JPH0645027B2 - Method of treating wastewater containing ammonium nitrate - Google Patents
Method of treating wastewater containing ammonium nitrateInfo
- Publication number
- JPH0645027B2 JPH0645027B2 JP60087304A JP8730485A JPH0645027B2 JP H0645027 B2 JPH0645027 B2 JP H0645027B2 JP 60087304 A JP60087304 A JP 60087304A JP 8730485 A JP8730485 A JP 8730485A JP H0645027 B2 JPH0645027 B2 JP H0645027B2
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- ammonium nitrate
- ammonia
- ruthenium
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、硝酸アンモニウム含有廃水の処理方法に関す
る。TECHNICAL FIELD The present invention relates to a method for treating ammonium nitrate-containing wastewater.
従来技術及びその問題点 近年、水質規制の観点から化学的酸素要求物質(COD
成分)のみならず、窒素成分(特にアンモニア態窒素)
の除去も重要な課題となつて来た。本発明者等は、アン
モニア含有廃水の処理方法について長期にわたり種々研
究を重ねた結果、特定の触媒の存在下且つ特定の条件下
に湿式酸化処理を行なうことにより、操作容易にして実
用上の経済性を備えたアンモニア含有廃水の処理方法を
完成した(特公昭59−19757号、特公昭56−4
2992号、特公昭57−42391号、特公昭58−
27999号、特公昭57−33320号等)。Conventional technology and its problems In recent years, from the viewpoint of water quality regulation, chemical oxygen demand substances (COD
Component) as well as nitrogen component (especially ammonia nitrogen)
The removal of is also an important issue. The present inventors have conducted various studies over a long period of time on a method for treating ammonia-containing wastewater, and as a result, by carrying out a wet oxidation treatment in the presence of a specific catalyst and under specific conditions, the operation is facilitated and the economic efficiency is reduced. A method for treating wastewater containing ammonia with properties was completed (Japanese Patent Publication No. 59-19757 and Japanese Patent Publication No. 56-4).
No. 2992, Japanese Patent Publication No. 57-42391, Japanese Patent Publication No. 58-
No. 27999, Japanese Examined Patent Publication No. 57-33320).
最近、発電業界における原子力発電の比重が増大するに
従つて、ウラン原料の処理及び使用済みウラン燃料の再
処理工程から排出される NH4NO3含有廃水の処理が重要な技術的課題となり
つつある。本発明者は、この様なNH4NO3含有廃水
の処理に上記一連のアンモニア含有廃水の処理技術(以
下先願技術という)を応用することを試みた。この試み
において、NH4 +イオンは極めて高い効率で分解され
るものの、NO3 −イオンについては必ずしも満足すべ
きものとは言い難い場合もあることが判明した。これ
は、上記廃水中のNH4NO3濃度が1%(10000
ppm)から10%(100000ppm)程度にも達する場
合があることによるものと推測される。Recently, as the specific gravity of nuclear power generation in the power generation industry has increased, the treatment of NH 4 NO 3 -containing wastewater discharged from the treatment of uranium raw materials and the retreatment of spent uranium fuel has become an important technical issue. . The present inventor tried to apply the above-mentioned series of ammonia-containing wastewater treatment techniques (hereinafter referred to as prior application techniques) to the treatment of such NH 4 NO 3 -containing wastewater. In this attempt, it was found that NH 4 + ions are decomposed with extremely high efficiency, but NO 3 − ions are not always satisfactory. This is because the NH 4 NO 3 concentration in the wastewater is 1% (10,000
It is presumed that this is due to the fact that it may reach as high as 10% (100,000 ppm) from 10 ppm (ppm).
