ラ
イン(17)を経て、金属多孔体の球体または粉体を充填
された反応塔(19)に入り、触媒の存在下且つ酸素の実
質的な不存在下に熱処理に供される。熱処理された高温
の処理水は、ライン(21)を通って熱交換器(9)に送
られ、ここで廃水原水の予熱処理を行なった後、ライン
(23)を経て、冷却器(25)に送られ、冷却される。冷
却器(25)には、給水ライン(27)および排水ライン
(29)が接続されており、冷却水の供給及び排水が常時
行なわれている。冷却器(25)を出た処理水は、ライン
(31)を経て気液分離器(33)に送られ、ライン(35)
からの液相とライン(37)からの気相とに分離される。
液相のpHが低すぎる場合には、ライン(39)からのpH調
整剤(図示の実施態様では、NaOH水溶液)が添加された
後、系外に取り出される。一方、ライン(37)からの気
相は、バルブ(41)を経て系外に取り出される。
Raw wastewater stored in the tank (1) is supplied to the line (3)
Through a line (7) by a pressurizing pump (5) to a heat exchanger (9) and heated by high-temperature treated water from a reaction tower (19) described later, and then through a line (11), It is fed to a heater (15) provided with a boiler (13) and is heated to a predetermined temperature. The catalyst is added into the tank (1) or at any position up to the reaction tower (19). When the reaction proceeds and reaches a steady state in which a predetermined temperature can be maintained, the heating by the boiler (13) is stopped. The wastewater heated to the predetermined reaction temperature then enters via a line (17) a reaction tower (19) filled with spheres or powders of porous metal and substantially in the presence of a catalyst and substantially oxygen. It is subjected to a heat treatment in the absence. The heat-treated high-temperature treated water is sent to a heat exchanger (9) through a line (21), where a pre-heat treatment of the wastewater is performed, and then a cooler (25) is passed through a line (23). And cooled. A water supply line (27) and a drainage line (29) are connected to the cooler (25), and supply and drainage of the cooling water are constantly performed. The treated water leaving the cooler (25) is sent to a gas-liquid separator (33) via a line (31), and is sent to a line (35)
And the gas phase from line (37).
If the pH of the liquid phase is too low, a pH adjuster (in the illustrated embodiment, an aqueous NaOH solution) is added from the line (39) and then taken out of the system. On the other hand, the gas phase from the line (37) is taken out of the system via the valve (41).

なお、反応塔(19)には、温度検知装置(43)を付設
しておくことにより、反応塔(19)内の温度に応じて、
バルブ(47)を開き、ライン(7)を通る廃水の一部を
バイパスライン(45)を経て反応器(19)に直接供給す
ることができる。
In addition, by attaching a temperature detector (43) to the reaction tower (19), according to the temperature in the reaction tower (19),
The valve (47) is opened and a part of the wastewater passing through the line (7) can be fed directly to the reactor (19) via the bypass line (45).

反応開始に先立って、系内を所定の圧力まで高めるた
めに、空気ボンベからライン(49)を経て高圧空気を気
液分離器(33)に送入しておくことも出来る。
Prior to the start of the reaction, high-pressure air may be fed into the gas-liquid separator (33) from the air cylinder via the line (49) in order to increase the inside of the system to a predetermined pressure.

また、反応処理中の系内の圧力を制御するためには、
気液分離器(33)に圧力検知装置(55)を付設しておく
ことにより、気液分離器(33)内の圧力に応じて、バル
ブ(41)の開閉度を調節することができる。
In order to control the pressure in the system during the reaction process,
By attaching the pressure detecting device (55) to the gas-liquid separator (33), the opening / closing degree of the valve (41) can be adjusted according to the pressure in the gas-liquid separator (33).

本発明において、廃水にCOD成分を添加する場合に
は、例えば、ライン(51)からライン(3)内を通る廃
水に混合すれば良い。COD成分の添加位置は、特に限定
されず、反応器にいたるまでの任意の個所で行なうこと
ができる。
In the present invention, when the COD component is added to the wastewater, for example, it may be mixed with the wastewater passing from the line (51) to the line (3). The position at which the COD component is added is not particularly limited, and the COD component can be added at any point up to the reactor.

