JPH0645026B2 - Method of treating wastewater containing ammonium nitrate - Google Patents

Method of treating wastewater containing ammonium nitrate

Info

Publication number
JPH0645026B2
JPH0645026B2 JP60064228A JP6422885A JPH0645026B2 JP H0645026 B2 JPH0645026 B2 JP H0645026B2 JP 60064228 A JP60064228 A JP 60064228A JP 6422885 A JP6422885 A JP 6422885A JP H0645026 B2 JPH0645026 B2 JP H0645026B2
Authority
JP
Japan
Prior art keywords
wastewater
ammonium nitrate
ammonia
oxygen
containing wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60064228A
Other languages
Japanese (ja)
Other versions
JPS61222586A (en
Inventor
吉明 原田
貞造 沖野
広之 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP60064228A priority Critical patent/JPH0645026B2/en
Priority to DE8686104065T priority patent/DE3685674T2/en
Priority to US06/843,677 priority patent/US4654149A/en
Priority to EP86104065A priority patent/EP0196597B1/en
Priority to CA000505221A priority patent/CA1275511C/en
Priority to CN86102728A priority patent/CN1012570B/en
Publication of JPS61222586A publication Critical patent/JPS61222586A/en
Publication of JPH0645026B2 publication Critical patent/JPH0645026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、硝酸アンモニウム含有廃水の処理方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for treating ammonium nitrate-containing wastewater.

従来技術及びその問題点 近年、水質規制の観点から化学的酸素要求物質(COD
成分)のみならず、窒素成分(特にアンモニア態窒素)
の除去も重要な課題となつて来た。本発明者等は、アン
モニア含有廃水の処理方法について長期にわたり種々研
究を重ねた結果、特定の触媒の存在下且つ特定の条件下
に湿式酸化処理を行なうことにより、操作容易にして実
用上の経済性を備えたアンモニア含有廃水の処理方法を
完成した(特公昭59−19757号、特公昭56−4
2992号、特公昭57−42391号、特公昭58−
27999号、特公昭57−33320号等)。
Conventional technology and its problems In recent years, from the viewpoint of water quality regulation, chemical oxygen demand substances (COD
Component) as well as nitrogen component (especially ammonia nitrogen)
The removal of is also an important issue. The present inventors have conducted various studies over a long period of time on a method for treating ammonia-containing wastewater, and as a result, by carrying out a wet oxidation treatment in the presence of a specific catalyst and under specific conditions, the operation is facilitated and the economic efficiency is reduced. A method for treating wastewater containing ammonia with properties was completed (Japanese Patent Publication No. 59-19757 and Japanese Patent Publication No. 56-4).
No. 2992, Japanese Patent Publication No. 57-42391, Japanese Patent Publication No. 58-
No. 27999, Japanese Examined Patent Publication No. 57-33320).

最近、発電業界における原子力発電の比重が増大するに
従つて、ウラン原料の処理及び使用済みウラン燃料の再
処理工程から排出される NHNO含有廃水の処理が重要な技術的課題となり
つつある。本発明者は、この様なNHNO含有廃水
の処理に上記一連のアンモニア含有廃水の処理技術(以
下先願技術という)を応用することを試みた。この試み
において、NH イオンは極めて高い効率で分解され
るものの、NO イオンについては必ずしも満足すべ
きものとは言い難い場合もあることが判明した。これ
は、上記廃水中のNHNO濃度が1%(10000
ppm)から10%(100000ppm)程度にも達する場
合があることによるものと推測される。
Recently, as the specific gravity of nuclear power generation in the power generation industry has increased, the treatment of NH 4 NO 3 -containing wastewater discharged from the treatment of uranium raw materials and the retreatment of spent uranium fuel has become an important technical issue. . The present inventor tried to apply the above-mentioned series of ammonia-containing wastewater treatment techniques (hereinafter referred to as prior application techniques) to the treatment of such NH 4 NO 3 -containing wastewater. In this attempt, it was found that NH 4 + ions are decomposed with extremely high efficiency, but NO 3 ions are not always satisfactory. This is because the NH 4 NO 3 concentration in the wastewater is 1% (10,000
It is presumed that this is due to the fact that it may reach as high as 10% (100,000 ppm) from 10 ppm (ppm).