問題点を解決するための手段 本発明者は、上記の如き現状に鑑みて更に種々研究を重
ねた結果、担持触媒の存在下に廃水中のアンモニア、有
機性物質及び無機性物質を分解するに必要な理論酸素量
以上の酸素を使用して湿式酸化を行なう先願技術に代え
て、(イ)ルテニウム、ロジウム、パラジウム、オスミ
ウム、イリジウム、白金及び金の錯化合物、(ロ)これ
ら金属の水に可溶性の化合物並びに(ハ)ルテニウムブ
ラック及びパラジウムブラックの少なくとも1種からな
る触媒の存在下且つNH4NO3含有廃水中のアンモニ
ア成分、有機性物質及び無機性物質を分解するに必要な
理論酸素量未満の酸素の存在下に該NH4NO3含有廃
水の湿式熱分解を行なう場合にはNH4 +イオンのみな
らず、NO3 −イオンも効率良く分解されることを見出
した。更に本発明者の研究によれば、1<NH3−N/
NO3−N≦5(モル比)となる様にアンモニアを加え
たNH4NO3含有廃水を上記と同様にして湿式熱分解
に供する場合には、分解効率がより一層改善されること
を見出した。即ち、本発明は、下記の2種の廃水処理方
法を提供するものである。Means for Solving the Problems The present inventor has conducted various researches in view of the above-mentioned current situation, and as a result, in decomposing ammonia, organic substances and inorganic substances in wastewater in the presence of a supported catalyst, In place of the prior-art technique of performing wet oxidation using oxygen in an amount equal to or larger than the required theoretical oxygen amount, (a) a complex compound of ruthenium, rhodium, palladium, osmium, iridium, platinum and gold, (b) water of these metals Oxygen necessary for decomposing ammonia components, organic substances and inorganic substances in NH 4 NO 3 -containing wastewater in the presence of a water-soluble compound and a catalyst consisting of at least one of (c) ruthenium black and palladium black if the presence of oxygen than an amount performing wet thermal decomposition of the NH 4 NO 3 containing waste water not only NH 4 + ions, NO 3 - ions efficiently min It was found to be the difference. Further, according to the study by the present inventor, 1 < NH3-N /
It was found that the decomposition efficiency is further improved when the NH 4 NO 3 -containing wastewater to which ammonia is added so that NO 3 −N ≦ 5 (molar ratio) is subjected to wet thermal decomposition in the same manner as above. . That is, the present invention provides the following two types of wastewater treatment methods.
硝酸アンモニウム含有廃水を(イ)ルテニウム、ロジ
ウム、パラジウム、オスミウム、イリジウム、白金及び
金の錯化合物、(ロ)これら金属の水に可溶性の化合物
並びに(ハ)ルテニウムブラック及びパラジウムブラッ
クの少なくとも1種からなる触媒の存在下且つ廃水中の
アンモニア、有機性物質及び無機性物質をN2、H2O
及びCO2にまで分解するに必要な理論酸素量未満の酸
素の存在下にpH約3〜11.5、温度100〜370℃
で湿式熱分解することを特徴とする硝酸アンモニウム含
有廃水の処理方法。The ammonium nitrate-containing wastewater is composed of (a) a complex compound of ruthenium, rhodium, palladium, osmium, iridium, platinum and gold, (b) a water-soluble compound of these metals, and (c) at least one of ruthenium black and palladium black. Ammonia, organic substances and inorganic substances in the presence of a catalyst and wastewater are treated with N 2 , H 2 O.
And a pH of about 3 to 11.5 and a temperature of 100 to 370 ° C. in the presence of less than the theoretical amount of oxygen required for decomposition to CO 2.
A method for treating ammonium nitrate-containing wastewater, which comprises performing wet pyrolysis with.
1<NH3−N/NO3−N≦5(モル比)となる様
にアンモニアを加えた硝酸アンモニウム含有廃水を
(イ)ルテニウム、ロジウム、パラジウム、オスミウ
ム、イリジウム、白金及び金の錯化合物、(ロ)これら
金属の水に可溶性の化合物並びに(ハ)ルテニウムブラ
ック及びパラジウムブラックの少なくとも1種からなる
触媒の存在下且つ廃水中のアンモニア、有機性物質及び
無機性物質をN2、H2O及びCO2にまで分解するに
必要な理論酸素量未満の酸素の存在下にpH約3〜11.