さらにまた、本発明において、廃水に酸または酸生成
物質(図示の装置では、硫酸)を添加する場合にも、例
えば、ライン(53)からライン(3)内を通る廃水に混
合すれば良い。酸または酸生成物質の添加位置も、特に
限定されず、反応器にいたるまでのやはり任意の個所で
行なうことができる。
Furthermore, in the present invention, when an acid or an acid-generating substance (sulfuric acid in the illustrated apparatus) is added to the wastewater, for example, the acid may be mixed with the wastewater passing from the line (53) to the line (3). The addition position of the acid or the acid-generating substance is not particularly limited, and the addition can be carried out at any place up to the reactor.

さらに、本発明において、廃水にアンモニアを添加す
る場合にも、例えば、ライン(57)からライン(3)を
通る廃水に混合すれば良い。アンモニアの添加位置も特
に限定されず、反応器にいたるまでの任意の個所で行な
うことができる。
Furthermore, in the present invention, when ammonia is added to the wastewater, for example, it may be mixed with the wastewater passing from the line (57) to the line (3). The position at which ammonia is added is not particularly limited, and the addition can be performed at any point up to the reactor.

発明の効果 本発明によれば、NH4NO3を高濃度で含有する廃水を効
率良く処理し、NH4 +イオン及びNO3 -イオンの濃度を大幅
に低下させることが出来る。従つて、例えば、ウラン原
料の処理工程又は使用済みウラン燃料の再処理工程から
排出され、NH4NO3濃度が10%以上にも達することがある
廃水などの処理を簡易な設備により容易に行なうことが
出来る。
Effects of the Invention According to the present invention, wastewater containing NH 4 NO 3 at a high concentration can be efficiently treated, and the concentrations of NH 4 + ions and NO 3 - ions can be significantly reduced. Accordingly, for example, wastewater discharged from a uranium raw material processing step or a spent uranium fuel reprocessing step and having an NH 4 NO 3 concentration of 10% or more can be easily processed with simple equipment. I can do it.

また、酸素の使用を必須とする前述の先願発明−IIの
場合とは異なって、酸素含有ガスの圧縮および供給設備
ならびにそのが設備場所が不要となるので、設備費用お
よび運転費用が大幅に削減され、廃水処理コストが著し
く低下する。
Also, unlike the above-mentioned prior application invention-II in which the use of oxygen is essential, the equipment for compressing and supplying the oxygen-containing gas and the equipment location are not required, so that the equipment cost and the operating cost are greatly reduced. And wastewater treatment costs are significantly reduced.

実 施 例 以下実施例を示し、本発明の特徴とするところをより
一層明らかにする。
EXAMPLES Examples are shown below to further clarify features of the present invention.

実施例1 COD成分/NO3−N=0.33(モル比)となる様にCH3OHを
加えたpH6.7,NH4NO3濃度約1%(NH3−N/NO3−N=1)
の廃水100mlを容量300mlのステンレススチール製オート
クレーブに収容し、250℃で90分間熱分解処理した。
Example 1 pH 6.7 with CH 3 OH added so that COD component / NO 3 —N = 0.33 (molar ratio), NH 4 NO 3 concentration about 1% (NH 3 —N / NO 3 —N = 1 )
Was placed in a 300 ml stainless steel autoclave and pyrolyzed at 250 ° C. for 90 minutes.

該オートクレーブ内の廃水には、RuCl30.5gを触媒と
して添加した。
To the wastewater in the autoclave, 0.5 g of RuCl 3 was added as a catalyst.

第1表に実施例1〜6の反応条件を併せて示し、第2
表に各実施例の全窒素成分分解率およびCOD成分分解率
を併せて示す。
Table 1 also shows the reaction conditions of Examples 1 to 6, and
The table also shows the total nitrogen component decomposition rate and the COD component decomposition rate of each example.