問題点を解決するための手段 本発明者は、上記の如き現状に鑑みて更に種々研究を重
ねた結果、廃水中のアンモニア、有機性物質及び無機性
物質を分解するに必要な理論酸素量以上の酸素を使用し
て湿式酸化を行なう先願技術に代えて、NHNO
有廃水に予めCOD成分を加え、アンモニア成分、有機
性物質及び無機性物質を分解するに必要な理論酸素量未
満の酸素の存在下に該NHNO含有廃水の湿式熱分
解を行なう場合にはNH イオンのみならず、NO
イオンも効率良く分解されることを見出した。更に本
発明者の研究によれば、COD成分及びアンモニアを加
えたNHNO含有廃水を上記と同様にして湿式熱分
解に供する場合には、分解効率がより一層改善されるこ
とを見出した。即ち、本発明は、下記の2種の廃水処理
方法を提供するものである。
Means for Solving the Problems The present inventor has carried out various studies further in view of the above-mentioned current situation, and as a result, the theoretical oxygen amount equal to or more than the theoretical oxygen amount required for decomposing ammonia, organic substances and inorganic substances in wastewater is obtained. Less than the theoretical oxygen amount necessary for decomposing ammonia component, organic substance and inorganic substance by adding COD component to NH 4 NO 3 containing wastewater in advance, instead of the prior application technique of performing wet oxidation using oxygen. In the case of performing wet thermal decomposition of the NH 4 NO 3 -containing wastewater in the presence of oxygen, not only NH 4 + ions but also NO 3
- found that ions are efficiently decomposed. Further, according to the research conducted by the present inventor, it was found that the decomposition efficiency is further improved when the NH 4 NO 3 -containing wastewater to which the COD component and ammonia are added is subjected to wet thermal decomposition in the same manner as above. . That is, the present invention provides the following two types of wastewater treatment methods.

COD成分を加えた硝酸アンモニウム含有廃水をルテ
ニウム、ロジウム、パラジウム、オスミウム、イリジウ
ム、白金及び金並びにこれ等の水に対して不溶性乃至難
溶性の化合物の少なくとも1種を活性成分とする担持触
媒の存在下且つ廃水中のアンモニア、有機性物質及び無
機性物質をN、HO及びCOにまで分解するに必
要な理論酸素量未満の酸素の存在下にpH約3〜11.
5、温度100〜370℃で湿式熱分解することを特徴
とする硝酸アンモニウム含有廃水の処理方法、及び COD成分及びアンモニアを加えた硝酸アンモニウム
含有廃水をルテニウム、ロジウム、パラジウム、オスミ
ウム、イリジウム、白金及び金並びにこれ等の水に対し
て不溶性乃至難溶性の化合物の少なくとも1種を活性成
分とする担持触媒の存在下且つ廃水中のアンモニア、有
機性物質及び無機性物質をN、HO及びCOにま
で分解するに必要な理論酸素量未満の酸素の存在下にpH
約3〜11.5、温度100〜370℃で湿式熱分解す
ることを特徴とする硝酸アンモニウム含有廃水の処理方
法。
In the presence of a supported catalyst containing ammonium nitrate-containing wastewater containing a COD component as an active ingredient, ruthenium, rhodium, palladium, osmium, iridium, platinum and gold, and at least one of these water-insoluble or sparingly soluble compounds. And in the presence of less than the theoretical amount of oxygen necessary to decompose ammonia, organic substances and inorganic substances in the waste water to N 2 , H 2 O and CO 2 , a pH of about 3-11.
5. A method for treating ammonium nitrate-containing wastewater, which is characterized by performing wet thermal decomposition at a temperature of 100 to 370 ° C. In the presence of a supported catalyst containing at least one of these water-insoluble or sparingly soluble compounds as an active ingredient and ammonia, organic substances and inorganic substances in waste water, N 2 , H 2 O and CO 2 PH in the presence of less than the theoretical oxygen required to decompose to
A method for treating ammonium nitrate-containing wastewater, which comprises performing wet pyrolysis at about 3 to 11.5 and a temperature of 100 to 370 ° C.