5、温度100〜370℃で湿式熱分解することを特徴
とする硝酸アンモニウム含有廃水の処理方法。Ammonium nitrate-containing wastewater added with ammonia so that 1 < NH3-N / NO3-N≤5 (molar ratio) is (a) a complex compound of ruthenium, rhodium, palladium, osmium, iridium, platinum and gold, (b) In the presence of a water-soluble compound of these metals and a catalyst consisting of at least one of (C) ruthenium black and palladium black, ammonia, organic substances and inorganic substances in waste water are treated with N 2 , H 2 O and CO 2 PH in the presence of less than the theoretical amount of oxygen required to decompose to about 3-11.
5. A method for treating ammonium nitrate-containing wastewater, characterized by performing wet pyrolysis at a temperature of 100 to 370 ° C.
本発明は、NH4NO3を含む全ての廃水を処理の対象
とするものであり、特にNH4NO3濃度が1%以上の
高濃度廃水の処理に好適である。尚、廃水は、有機性物
質及び無機性物質を併せて含んでいても良い。本発明方
法は、pH約3〜11.5、より好ましくは5〜11で効
率良く実施されるので、必要ならば、水酸化ナトリウ
ム、炭酸ナトリウム、水酸化カルシウム等のアルカリ性
物質により廃水のpH調整を予め行なつても良い。The present invention is intended to treat all wastewater containing NH 4 NO 3 , and is particularly suitable for treating high-concentration wastewater having an NH 4 NO 3 concentration of 1% or more. The wastewater may contain both organic substances and inorganic substances. The method of the present invention is efficiently carried out at a pH of about 3 to 11.5, more preferably 5 to 11. Therefore, if necessary, the pH of the waste water is adjusted with an alkaline substance such as sodium hydroxide, sodium carbonate or calcium hydroxide. May be performed in advance.
本発明で使用する触媒成分としては、白金、ルテニウ
ム、ロジウム、パラジウム、オスミウム及びイリジウム
等の貴金属、これ等貴金属のイオン及び水に対し可溶性
の貴金属の化合物が挙げられ、これ等の1種又は2種以
上を使用することが出来る。貴金属としてはルテニウム
ブラツク、パラジウムブラツク等が例示され、貴金属イ
オンとしては、アンモニア、塩素、シアン、ナトリウ
ム、カリウム等を配位子として錯化合物の形態にあるも
のが挙げられ、錯化合物としては、 (NH4)2〔RuCl5(H2O)〕、 〔Ru(NH3)6〕Cl2、 〔RuCl(NH3)〕5Cl、 Na2〔PdCl4〕、 (NH4)2〔PdCl4〕、 〔Pd(NH3)4〕Cl2、 K2〔Pd(NO2)4〕2H2O、 K2〔Pd(CN4)4〕3H2O等が例示される。Examples of the catalyst component used in the present invention include noble metals such as platinum, ruthenium, rhodium, palladium, osmium and iridium, ions of these noble metals, and compounds of noble metals soluble in water, and one or two of these may be used. More than one species can be used. Examples of the noble metal include ruthenium black and palladium black, and examples of the noble metal ion include those in the form of complex compounds with ammonia, chlorine, cyanide, sodium, potassium, etc. as ligands. NH 4 ) 2 [RuCl 5 (H 2 O)], [Ru (NH 3 ) 6 ] Cl 2 , [RuCl (NH 3 )] 5 Cl, Na 2 [PdCl 4 ], (NH 4 ) 2 [PdCl 4 ], [Pd (NH 3) 4] Cl 2, K 2 [Pd (NO 2) 4] 2H 2 O, K 2 [Pd (CN 4) 4] 3H 2 O and the like.