実施例2〜3 実施例1で処理した廃水とはpHおよびNH4NO3濃度の異
なる含有廃水を実施例1と同様にして熱分解処理に供し
た。
Examples 2 to 3 The wastewater treated in Example 1 was subjected to a thermal decomposition treatment in the same manner as in Example 1 except for the wastewater containing different pH and NH 4 NO 3 concentration.

なお、実施例2および後記の実施例5においては、廃
水中のNaイオンおよびKイオンの濃度に見合う量の硫酸
(0.03モル/)を予め廃水に添加した、 実施例4 RuCl3に代えてPdCl2を触媒として使用する以外は実施
例1と同様にして廃水の熱分解処理を行なつた。
In Examples 2 and the Examples below 5, the amount of sulfuric acid to meet the concentration of Na ions and K ions in the waste water (0.03 mol /) was added to the previously waste water, in place of Example 4 RuCl 3 PdCl A waste water pyrolysis treatment was performed in the same manner as in Example 1 except that 2 was used as a catalyst.

実施例5〜6 RuCl3に代えてPdCl2を触媒として使用する以外は実施
例2〜3と同様にして廃水の熱分解処理を行なった。
It was subjected to thermal decomposition treatment of waste water but using PdCl 2 as a catalyst in place of Example 5 to 6 RuCl 3 in the same manner as in Example 2-3.

実施例7〜9 NH4NO3含有廃水にCH3OHおよびNH4OHを加え、実施例1
と同様にして廃水の熱分解処理を行なつた。
Examples 7 to 9 Example 1 was repeated by adding CH 3 OH and NH 4 OH to waste water containing NH 4 NO 3.
The wastewater was thermally decomposed in the same manner as described above.

第3表および第4表に条件および結果をそれぞれ示
す。
Tables 3 and 4 show the conditions and results, respectively.

なお、実施例8〜9および後記実施例11〜12において
は、廃水中のNaおよびKのモル数に対応するモル数の硫
酸(0.013モル/)を廃水に添加した。
In Examples 8 to 9 and Examples 11 to 12 described later, sulfuric acid (0.013 mol /) in a mole number corresponding to the mole number of Na and K in the wastewater was added to the wastewater.

実施例10〜12 NH4NO3含有廃水にCH3OHおよびNH4OHを加え、実施例4
と同様にして廃水の熱分解処理を行なつた。
The CH 3 OH and NH 4 OH was added to the Example 10 to 12 NH 4 NO 3 containing waste water, Example 4
The wastewater was thermally decomposed in the same manner as described above.

第3表および第4表に条件および結果をそれぞれ示
す。
Tables 3 and 4 show the conditions and results, respectively.

実施例13 NH4NO3濃度10%(NH3−N/NO3−N=1.0)の廃水にCH3
OHを添加してCH3OH/NO3=約0.35モルに調整するととも
に、硫酸を添加してそのpHを1.9とした液を空間速度1.5
1/hr(空塔基準)として高ニツケル鋼製円筒型反応器下
部に供給して熱分解処理を行なつた。液の質量速度は、
1.1ton/m2・hrであり、反応器には、チタニア球体が充
填されており、熱分解は、1時間当りRuCl30.63gを供給
しつつ、温度250℃、圧力70kg/cm2の条件下に行なっ
た。
Example 13 CH 3 was added to wastewater having an NH 4 NO 3 concentration of 10% (NH 3 −N / NO 3 −N = 1.0).
OH was added to adjust CH 3 OH / NO 3 to about 0.35 mol, and sulfuric acid was added to adjust the pH of the solution to 1.9.
It was supplied to the lower part of a high nickel steel cylindrical reactor as 1 / hr (based on an empty tower) to perform a thermal decomposition treatment. The mass velocity of the liquid is
A 1.1ton / m 2 · hr, the reactor has titania spheres is filled, pyrolysis, while supplying per hour RuCl 3 0.63 g, temperature 250 ° C., under a pressure of 70 kg / cm 2 Performed below.