本発明が対象とする廃水は、NHNOを含む全ての
廃水であり、特にNHNO濃度が1%以上の高濃度
廃水が好適である。尚、廃水は、有機性物質及び無機性
物質を併せて含んでいても良い。本発明方法は、pH約3
〜11.5、より好ましくは5〜11で効率良く実施さ
れるので、必要ならば、水酸化ナトリウム、炭酸ナトリ
ウム、水酸化カルシウム等のアルカリ性物質により廃水
のpH調整を予め行なつても良い。
The wastewater targeted by the present invention is all wastewater containing NH 4 NO 3 , and particularly high-concentration wastewater having an NH 4 NO 3 concentration of 1% or more is suitable. The wastewater may contain both organic substances and inorganic substances. The method of the present invention has a pH of about 3
The pH of the waste water may be adjusted in advance with an alkaline substance such as sodium hydroxide, sodium carbonate, calcium hydroxide, etc., if necessary, because it is efficiently carried out at -11.5, more preferably 5-11.

本発明で使用する触媒活性成分としては、ルテニウム、
ロジウム、パラジウム、オスミウム、イリジウム、白金
及び金並びにこれ等の水に対し不溶性乃至難溶性の化合
物が挙げられ、これ等の1種又は2種以上を使用するこ
とが出来る。不溶性乃至難溶性の化合物としては、二塩
化ルテニウム、二塩化白金、硫化ルテニウム、硫化ロジ
ウムなどが例示される。これ等の触媒活性成分は、常法
に従って公知の単一系及び複合系の担体、例えば、チタ
ニア、ジルコニア、チタニア−ジルコニア、アルミナ、
シリカ、アルミナ−シリカ、活性炭、或いはニツケル、
ニツケル−クロム、ニツケル−クロム−アルミニウム、
ニツケル−クロム−鉄等の金属多孔体等の担体に担持し
て使用する。担持量は、通常担体重量の0.05〜25
%、好ましくは0.5〜3%である。触媒は、球状、ベ
レツト状、円柱状、破砕片状、粉末状、ハニカム状等の
種々の公知の形態で使用可能である。反応塔容積は、固
定床の場合には、液の空間速度が0.5〜10hr
(空塔基準)、より好ましくは1〜5hr(空塔基
準)となる様にするのが良い。固定床で使用する触媒の
大きさは通常約3〜50mm、より好ましくは約5〜25
mmである。流動床の場合には、反応塔内で触媒が流動床
を形成し得る量、通常0.5〜20重量%、より好まし
くは0.5〜10重量%を廃水にスラリー状に懸濁さ
せ、使用する。流動床における実用上の操作に当つては
触媒を廃水中にスラリー状に懸濁させた状態で反応塔に
供給し、反応終了後排出させた処理済廃水から触媒を沈
降、遠心分離等の適当な方法で分離回収し、再度使用す
る。従つて処理済廃水からの触媒分離の容易さを考慮す
れば、流動床に使用する触媒の粒度は約0.15〜約
0.5mm程度とすることがより好ましい。
The catalytically active component used in the present invention is ruthenium,
Examples thereof include rhodium, palladium, osmium, iridium, platinum, gold, and water-insoluble or sparingly soluble compounds thereof, and one or more of these can be used. Examples of the insoluble or sparingly soluble compound include ruthenium dichloride, platinum dichloride, ruthenium sulfide and rhodium sulfide. These catalytically active components are known single-type and composite-type carriers such as titania, zirconia, titania-zirconia, alumina, and the like, according to a conventional method.
Silica, alumina-silica, activated carbon, or nickel,
Nickel-chrome, nickel-chrome-aluminum,
It is used by being supported on a carrier such as a nickel-chromium-iron porous metal body. The supported amount is usually 0.05 to 25 of the carrier weight.
%, Preferably 0.5 to 3%. The catalyst can be used in various known forms such as a sphere, a pellet, a column, a crushed piece, a powder, and a honeycomb. In the case of a fixed bed, the reaction tower volume is such that the space velocity of the liquid is 0.5 to 10 1 / hr.
(Empty tower standard), more preferably 1 to 5 1 / hr (empty tower standard). The size of the catalyst used in the fixed bed is usually about 3 to 50 mm, more preferably about 5 to 25 mm.
mm. In the case of a fluidized bed, an amount capable of forming a fluidized bed in the reaction tower, usually 0.5 to 20% by weight, more preferably 0.5 to 10% by weight, is suspended in waste water in a slurry form, use. For practical operation in a fluidized bed, the catalyst is suspended in slurry in a state of slurry and supplied to the reaction tower, and after the reaction is completed, the catalyst is appropriately settled from the treated wastewater discharged by centrifugal separation or the like. Separate and collect by various methods, and reuse. Therefore, considering the ease of separating the catalyst from the treated wastewater, the particle size of the catalyst used in the fluidized bed is more preferably about 0.15 to about 0.5 mm.