水に可溶性の化合物としては、RuCl3、RuCl4
・5H2O、PtCl4、PdCl2、PdCl2・2
H2O、RhCl3・3H2O、OsCl4、IrCl
2等が例示される。触媒成分は、処理開始後しばらくの
間廃水500ccに対し通常0.01〜0.2g程度の割
合で反応槽に供給する。反応槽内には、接触面積を増大
して反応を均一に進行させる為に、チタニア、ジルコニ
ア、チタニア−ジルコニア、アルミナ、シリカ、アルミ
ナ−シリカ、活性炭、或いは鉄、ニツケル、ニツケル−
クロム、ニツケル−クロム−アルミニウム、ニツケル−
クロム−鉄等の金属多孔体等の公知のハニカム体、球体
又は粉体(破砕片、粉粒体、ペレット、円柱体等)を充
填しておいても良い。反応の進行とともに反応槽内表面
又は球体或いは粉体の表面に貴金属ブラツクが付着形成
され、これが触媒としての作用を発揮し始めるので、こ
の時点で触媒の供給を停止すれば良い。更に時間の経過
とともに上記の貴金属ブラツクの触媒活性が停下すれ
ば、触媒成分の供給を再開する。反応を回分式で行なう
場合には、前記の3〜5倍量程度の触媒成分を使用する
ことが好ましい。Examples of water-soluble compounds include RuCl 3 and RuCl 4
· 5H 2 O, PtCl 4, PdCl 2, PdCl 2 · 2
H 2 O, RhCl 3 .3H 2 O, OsCl 4 , IrCl
2 etc. are illustrated. The catalyst component is usually supplied to the reaction tank at a rate of about 0.01 to 0.2 g with respect to 500 cc of waste water for a while after the treatment is started. In the reaction vessel, titania, zirconia, titania-zirconia, alumina, silica, alumina-silica, activated carbon, or iron, nickel, nickel-
Chrome, Nickel-Chromium-Aluminum, Nickel-
A known honeycomb body such as a porous metal body of chromium-iron or the like, a sphere or a powder (crushed pieces, powder particles, pellets, columnar bodies, etc.) may be filled. As the reaction progresses, noble metal blacks are adhered and formed on the inner surface of the reaction tank or on the surface of the sphere or powder, and this starts to act as a catalyst. Therefore, the supply of the catalyst may be stopped at this point. When the catalytic activity of the above-mentioned noble metal black is further stopped with the lapse of time, the supply of the catalyst component is restarted. When the reaction is carried out in a batch system, it is preferable to use the catalyst component in an amount of about 3 to 5 times the above amount.
本発明で酸素源として使用するガスとしては、空気、酸
素富化空気、酸素、更には不純物としてシアン化水素、
硫化水素、アンモニア、硫黄酸化物、有機硫黄化合物、
窒素酸化物、炭化水素等の少なくとも1種を含有する酸
素含有廃ガスが挙げられる。これ等ガスの供給量は、廃
水中に存在するアンモニア、有機性物質及び無機性物質
を分解するに必要な理論酸素量を基準として定められ、
通常理論酸素量未満より好ましくは理論酸素量の0.2
〜0.6倍の酸素が反応系に存在する様にする。酸素源
として酸素含有廃ガスを使用する場合には、ガス中の有
害成分も同時に分解無害化される。酸素含有ガスは、一
度に供給しても良く或いは複数回に分けて供給しても良
い。The gas used as the oxygen source in the present invention includes air, oxygen-enriched air, oxygen, and hydrogen cyanide as an impurity.
Hydrogen sulfide, ammonia, sulfur oxides, organic sulfur compounds,
An oxygen-containing waste gas containing at least one kind of nitrogen oxides, hydrocarbons and the like can be mentioned. The supply amount of these gases is determined based on the theoretical oxygen amount necessary for decomposing ammonia, organic substances and inorganic substances present in wastewater,
Usually less than the theoretical oxygen amount, more preferably 0.2 of the theoretical oxygen amount.
Ensure that ~ 0.6 times more oxygen is present in the reaction system. When an oxygen-containing waste gas is used as an oxygen source, harmful components in the gas are decomposed and rendered harmless at the same time. The oxygen-containing gas may be supplied at once, or may be supplied in multiple times.