反応後の気液混合相を熱回収に供した後、NH4NO3およ
び添加したCH3OHの分解により生成した窒素ガス、炭酸
ガスなどを分離するために、気液分離器に導き、分離さ
れた気相及び液相をそれぞれ間接冷却後、系外に取り出
した。なお、反応開始に先立って、気液分離器に少量の
空気を送り込み、圧力を70kg/cm2に高めた後、反応を開
始した。
After subjecting the gas-liquid mixed phase after the reaction to heat recovery, it is led to a gas-liquid separator to separate nitrogen gas, carbon dioxide gas, etc. generated by decomposition of NH 4 NO 3 and added CH 3 OH, and separation. The vapor phase and liquid phase thus obtained were each taken out of the system after indirect cooling. Prior to the start of the reaction, a small amount of air was fed into the gas-liquid separator to increase the pressure to 70 kg / cm 2, and then the reaction was started.

第5表にNH3、NO3、全窒素成分およびCOD成分の分解
率を示す。
Table 5 shows the decomposition rates of NH 3 , NO 3 , total nitrogen components and COD components.

尚、気相中には、NOx及びSOxは検出されなかつた。 NOx and SOx were not detected in the gas phase.

実施例14 RuCl3に代えてPdCl2を使用する以外は実施例13と同様
にして廃水の熱分離処理を行なつた。
Example 14 A waste water heat separation treatment was performed in the same manner as in Example 13 except that PdCl 2 was used instead of RuCl 3 .

結果を第5表に併せて示す。 The results are shown in Table 5.

尚、気相中には、NOx及びSOxは検出されなかつた。 NOx and SOx were not detected in the gas phase.

実施例15 pH10,NH4NO3濃度約1%(NH3−N/NO3−N=2)の廃
水100mlにCOD成分/NO3−N=0.50(モル比)となる様に
CH3OHを加え且つ硫酸を添加してpHを1.9に調整した後、
容量300mlのステンレススチール製オートクレーブに収
容し、250℃で90分間分解処理した。
Example 15 pH10, NH 4 NO 3 concentration of about 1% (NH 3 -N / NO 3 -N = 2) of the waste water 100ml to as the COD components / NO 3 -N = 0.50 (molar ratio)
After adding CH 3 OH and adjusting the pH to 1.9 by adding sulfuric acid,
It was placed in a 300 ml stainless steel autoclave and decomposed at 250 ° C. for 90 minutes.

該オートクレーブ内の廃水には、ルテニウルブラック
0.2gが触媒として添加されていた。
The wastewater in the autoclave is
0.2 g had been added as catalyst.

第6表にNH3、NO3、全窒素成分およびCOD成分の分解
率を示す。
Table 6 shows the decomposition rates of NH 3 , NO 3 , total nitrogen components and COD components.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明方法の実施態様の一例の概要を示すフ
ローチャートである。 (1)……廃水タンク (5)……昇圧ポンプ (9)……熱交換器 (13)……ボイラー (15)……加熱器 (19)……反応塔 (25)……冷却器 (27)……給水ライン (29)……排水ライン (33)……気液分離器 (35)……液相ライン (37)……気相ライン (39)……pH調整剤供給ライン (43)……温度検知装置 (45)……バイパスライン (49)……高圧空気供給ライン (51)……COD成分供給ライン (53)……酸または酸生成物質供給ライン (55)……圧力検知装置 (57)……アンモニア供給ライン
FIG. 1 is a flowchart showing an outline of an example of an embodiment of the method of the present invention. (1) ... Waste water tank (5) ... Pressure pump (9) ... Heat exchanger (13) ... Boiler (15) ... Heating device (19) ... Reaction tower (25) ... Cooler ( 27) Water supply line (29) Drain line (33) Gas-liquid separator (35) Liquid phase line (37) Gas phase line (39) pH adjuster supply line (43 ) Temperature detector (45) Bypass line (49) High pressure air supply line (51) COD component supply line (53) Acid or acid generating substance supply line (55) Pressure detection Equipment (57)… Ammonia supply line