本発明で酸素源として使用するガスとしては、空気、酸
素富化空気、酸素、更には不純物としてシアン化水素、
硫化水素、アンモニア、硫黄酸化物、有機硫黄化合物、
窒素酸化物、炭化水素等の少なくとも1種を含有する酸
素含有廃ガスが挙げられる。これ等ガスの供給量は、廃
水中に存在するアンモニア、有機性物質及び無機性物質
を分解するに必要な理論酸素量を基準として定められ、
通常理論酸素量未満より好ましくは理論酸素量の0.2
〜0.6倍の酸素が反応系に存在する様にする。酸素源
として酸素含有廃ガスを使用する場合には、ガス中の有
害成分も同時に分解無害化される。酸素含有ガスは、一
度に供給しても良く或いは複数回に分けて供給しても良
い。
The gas used as the oxygen source in the present invention includes air, oxygen-enriched air, oxygen, and hydrogen cyanide as an impurity.
Hydrogen sulfide, ammonia, sulfur oxides, organic sulfur compounds,
An oxygen-containing waste gas containing at least one kind of nitrogen oxides, hydrocarbons and the like can be mentioned. The supply amount of these gases is determined based on the theoretical oxygen amount necessary for decomposing ammonia, organic substances and inorganic substances present in wastewater,
Usually less than the theoretical oxygen amount, more preferably 0.2 of the theoretical oxygen amount.
Ensure that ~ 0.6 times more oxygen is present in the reaction system. When an oxygen-containing waste gas is used as an oxygen source, harmful components in the gas are decomposed and rendered harmless at the same time. The oxygen-containing gas may be supplied at once, or may be supplied in multiple times.

COD成分の添加量は、廃水中に含まれるNO イオ
ン1モル数に対し等モル以下、より好ましくは0.1〜
0.5モル程度である。
The addition amount of the COD component is equal to or less than 1 mole of NO 3 ions contained in the waste water, and more preferably 0.1 to 3.
It is about 0.5 mol.

反応時の温度は、通常100〜370℃、より好ましく
は200〜300℃とする。反応時の温度が高い程、N
イオン及びNO イオンの除去率が高まり且つ
反応塔内での廃水の滞留時間も短縮されるが、反面に於
て設備費が大となるので、廃水の種類、要求される処理
の程度、運転費、建設費等を総合的に考慮して定めれば
良い。従つて反応時の圧力は、最低限所定温度に於て廃
水が液相を保つ圧力であれば良い。
The temperature during the reaction is usually 100 to 370 ° C, more preferably 200 to 300 ° C. The higher the temperature during the reaction, the more N
Although the removal rate of H 4 + ions and NO 3 ions is increased and the retention time of waste water in the reaction tower is shortened, on the other hand, the equipment cost is large, so the type of waste water and the required treatment It should be determined by comprehensively considering the degree, operating cost, construction cost, etc. Therefore, the pressure at the time of reaction may be a pressure at which the wastewater maintains a liquid phase at a minimum predetermined temperature.

NHNO含有廃水にCOD成分とアンモニアを加え
た熱分解する場合のCOD成分の量は、上記の場合と同
様であり、アンモニアの量は、1<NH−NNO
−N≦5(モル比)となる様な量である。この場合の湿
式熱分解反応条件も上記と同様で良い。
The amount of the COD component in the case of thermally decomposing the NH 4 NO 3 containing wastewater by adding the COD component and ammonia is the same as the above case, and the amount of the ammonia is 1 < NH 3 —N / NO 3
The amount is such that −N ≦ 5 (molar ratio). The wet pyrolysis reaction conditions in this case may be the same as above.