反応時の温度は、通常100〜370℃、より好ましく
は200〜300℃とする。反応時の温度が高い程、N
H4 +イオン及びNO3 −イオンの除去率が高まり且つ
反応塔内での廃水の滞留時間も短縮されるが、反面に於
て設備費が大となるので、廃水の種類、要求される処理
の程度、運転費、建設費等を総合的に考慮して定めれば
良い。従つて反応時の圧力は、最低限所定温度に於て廃
水が液相を保つ圧力であれば良い。The temperature during the reaction is usually 100 to 370 ° C, more preferably 200 to 300 ° C. The higher the temperature during the reaction, the more N
Although the removal rate of H 4 + ions and NO 3 − ions is increased and the retention time of waste water in the reaction tower is shortened, on the other hand, the equipment cost is large, so the type of waste water and the required treatment It should be determined by comprehensively considering the degree, operating cost, construction cost, etc. Therefore, the pressure at the time of reaction may be a pressure at which the wastewater maintains a liquid phase at a minimum predetermined temperature.
NH4NO3含有廃水にアンモニアを加えて1<
NH3−N/NO3−N≦5(モル比)とした廃水を湿
式熱分解する場合の反応条件も上記と同様で良い。Add ammonia to NH 4 NO 3 -containing wastewater and
The reaction conditions for wet thermal decomposition of wastewater with NH3-N / NO3-N≤5 (molar ratio) may be the same as above.
発明の効果 本発明によれば、NH4NO3を高濃度で含有する廃水
を効率良く処理し、NH4 +イオン及びNO3 −イオン
濃度を大幅に低下させることが出来る。従つて、例え
ば、ウラン原料の処理工程又は使用済みウラン燃料の再
処理工程から排出され、NH4NO3濃度が10%以上
にも達することがある廃水等の処理を簡易な設備により
容易に行なうことが出来る。EFFECTS OF THE INVENTION According to the present invention, wastewater containing NH 4 NO 3 at a high concentration can be efficiently treated, and the NH 4 + ion and NO 3 − ion concentrations can be significantly reduced. Therefore, for example, the waste water discharged from the uranium raw material processing step or the spent uranium fuel reprocessing step and having an NH 4 NO 3 concentration of 10% or more can be easily treated with simple equipment. You can
実施例 以下実施例を示し、本発明の特徴とするところをより一
層明らかにする。Examples The following examples are given to further clarify the features of the present invention.
実施例1 pH10、NH4NO3濃度1%(NH3−N/
NO3−N=1)の廃水100mlを容量300mlのステ
ンレススチール製オートクレーブに収容し、250℃で
60分間熱分解処理した。尚、反応器には、処理に先立
つて空気が封入されており、これはアンモニア、有機性
物質及び無機性物質を分解するに必要な理論酸素量の約
0.2倍に相当する酸素を含有していた。廃水には、R
uCl30.5gを溶解させた。Example 1 pH10, NH 4 NO 3 concentration 1% (NH3-N /
100 ml of NO3-N = 1) wastewater was placed in a 300 ml stainless steel autoclave and pyrolyzed at 250 ° C for 60 minutes. The reactor is filled with air prior to the treatment, which contains ammonia and oxygen equivalent to about 0.2 times the theoretical oxygen amount required for decomposing organic substances and inorganic substances. Was. R for wastewater
0.5 g of uCl 3 was dissolved.
NH3、NO3及び全窒素成分の分解率を実施例2〜1
0及び比較例1の結果とともに第1表に示す。The decomposition rates of NH 3 , NO 3, and total nitrogen components are shown in Examples 2-1.
The results are shown in Table 1 together with the results of 0 and Comparative Example 1.