フロントページの続き (56)参考文献 特開 昭61−222587(JP,A) 特開 昭61−257292(JP,A) 特開 平4−48988(JP,A) (58)調査した分野(Int.Cl.6,DB名) C02F 1/00 - 1/78 Continuation of front page (56) References JP-A-61-222587 (JP, A) JP-A-61-257292 (JP, A) JP-A-4-48988 (JP, A) (58) Fields investigated (Int) .Cl. 6 , DB name) C02F 1/00-1/78

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】0.1<有機物/NO3−N≦0.5(モル比)とな
る様に有機物を加えた硝酸アンモニウム含有廃水を貴金
属イオンおよび可溶性貴金属化合物の少なくとも1種か
らなる触媒の存在下且つ酸素の実質的な不存在下にpH約
1〜11.5、温度100〜370℃で湿式熱分解することを特徴
とする硝酸アンモニウム含有廃水の処理方法。
1. An ammonium nitrate-containing wastewater to which an organic substance is added so that 0.1 <organic substance / NO 3 -N ≦ 0.5 (molar ratio) is produced by adding an organic substance to a catalyst containing at least one kind of a noble metal ion and a soluble noble metal compound. A method for treating wastewater containing ammonium nitrate, wherein the wastewater is subjected to wet pyrolysis at a pH of about 1 to 11.5 and a temperature of 100 to 370 ° C in the substantial absence.
【請求項2】0.1<有機物/NO3−N≦0.5(モル比)とな
る様に有機物を加え且つ0.1<NH3−N/NO3−N≦2(モ
ル比)となる様にアンモニアを加えた硝酸アンモニウム
含有廃水を貴金属イオンおよび可溶性貴金属化合物の少
なくとも1種からなる触媒の存在下且つ酸素の実質的な
不存在下にpH約1〜11.5、温度100〜370℃で湿式熱分解
することを特徴とする硝酸アンモニウム含有廃水の処理
方法。
2. An organic substance is added so that 0.1 <organic substance / NO 3 -N ≦ 0.5 (molar ratio), and ammonia is added so that 0.1 <NH 3 -N / NO 3 -N ≦ 2 (molar ratio). Wet pyrolysis of the added ammonium nitrate-containing wastewater in the presence of a catalyst comprising at least one noble metal ion and a soluble noble metal compound and in the substantial absence of oxygen at a pH of about 1 to 11.5 and a temperature of 100 to 370 ° C. A method for treating wastewater containing ammonium nitrate.
【請求項3】0.1<有機物/NO3−N≦0.5(モル比)とな
る様に有機物を加え且つ酸および酸生成物質の少なくと
も1種を添加した硝酸アンモニウム含有廃水を貴金属イ
オンおよび可溶性貴金属化合物の少なくとも1種からな
る触媒の存在下且つ酸素の実質的な不存在下にpH約1〜
11.5、温度100〜370℃で湿式熱分解することを特徴とす
る硝酸アンモニウム含有廃水の処理方法。
3. An ammonium nitrate-containing wastewater to which an organic substance is added and at least one of an acid and an acid-generating substance is added so that 0.1 <organic substance / NO 3 -N ≦ 0.5 (molar ratio), and the noble metal ion and the soluble noble metal compound A pH of about 1 to 1 in the presence of at least one catalyst and in the substantial absence of oxygen
11.5. A method for treating ammonium nitrate-containing wastewater, comprising performing wet pyrolysis at a temperature of 100 to 370 ° C.
【請求項4】0.1<有機物/NO3−N≦0.5(モル比)とな
る様に有機物を加え、0.1<NH3−N/NO3−N≦2(モル
比)となる様にアンモニアを加え且つ酸及び酸生成物質
の少なくとも1種を添加した硝酸アンモニウム含有廃水
を貴金属イオンおよび可溶性貴金属化合物の少なくとも
1種からなる触媒の存在下且つ酸素の実質的な不存在下
にpH約1〜11.5、温度100〜370℃で湿式熱分解すること
を特徴とする硝酸アンモニウム含有廃水の処理方法。
4. An organic substance is added so that 0.1 <organic substance / NO 3 —N ≦ 0.5 (molar ratio), and ammonia is added so that 0.1 <NH 3 —N / NO 3 —N ≦ 2 (molar ratio). Ammonium nitrate-containing wastewater to which at least one of an acid and an acid-generating substance has been added and which has a pH of about 1 to 11.5 in the presence of a catalyst comprising at least one noble metal ion and a soluble noble metal compound and in the substantial absence of oxygen; A method for treating ammonium nitrate-containing wastewater, comprising performing wet pyrolysis at a temperature of 100 to 370 ° C.
JP33576890A 1990-11-29 1990-11-29 Treatment method for wastewater containing ammonium nitrate Expired - Lifetime JP2969477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33576890A JP2969477B2 (en) 1990-11-29 1990-11-29 Treatment method for wastewater containing ammonium nitrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33576890A JP2969477B2 (en) 1990-11-29 1990-11-29 Treatment method for wastewater containing ammonium nitrate