尚、本発明においては、COD成分源或いはCOD成分
とアンモニア源としては、フェノール、メタノール、ア
ンモニア水など及びこれ等を含む各種の廃水を使用する
ことが出来る。この場合には、コークス炉プラント並び
に石炭のガス化及び液化プラントで副生するガス液、こ
れ等プラントでのガス精製に伴つて生ずる各種廃水、湿
式脱硫塔及び湿式脱シアン塔からの廃水含油廃水、活性
汚泥処理水、沈降活性汚泥、化学工場廃水、石油工場廃
水、し尿、下水、下水汚泥等を同時に処理することが出
来る。
In the present invention, as the COD component source or the COD component and ammonia source, phenol, methanol, aqueous ammonia, and various wastewaters containing these can be used. In this case, a gas liquid produced as a by-product in a coke oven plant and a coal gasification and liquefaction plant, various wastewaters generated by gas purification in these plants, wastewater oil-containing wastewaters from a wet desulfurization tower and a wet desocyanation tower. , Activated sludge treated water, sedimented activated sludge, chemical factory wastewater, oil factory wastewater, night soil, sewage, sewage sludge, etc. can be treated at the same time.

発明の効果 本発明によれば、NHNOを高濃度で含有する廃水
を効率良く処理し、NH イオン及びNO イオン
濃度を大幅に低下させることが出来る。従つて、例え
ば、ウラン原料の処理工程又は使用済みのウラン燃料の
再処理工程から排出され、NHNO濃度が10%以
上にも達することがある廃水等の処理を簡易な設備によ
り容易に行なうことが出来る。
EFFECTS OF THE INVENTION According to the present invention, wastewater containing NH 4 NO 3 at a high concentration can be efficiently treated, and the NH 4 + ion and NO 3 ion concentrations can be significantly reduced. Therefore, for example, it is possible to easily treat wastewater discharged from a uranium raw material treatment process or a spent uranium fuel retreatment process and having a NH 4 NO 3 concentration of 10% or more with a simple facility. You can do it.

実施例 以下実施例を示し、本発明の特徴とするところをより一
層明らかにする。
Examples The following examples are given to further clarify the features of the present invention.

実施例1 COD成分/NO−N=0.5(モル比)となる様に
OHを加えたpH10、NHNO濃度1%(
NH−NNO−N=1)の廃水100mlを容量3
00mlのステンレススチール製オートクレーブに収容
し、250℃で60分間熱分解処理した。尚、反応器に
は、処理に先立つて空気が封入されており、これはアン
モニア、有機性物質及び無機性物質を分解するに必要な
理論酸素量の約0.2倍に相当する酸素を含有してい
た。又、該反応器には、チタニア担体にルテニウム2重
量%を担持させた径5mmの触媒10gが充填されてい
た。
Example 1 pH 10 with C 6 H 5 OH added so that COD component / NO 3 —N = 0.5 (molar ratio), NH 4 NO 3 concentration 1% (
NH3- N / NO3- N = 1) wastewater 100 ml volume 3
It was placed in a 00 ml stainless steel autoclave and pyrolyzed at 250 ° C. for 60 minutes. The reactor is filled with air prior to the treatment, which contains ammonia and oxygen equivalent to about 0.2 times the theoretical oxygen amount required for decomposing organic substances and inorganic substances. Was. Further, the reactor was filled with 10 g of a catalyst having a diameter of 5 mm in which 2% by weight of ruthenium was supported on a titania carrier.

NH 、NO 及び全窒素成分の分解率を実施例2
〜6の結果とともに第1表に示す。
The decomposition rates of NH 4 + , NO 3 −, and total nitrogen components are shown in Example 2.
It is shown in Table 1 together with the results of ~ 6.

実施例2〜3 実施例1とはpH及び濃度の異なるNHNO含有廃水
に所定量のCOHを加えてOHNO
−N(モル比)を調整した後、実施例1と同様にして熱
分解処理に供した。
Examples 2 to 3 C 6 H 5 OH / NO 3 was prepared by adding a predetermined amount of C 6 H 5 OH to NH 4 NO 3 containing wastewater having a pH and concentration different from those in Example 1.
After adjusting -N (molar ratio), it was subjected to a thermal decomposition treatment in the same manner as in Example 1.

実施例4 ルテニウム担持触媒に代えてチタニア担体にパラジウム
2重量%を担持させた径5mmの触媒を使用する以外は実
施例1と同様にして廃水の処理行なつた。
Example 4 Waste water was treated in the same manner as in Example 1 except that a catalyst having a diameter of 5 mm in which 2% by weight of palladium was supported on a titania carrier was used instead of the ruthenium-supported catalyst.

実施例5〜6 ルテニウム触媒に代えて実施例4で使用したと同様のパ
ラジウム触媒を使用する以外は実施例2〜3と同様にし
てNHNO含有廃水の熱分解処理を行なつた。
Examples 5 to 6 The thermal decomposition treatment of NH 4 NO 3 -containing wastewater was performed in the same manner as in Examples 2 to 3 except that the same palladium catalyst as that used in Example 4 was used instead of the ruthenium catalyst.

実施例7〜9 NHNO含有廃水にCOH及びNHOHを
加え、実施例1と同様の条件下に廃水の熱分解処理を行
なつた。
Examples 7 to 9 C 6 H 5 OH and NH 4 OH were added to the NH 4 NO 3 -containing wastewater, and the wastewater was pyrolyzed under the same conditions as in Example 1.

尚、実施例7及び8については、水酸化ナトリウムによ
り廃水のpH調整を行ない、実施例9は、pH調整を行なわ
なかつた。
Incidentally, in Examples 7 and 8, the pH of the wastewater was adjusted with sodium hydroxide, and in Example 9, the pH was not adjusted.

結果は、第2表に示す通りである。The results are as shown in Table 2.

実施例10〜12 NHNO含有廃水にCOH及びNHOHを
加え、実施例4と同様の条件下に熱分解処理に供した。
Examples 10 to 12 C 6 H 5 OH and NH 4 OH were added to NH 4 NO 3 -containing wastewater, and subjected to thermal decomposition treatment under the same conditions as in Example 4.

尚、実施例10及び11については、水酸化ナトリウム
により廃水のpH調整を行ない、実施例12においては、
pH調整は行なわなかつた。
In addition, in Examples 10 and 11, the pH of the wastewater was adjusted with sodium hydroxide, and in Example 12,
No pH adjustment was done.

実施例13 NHNO濃度10%(NH−NNO−N
1.88)の廃水にCODNO−N=約0.5(モ
ル比)となる様にCOHを加え且つNaOH水溶
液によりpHを10とした液を空間速度0.95hr
(空塔基準)として高ニツケル銅性円筒型反応器下部に
供給しつつ、空気を空間速度18.5hr(空塔基
準、標準状態換算)として該反応器下部に供給して熱分
解処理を行なつた。液の質量速度は、2.43ton/m2・h
rであり、供給空気は、アンモニア、有機性物質及び無
機性物質を分解するに必要な理論酸素量の約0.4倍に
相当する酸素を含有していた。又、反応器には、チタニ
ア担体にパラジウム2重量%を担持させた径5mmの求刑
触媒が充填されており、熱分解は、温度250℃、圧力
70kg/cm2の条件下に行なわれた。
Example 13 NH 4 NO 3 concentration 10% (NH 3 -N / NO 3 -N =
Wastewater COD / NO 3 -N 1.88) = about 0.5 (molar ratio) to become as C 6 H 5 OH was added and the pH with NaOH aqueous solution 10 and the liquid space velocity 0.95 1 / Hr
While supplying it to the lower part of the high-nickel copper cylindrical reactor as a (vacant tower standard), air is supplied to the lower part of the reactor as a space velocity of 18.5 1 / hr (vacuum standard, standard state conversion) to perform thermal decomposition Processed. Liquid mass velocity is 2.43ton / m 2 · h
r, and the feed air contained about 0.4 times the stoichiometric amount of oxygen required to decompose ammonia, organic substances and inorganic substances. The reactor was filled with a sought-after catalyst having a diameter of 5 mm in which 2% by weight of palladium was supported on a titania carrier, and thermal decomposition was carried out under the conditions of a temperature of 250 ° C. and a pressure of 70 kg / cm 2 .

反応を終えた気液混合相を熱回収に供した後、気液分離
器に導き、分離された気相及び液相をそれぞれ間接冷却
後、系外に取り出した。
The gas-liquid mixed phase that had undergone the reaction was subjected to heat recovery and then introduced into a gas-liquid separator, and the separated gas phase and liquid phase were indirectly cooled and then taken out of the system.

第3表にNH、NO、全窒素成分及びCOD成分の
分解率を示す。
Table 3 shows the decomposition rates of NH 3 , NO 3 , total nitrogen components and COD components.

尚、気相中には、NO及びSOは検知されなかつ
た。
In the gas phase, NO x and SO x were not detected.

実施例14〜20 触媒活性成分及び担体を代えた以外は、実施例13と同
様にして廃水の熱分解処理を行った。結果は、第4表に
示す通りである。尚、実施例14〜19の担体は、チタ
ニアであり、実施例20の担体は、ジルコニアである。
Examples 14 to 20 Pyrolysis treatment of waste water was performed in the same manner as in Example 13 except that the catalytically active component and the carrier were changed. The results are as shown in Table 4. The carrier of Examples 14 to 19 is titania, and the carrier of Example 20 is zirconia.

実施例21〜24 チタニア担体を用い、触媒活性成分を代える以外は、実
施例3と同様にして廃水の熱分解処理を行った。結果
は、第5表乃至第7表に示す通りである。
Examples 21 to 24 Pyrolysis treatment of waste water was performed in the same manner as in Example 3 except that the titania carrier was used and the catalytically active component was changed. The results are as shown in Tables 5 to 7.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】COD成分を加えた硝酸アンモニウム含有
廃水をルテニウム、ロジウム、パラジウム、オスミウ
ム、イリジウム、白金及び金並びにこれ等の水に対して
不溶性乃至難溶性の化合物の少なくとも1種を活性成分
とする担持触媒の存在下且つ廃水中のアンモニア、有機
性物質及び無機性物質をN、HO及びCOにまで
分解するに必要な理論酸素量未満の酸素の存在下にpH約
3〜11.5、温度100〜370℃で湿式熱分解する
ことを特徴とする硝酸アンモニウム含有廃水の処理方
法。
1. An ammonium nitrate-containing wastewater containing a COD component is used as an active ingredient of ruthenium, rhodium, palladium, osmium, iridium, platinum and gold, and at least one of these water-insoluble or sparingly soluble compounds. A pH of about 3-11 in the presence of a supported catalyst and in the presence of less than the theoretical amount of oxygen required to decompose ammonia, organic and inorganic substances in wastewater to N 2 , H 2 O and CO 2. 0.5, wet thermal decomposition at a temperature of 100 to 370 ° C. for treating ammonium nitrate-containing wastewater.
【請求項2】COD成分及びアンモニアを加えた硝酸ア
ンモニウム含有廃水をルテニウム、ロジウム、パラジウ
ム、オスミウム、イリジウム、白金及び金並びにこれ等
の水に対して不溶性乃至難溶性の化合物の少なくとも1
種を活性成分とする担持触媒の存在下且つ廃水中のアン
モニア、有機性物質及び無機性物質をN、HO及び
COにまで分解するに必要な理論酸素量未満の酸素の
存在下にpH約3〜11.5、温度100〜370℃で湿
式熱分解することを特徴とする硝酸アンモニウム含有廃
水の処理方法。
2. An ammonium nitrate-containing wastewater containing a COD component and ammonia is treated with at least one of ruthenium, rhodium, palladium, osmium, iridium, platinum and gold, and a water-insoluble or sparingly soluble compound thereof.
In the presence of a supported catalyst having a seed as an active ingredient and in the presence of oxygen below the theoretical oxygen amount necessary for decomposing ammonia, organic substances and inorganic substances in wastewater to N 2 , H 2 O and CO 2. A method for treating ammonium nitrate-containing wastewater, which comprises performing wet pyrolysis at a pH of about 3 to 11.5 and a temperature of 100 to 370 ° C.
JP60064228A 1985-03-28 1985-03-28 Method of treating wastewater containing ammonium nitrate Expired - Lifetime JPH0645026B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60064228A JPH0645026B2 (en) 1985-03-28 1985-03-28 Method of treating wastewater containing ammonium nitrate
DE8686104065T DE3685674T2 (en) 1985-03-28 1986-03-25 METHOD FOR TREATING AMMONIUM NITRATE-CONTAINING WASTE WATER.
US06/843,677 US4654149A (en) 1985-03-28 1986-03-25 Process for treating ammonium nitrate-containing waste water
EP86104065A EP0196597B1 (en) 1985-03-28 1986-03-25 Process for treating ammonium nitrate-containing waste water
CA000505221A CA1275511C (en) 1985-03-28 1986-03-26 Process for treating ammonium nitrate-containing waste water
CN86102728A CN1012570B (en) 1985-03-28 1986-03-28 Process for treating ammonium nitrate-centg. waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60064228A JPH0645026B2 (en) 1985-03-28 1985-03-28 Method of treating wastewater containing ammonium nitrate

Publications (2)

Publication Number Publication Date
JPS61222586A JPS61222586A (en) 1986-10-03
JPH0645026B2 true JPH0645026B2 (en) 1994-06-15

Family

ID=13252041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60064228A Expired - Lifetime JPH0645026B2 (en) 1985-03-28 1985-03-28 Method of treating wastewater containing ammonium nitrate

Country Status (1)

Country Link
JP (1) JPH0645026B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742391A (en) * 1980-08-27 1982-03-09 Ichiro Teraoka Sealed body containing activated aluminum plate
JPS5919757A (en) * 1982-07-22 1984-02-01 Sony Corp Friction drive gear for rotary body
JPS5929317A (en) * 1982-08-10 1984-02-16 桑井 薫 Photoelectric microswitch for converting mechanical signal into light signal
JPH0645025A (en) * 1992-05-29 1994-02-18 Daini Shinano Polymer Kk Anisotropic conductive connector
JPH0647101A (en) * 1992-07-28 1994-02-22 Matsushita Electric Works Ltd Radio wave detecting device
JPH0647100A (en) * 1992-06-17 1994-02-22 Siemens Ag Apparatus for applying electric pulse to organic tissue

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742391A (en) * 1980-08-27 1982-03-09 Ichiro Teraoka Sealed body containing activated aluminum plate
JPS5919757A (en) * 1982-07-22 1984-02-01 Sony Corp Friction drive gear for rotary body
JPS5929317A (en) * 1982-08-10 1984-02-16 桑井 薫 Photoelectric microswitch for converting mechanical signal into light signal
JPH0645025A (en) * 1992-05-29 1994-02-18 Daini Shinano Polymer Kk Anisotropic conductive connector
JPH0647100A (en) * 1992-06-17 1994-02-22 Siemens Ag Apparatus for applying electric pulse to organic tissue
JPH0647101A (en) * 1992-07-28 1994-02-22 Matsushita Electric Works Ltd Radio wave detecting device

Also Published As

Publication number Publication date
JPS61222586A (en) 1986-10-03

Similar Documents

Publication Publication Date Title
US4294706A (en) Process for treating waste water
EP0196597B1 (en) Process for treating ammonium nitrate-containing waste water
EP0224905A2 (en) Process for treating waste water by wet oxidations
JPS5919757B2 (en) Wastewater treatment method
GB2043045A (en) Process for treating ammonia- containing waste water
JPS61257292A (en) Treatment of waste water containing ammonium nitrate
JPH0691991B2 (en) Treatment method of wastewater containing high concentration ammonium nitrate
JPH0645026B2 (en) Method of treating wastewater containing ammonium nitrate
JP2000117272A (en) Waste water treatment
JPH0645025B2 (en) Method of treating wastewater containing ammonium nitrate
JPH0647101B2 (en) Method of treating wastewater containing ammonium nitrate
JPH0716663B2 (en) Treatment method of wastewater containing high concentration ammonium nitrate
JPH0647100B2 (en) Method of treating wastewater containing ammonium nitrate
JP2899719B2 (en) Treatment method for wastewater containing ammonium nitrate
JP2969467B2 (en) Treatment method for wastewater containing ammonium nitrate
JPH0227035B2 (en)
JP2969478B2 (en) Treatment method for wastewater containing ammonium nitrate
JP2969477B2 (en) Treatment method for wastewater containing ammonium nitrate
JPH0461987A (en) Treatment of waste water containing ammonium nitrate
JPH0645028B2 (en) Method of treating wastewater containing ammonium nitrate
JPH0454515B2 (en)
JPH0459094A (en) Treatment of waste water containing ammonium nitrate
JPS61245883A (en) Treatment of waste water containing ammonium nitrate
JPH0696151B2 (en) Treatment method of wastewater containing high concentration ammonium nitrate
JP2003175385A (en) Method for cleaning ammonia-containing wastewater