実施例2〜5 実施例1で処理したと同様のNH4NO3含有廃水に所
定量のNH4OHを加えてNH3−N/NO3−N(モ
ル比)を調製した後、実施例1と同様に熱分解処理に供
した。Examples 2 to 5 After adding a predetermined amount of NH 4 OH to the same NH 4 NO 3 containing wastewater as that treated in Example 1 to prepare NH 3 —N / NO 3 —N (molar ratio), Similarly, it was subjected to a thermal decomposition treatment.
実施例6 RuCl3に代えてPdCl2を触媒として使用する以
外は実施例1と同様にして廃水の処理を行なつた。Example 6 Waste water was treated in the same manner as in Example 1 except that PdCl 2 was used as a catalyst instead of RuCl 3 .
実施例7〜10 RuCl3に代えてPdCl2を使用する以外は実施例
2〜5と同様にしてNH4NO3含有廃水の熱分解処理
を行なつた。Examples 7 to 10 The thermal decomposition treatment of NH 4 NO 3 -containing wastewater was performed in the same manner as in Examples 2 to 5 except that PdCl 2 was used instead of RuCl 3 .
比較例1 触媒を使用しない以外は実施例3と同様にしてNH4N
O3含有廃水の熱分解処理を行なつた。Comparative Example 1 NH 4 N was prepared in the same manner as in Example 3 except that no catalyst was used.
Pyrolysis treatment of O 3 -containing wastewater was performed.
実施例11〜14 NH4NO3濃度及びpHを代えた以外は実施例1と同様
にして廃水の熱分解処理を行なつた。結果は、第2表に
示す通りである。 Examples 11 to 14 Thermal decomposition of waste water was performed in the same manner as in Example 1 except that the NH 4 NO 3 concentration and pH were changed. The results are as shown in Table 2.
実施例15〜17 NH4NO3濃度及びpHを代えた以外は実施例6と同様
にして廃水の熱分解処理を行なつた。結果は、第2表に
示す通りである。Examples 15 to 17 The waste water was thermally decomposed in the same manner as in Example 6 except that the NH 4 NO 3 concentration and pH were changed. The results are as shown in Table 2.
実施例18 pH10、NH4NO3濃度10%(NH3−N/
NO3−N=1.88)の廃水を空間速度0.921/
hr(空塔基準)として高ニツケル銅製円筒型反応器下
部に供給しつつ、空気を空間速度17.71/hr(空
塔基準、標準状態換算)として該反応下部に供給して熱
分解処理を行なつた。液の質量速度は、1.2ton/m2・h
rであり、供給空気は、アンモニア、有機性物質及び無
機性物質を分解するに必要な理論酸素量の約0.24倍
に相当する酸素を含有していた。又、反応器には、径5
mmのチタニア球体が充填されており、1時間当りRuC
l30.55gを供給し、熱分解は、温度250℃、圧
力70kg/cm2・Gの条件下に行なわれた。 Example 18 pH10, NH 4 NO 3 concentration 10% (NH3-N /
NO3-N = 1.88) wastewater with a space velocity of 0.92 1 /
While supplying to the lower part of the high nickel copper cylindrical reactor as hr (empty tower standard), air is supplied to the lower part of the reaction as space velocity of 17.7 1 / hr (empty tower standard, standard state conversion) to perform thermal decomposition treatment. Was done. Liquid mass velocity is 1.2ton / m 2 · h
The feed air contained ammonia, oxygen equivalent to about 0.24 times the theoretical amount of oxygen required for decomposing organic substances and inorganic substances. Also, the reactor has a diameter of 5
filled with mm titania spheres, and RuC per hour
supplies l 3 0.55 g, pyrolysis temperature 250 ° C., was carried out under a pressure of 70kg / cm 2 · G.
反応を終えた気液混合相を熱回収に供した後、気液分離
器に導き、分離された気相及び液相をそれぞれ間接冷却
後、系外に取り出した。The gas-liquid mixed phase that had undergone the reaction was subjected to heat recovery and then introduced into a gas-liquid separator, and the separated gas phase and liquid phase were indirectly cooled and then taken out of the system.