Publications (2)

Publication Number Publication Date
JPH04200692A JPH04200692A (en) 1992-07-21
JP2969477B2 true JP2969477B2 (en) 1999-11-02

Family

ID=18292242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33576890A Expired - Lifetime JP2969477B2 (en) 1990-11-29 1990-11-29 Treatment method for wastewater containing ammonium nitrate

Country Status (1)

Country Link
JP (1) JP2969477B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641413A (en) * 1995-10-27 1997-06-24 Zimpro Environmental, Inc. Removal of nitrogen from wastewaters
US6379562B1 (en) 2001-03-21 2002-04-30 Atr Products And Chemicals, Inc. Treatment of water containing organic wastes with aromatic amine nitrate salts

Also Published As

Publication number Publication date
JPH04200692A (en) 1992-07-21

Similar Documents

Publication Publication Date Title
EP0196597B1 (en) Process for treating ammonium nitrate-containing waste water
KR100812623B1 (en) Precious metal recovery from organics-precious metal compositions with supercritical water reactant
JP2969477B2 (en) Treatment method for wastewater containing ammonium nitrate
JP2000117273A (en) Waste water treatment
JPS61257291A (en) Treatment of waste water containing ammonium nitrate
JP2969467B2 (en) Treatment method for wastewater containing ammonium nitrate
JPH0691992B2 (en) Treatment method of wastewater containing high concentration ammonium nitrate
JP2899719B2 (en) Treatment method for wastewater containing ammonium nitrate
JP2000117272A (en) Waste water treatment
JP2969478B2 (en) Treatment method for wastewater containing ammonium nitrate
JPH0461987A (en) Treatment of waste water containing ammonium nitrate
JPH0459094A (en) Treatment of waste water containing ammonium nitrate
JPH11300374A (en) Treatment of waste water
JPS5834080A (en) Treatment of acid-digested waste liquid
JP3565637B2 (en) Treatment of wastewater containing ammonia
JP3693354B2 (en) Treatment method of wastewater containing nitrate
JPH0645028B2 (en) Method of treating wastewater containing ammonium nitrate
JP4223706B2 (en) Wastewater treatment method
JPH0645027B2 (en) Method of treating wastewater containing ammonium nitrate
JP2000167570A (en) Treatment of waste water
JPS61222585A (en) Treatment of waste water containing ammonium nitrate
JPS61222586A (en) Treatment of waste water containing ammonium nitrate
JPH0696151B2 (en) Treatment method of wastewater containing high concentration ammonium nitrate
JP3822520B2 (en) Nitrogen compound-containing water treatment method
JPH0647100B2 (en) Method of treating wastewater containing ammonium nitrate