第3表にNH3、NO3及び全窒素成分の分解率を示
す。Table 3 shows the decomposition rates of NH 3 , NO 3, and total nitrogen components.
尚、気相中には、NOx及びSOxは検出されなかつ
た。In addition, NO x and SO x were not detected in the gas phase.
実施例19 RuCl3に代えてPdCl2を触媒として使用する以
外は、実施例18と同様にして廃水の処理を行なった。
第3表に結果を示す。Example 19 Waste water was treated in the same manner as in Example 18 except that PdCl 2 was used as a catalyst instead of RuCl 3 .
The results are shown in Table 3.
尚、気相中には、NOx及びSOxは検出されなかつ
た。In addition, NO x and SO x were not detected in the gas phase.
実施例20 pH10、NH4NO3濃度10%(NH3−N/
NO3−N=2)の廃水100mlを容量300mlのステ
ンレススチール製オートクレーブに収容し、250℃で
60分間熱分解処理した。尚、反応器には、処理に先立
って空気が封入されており、これはアンモニア、有機性
物質及び無機性物質を分解するに必要な理論酸素量の約
0.2倍に相当する酸素を含有していた。廃水には、ル
テニウムブラツク0.2gを触媒として加えた。 Example 20 pH10, NH 4 NO 3 concentration 10% (NH3-N /
100 ml of waste water of NO3−N = 2) was placed in a stainless steel autoclave having a volume of 300 ml, and pyrolyzed at 250 ° C. for 60 minutes. The reactor is filled with air prior to the treatment, which contains ammonia and oxygen equivalent to about 0.2 times the theoretical oxygen amount required for decomposing organic substances and inorganic substances. Was. 0.2 g of ruthenium black was added to the waste water as a catalyst.
第4表にNH3、NO3及び全窒素成分の分解率を示
す。Table 4 shows the decomposition rates of NH 3 , NO 3 and total nitrogen components.
Claims (2)
ウム、ロジウム、パラジウム、オスミウム、イリジウ
ム、白金及び金の錯化合物(ロ)これら金属の水に可溶
性の化合物並びに(ハ)ルテニウムブラック及びパラジ
ウムブラックの少なくとも1種からなる触媒の存在下且
つ廃水中のアンモニア、有機性物質及び無機性物質をN
2、H2O及びCO2にまで分解するに必要な理論酸素
量未満の酸素の存在下にpH約3〜11.5、温度100
〜370℃で湿式熱分解することを特徴とする硝酸アン
モニウム含有廃水の処理方法。1. An ammonium nitrate-containing wastewater containing (a) a complex compound of ruthenium, rhodium, palladium, osmium, iridium, platinum and gold (b) a water-soluble compound of these metals and (c) at least ruthenium black and palladium black. Ammonia, organic substances and inorganic substances in the wastewater in the presence of a catalyst consisting of one kind
2 , in the presence of less than the stoichiometric amount of oxygen required to decompose to H 2 O and CO 2 , pH about 3 to 11.5, temperature 100.
A method for treating ammonium nitrate-containing wastewater, characterized by performing wet pyrolysis at 370C.
比)となる様にアンモニアを加えた硝酸アンモニウム含
有廃水を(イ)ルテニウム、ロジウム、パラジウム、オ
スミウム、イリジウム、白金及び金の錯化合物(ロ)こ
れら金属の水に可溶性の化合物並びに(ハ)ルテニウム
ブラック及びパラジウムブラックの少なくとも1種から
なる触媒の存在下且つ廃水中のアンモニア、有機性物質
及び無機性物質をN2、H2O及びCO2にまで分解す
るに必要な理論酸素量未満の酸素の存在下にpH約3〜1
1.5、温度100〜370℃で湿式熱分解することを
特徴とする硝酸アンモニウム含有廃水の処理方法。2. An ammonium nitrate-containing wastewater, to which ammonia is added so that 1 <NH 3 —N / NO 3 —N ≦ 5 (molar ratio), is added to (a) ruthenium, rhodium, palladium, osmium, iridium, platinum and gold. Complex compound (b) water-soluble compounds of these metals and (c) ammonia in the wastewater in the presence of a catalyst comprising at least one of ruthenium black and palladium black, organic substances and inorganic substances, N 2 , A pH of about 3 to 1 in the presence of less than the theoretical oxygen required to decompose to H 2 O and CO 2.
A method for treating ammonium nitrate-containing wastewater, which comprises performing wet pyrolysis at a temperature of 100 to 370 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60087304A JPH0645027B2 (en) | 1985-04-23 | 1985-04-23 | Method of treating wastewater containing ammonium nitrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60087304A JPH0645027B2 (en) | 1985-04-23 | 1985-04-23 | Method of treating wastewater containing ammonium nitrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61245883A JPS61245883A (en) | 1986-11-01 |
JPH0645027B2 true JPH0645027B2 (en) | 1994-06-15 |
Family
ID=13911085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60087304A Expired - Lifetime JPH0645027B2 (en) | 1985-04-23 | 1985-04-23 | Method of treating wastewater containing ammonium nitrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0645027B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0696151B2 (en) * | 1985-05-08 | 1994-11-30 | 大阪瓦斯株式会社 | Treatment method of wastewater containing high concentration ammonium nitrate |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0645028A (en) * | 1992-07-24 | 1994-02-18 | Sanyo Electric Co Ltd | Explosion-proof connecting device |
-
1985
- 1985-04-23 JP JP60087304A patent/JPH0645027B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0645028A (en) * | 1992-07-24 | 1994-02-18 | Sanyo Electric Co Ltd | Explosion-proof connecting device |
Also Published As
Publication number | Publication date |
---|---|
JPS61245883A (en) | 1986-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0196597B1 (en) | Process for treating ammonium nitrate-containing waste water | |
CN114875423A (en) | Device and method for preparing ammonium bicarbonate by using carbon dioxide waste gas and nitrate waste water | |
JPH0691991B2 (en) | Treatment method of wastewater containing high concentration ammonium nitrate | |
JPH0691992B2 (en) | Treatment method of wastewater containing high concentration ammonium nitrate | |
JPH0645027B2 (en) | Method of treating wastewater containing ammonium nitrate | |
JPH08155463A (en) | Method and apparatus for decomposing ammoniacal nitrogen nitric-nitrogen and/or nitrous-nitrogen | |
JPH0645028B2 (en) | Method of treating wastewater containing ammonium nitrate | |
JP2969477B2 (en) | Treatment method for wastewater containing ammonium nitrate | |
JP4187845B2 (en) | Method for treating ammonia-containing water | |
JPH0645025B2 (en) | Method of treating wastewater containing ammonium nitrate | |
JP2969478B2 (en) | Treatment method for wastewater containing ammonium nitrate | |
JPH04283700A (en) | Reducing method of volume of low-level concentrated liquid waste | |
JP2969467B2 (en) | Treatment method for wastewater containing ammonium nitrate | |
JPH0696151B2 (en) | Treatment method of wastewater containing high concentration ammonium nitrate | |
JP3263968B2 (en) | Treatment of wastewater containing nitrate | |
JP3693354B2 (en) | Treatment method of wastewater containing nitrate | |
JP3565637B2 (en) | Treatment of wastewater containing ammonia | |
JPS61222588A (en) | Treatment of waste water containing ammonium nitrate | |
JPH0647100B2 (en) | Method of treating wastewater containing ammonium nitrate | |
JPH0461987A (en) | Treatment of waste water containing ammonium nitrate | |
JPH08155461A (en) | Method and apparatus for removing nitric-and/or nitrous-nitrogen | |
JPH0459094A (en) | Treatment of waste water containing ammonium nitrate | |
JPH07328653A (en) | Denitrification treatment | |
JPH0645026B2 (en) | Method of treating wastewater containing ammonium nitrate | |
JPH11333474A (en) | Method for treating wastewater containing phenol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |