JPH0458511B2 - - Google Patents

Info

Publication number
JPH0458511B2
JPH0458511B2 JP57233043A JP23304382A JPH0458511B2 JP H0458511 B2 JPH0458511 B2 JP H0458511B2 JP 57233043 A JP57233043 A JP 57233043A JP 23304382 A JP23304382 A JP 23304382A JP H0458511 B2 JPH0458511 B2 JP H0458511B2
Authority
JP
Japan
Prior art keywords
solvent
weight
fine powder
paint
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57233043A
Other languages
Japanese (ja)
Other versions
JPS59122561A (en
Inventor
Motohiko Yoshizumi
Kuniaki Wakabayashi
Koichi Kyono
Takayuki Hinuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Plastics Inc filed Critical Mitsubishi Materials Corp
Priority to JP23304382A priority Critical patent/JPS59122561A/en
Publication of JPS59122561A publication Critical patent/JPS59122561A/en
Publication of JPH0458511B2 publication Critical patent/JPH0458511B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、透明にして導電性を有し、かつ帯
電防止能を有する塗布被膜を形成することのでき
る塗料、特に水分に対して安定な導電性透明塗料
に関するものである。 近年、IC保存用容器や、その他の電子電機部
材、さらにじゆうたん、床材、壁材などの建築用
部材などで帯電防止を必要とする場合が急増する
傾向を見せ始めている。また、マイクロ波による
電磁波障害を防止するための導電性塗料の要求も
高まつている。 従来、このような要望に応えて、カーボン粉末
や金属粉末、あるいはカーボン繊維や金属繊維を
混入して導電性をもたせた塗料を塗布したり、ア
ルキルアミンハロゲン化物のようなイオン伝導性
のある有機物を塗布して、不導体に導電性を付与
し、帯電を防止することが行なわれていたが、前
者にあつては塗布被膜のもつ色調が灰色または黒
色がかつたものになるため、不導体のもつ色調が
損なわれるようになつて好ましくなく、また後者
にあつては塗布することによつて透明な帯電防止
能を有する被膜を形成させることは可能である
が、湿度が高い状態でないと帯電防止の効果が得
られず、しかも剥れ易いという欠点を有し、ま
た、これらの塗料において水を全く、または殆ど
溶解しない溶剤を使用すると、保存中大気からの
水分によつて沈澱が生ずるという欠点があつた。 本発明者等は、上述のような観点から、塗布被
膜自体が下地の色調を損なうことのない透明性を
有し、塗膜密着性にもすぐれるとともに、良好な
導電性を有しており、不導体に塗布することによ
り良好な導電性を付与し、かつ十分な帯電防止能
を発揮するとともに、貯蔵中にあつては大気中の
水分に影響されることなく安定に保存することが
できる塗料を得べく研究を重ねた結果、 (a) 酸化錫(以下SnO2で示す)粉末は、白色を
呈し、かつ導電性を有するがこれにアンチモン
(Sb)を含有させると、さらに一段と導電性が
向上するようになり、熱的にも安定したもので
あること。 (b) 粉末を混入させても塗料のもつ透明性や色調
が損なわれないようにするためには、混入する
粉末が光を吸収しない、すなわち白色を有し、
かつその光屈折率が塗料の主要素である樹脂の
光屈折率:1.6〜1.7に近いものであるか、ある
いは粉末の平均粒径が0.4μm以下、すなわち可
視光の波長より小さく、光の散乱が少ないこと
が必要であること。 (c) 上記Sbを含有したSnO2粉末は2.0〜2.1の光
屈折率を有しており、したがつてこれを塗料
に、その色調、特に透明性を損なうことなく導
電性を付与する目的で混入するに際しては、そ
の平均粒径を0.4μm以下に微細化する必要があ
ること。 (d) 一般に塗料の塗膜形成主要素たる樹脂として
はポリエステル樹脂をはじめ種々の合成樹脂が
あり、溶媒にはトンネルを代表として種々の有
機溶剤が従来用いられているが、溶媒としてト
ルエンのような水分を吸収し難い溶剤を使用す
ると、上記の微粉末を混入した塗料において保
管中または塗布中に水分が入り込むことにより
該微粉末が塗料中から分離、凝析する現象が起
こるが、そこで水分を溶解する溶剤を用いる
と、そこが水分を吸収してこの分離、凝析が起
こりにくくなること。 (e) このような微粉末の分離、凝析を抑制するた
めには、溶剤として、水分を3重量%以上溶解
する溶剤を塗料溶媒中に20重量%以上存在させ
ることが必要であること。 以上(a)〜(e)項に示される知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、 Sb:0.1〜20重量%を含有し、残りが実質的に
SnO2からなる組成を有し、かつ0.4μm以下の平
均粒径を有する導電性微粉末と、 塗膜形成主要素たる樹脂と、 溶剤のうちの20重量%以上が水分を3重量%以
上溶解するMEKシクロヘキサン、THF、および
アセトンのうちの1種以上からなる水分溶解溶剤
である溶剤と、 で構成され、 上記導電性微粉末の配合割合が、上記樹脂との
合計重量に占める割合で5〜95%であり、 上記溶剤の配合割合が、上記導電性微粉末と上
記樹脂との合計重量:100部に対して、100〜2000
重量部である、 良好な導電性と帯電防止能を有し、かつ透明に
して下地の色調に影響を与えずに塗布被膜を形成
でき、水分の侵入に対しても安定な塗料に特徴を
有するものである。 この発明の塗料においては、アクリル系、ビニ
ル系、カーボネート系、ポリエステル系、ウレタ
ン系、エポキシ系およびポリアルキレン系などの
一般の透明塗料において使用される合成樹脂を塗
膜形成主要素として使用することができる。 この発明の塗料において、「水分を3重量%以
上溶解する溶剤」とは、通常塗料が保管または使
用されるときに遭遇する温度、すなわち常温にお
いて3重量%以上の水分溶解度を有する溶剤を意
味し、メチルエチルケトン(MEK)、シクロヘキ
サノン、テトラヒドロフラン(THF)、およびア
セトンからなる。この発明の溶剤中には、上記の
水分を3重量%以上溶解する溶剤の他に、水を全
くまたは殆ど溶解しない溶剤、すなわ水分を3重
量%未満しか溶解しない溶剤、例えばトルエン、
キシレン、酢酸セロソルブのようなセロソルブ
類、石油スピリツト、ソルベントナフタ、塩化メ
チレン等の、塗料において一般に使用されている
溶剤を80重量%未満含有させてもよい。 この発明の塗料を構成する導電性微粉末と塗膜
形成主要素とは、一方では所望の良好な導電性お
よび帯電防止能を得るとともに、他方では塗膜の
透明性を損なわないように、導電性微粉末:5〜
95重量%対塗膜形成主要素:95〜10重量%の割合
に配合するのが好ましく、また残りの構成成分で
ある溶剤は、塗料を塗り易くするとともに導電性
微粉末を適度に均一に分散させるために適当量配
合すればよく、例えば導電性微粉末と塗膜形成主
要素との合計重量100部に対して溶剤を100〜2000
重量部加えることができる。 この発明の塗料は、ポリエステル樹脂のような
塗膜形成主要素を溶剤と混合した後、これに導電
性微粉末を添加混合することによつて製造される
が、この際上記導電性微粉末の分散性を高める目
的で、リン酸ソーダ、スルホン酸ソーダ、オレイ
ン酸ソーダ、ステアリン酸ソーダ、クエン酸ソー
ダなどの陰イオン界面活性剤や、アルキルシラ
ン、アルコキシシランなどのシランカツプリング
剤、さらにアルキルチタネート、アクリルチタネ
ートなどのチタネートカツプリング剤を塗料中に
混合含有させてもよい。 さらに、この発明の塗料は一般の塗料において
使用されている塗装法によつて塗布することがで
きるが、特にスプレー法、バーコート法、グラビ
ア塗装法、ロールコート法およびドクターブレー
ド法を採用した場合、良好な結果が得られる。 つぎに、この発明の塗料において、導電性微粉
末のSb含有量と平均粒径および溶剤の水分溶解
度と配合割合を上記のとおりに限定した理由を説
明する。 (a) Sb含有量 その含有量が0.1重量%未満の場合には電気抵
抗が高く、所望の良好な導電性を確保できないの
で、帯電防止能も十分でなく、一方20重量%を越
えて含有した場合には、微粉末の白色が失なわれ
て青味を帯びるようになり、塗料に混入した際
に、その色調や透明性が損なわれるようになるこ
とから、その含有量を0.1〜20重量%と限定した。 (b) 平均粒径 その平均粒径が0.4μmを越えると、可視光の散
乱が多くなり、塗料中への混入に際して、その塗
料のもつ透明性が損なわれるようになるという理
由から、0.4μm以下の平均粒径とする必要があ
る。 なお、この発明の導電性透明塗料における導電
性微粉末の平均粒径は、まず内径:45mmを有する
容量:100ccのポリエチレン製筒状容器内に、前
記微粉末:5gと、水:40ccを、直径:約10mmの
焼結アルミナボール:50個と共に装入し、この容
器を400r.p.m.の回転数で10時間回転させた後、
前記焼結アルミナボールを除いた内容物を遠心沈
降器の容器に入れ、遠心沈降器の回転数、回転時
間を変えながら粉末を沈降させ、それぞれ沈降し
た粉末の重量を測定し、この測定結果に基いて粒
度分布を作成し、その粒度分布における50%の累
積値をもつて平均粒径とする方法によつて定め
た。 (c) 溶剤の水分溶解度とその溶剤の配合割合 この発明の導電性微粉末と樹脂を含む導電性透
明塗料の溶媒として、水分を3重量%未満しか溶
解しない溶剤を使用するか、あるいは水分を溶解
する溶剤を20重量%未満しか使用しない場合に
は、その塗料を相対湿度:70%、温度:20℃の大
気中に放置したとき0.5時間以内に微粒子の分離、
凝析がみられるが、水分を3重量%以上溶解する
溶剤が全溶剤中に20重量%以上存在するときには
上記の分離、凝析が3時間以内に起こることがな
く、該塗料において3時間以上の安定性が得ら
れ、溶剤の水分溶解度およびその溶剤の配合割合
が大きくなるほど、塗料の水分に対する安定性は
益々増大するところから、溶剤の水分溶解度およ
びその溶剤の配合割合をそれぞれ3重量%以上お
よび20重量%以上と定めた。 また、この発明の導電性微粉末は、アルコー
ル、塩酸水溶液およびアセトンの1種または2種
以上の混合液に塩化錫(以下SnCl4で示す)と塩
化アンチモン(以下SbCl3で示す)とを溶解した
ものからなる溶液を、加熱水中に加えてSb含有
のSnO2を析出させる方法によつて製造すること
ができる。なお、SnO2粉末とSb化合物とを焼成
する方法や、Sn化合物とSb化合物とを混合した
後、焼成する方法などの公知の方法によつて製造
されたSb含有SnO2粉末は、いずれも0.4μmを越
えた平均粒径をもち、したがつてこれらの公知方
法では、この発明の0.4μm以下の平均粒径を有す
る導電性微粉末を製造することはできない。 つぎに、この発明の導電性透明塗料を実施例に
より具体的に説明する。 実施例 水:3000ccを、温度:90℃に加熱保持し、これ
に激しく撹拌を加えながら、173gのSnCl4と20.9
gのSbCl3を300ccのアルコールに溶解した溶液
を、4時間かけてゆつくり注入してSb含有SnO2
粉末を析出生成させ、ついでこの粉末を別し、
洗浄し、引き続いて結晶性を向上させる目的で、
空気中、温度:500℃に2時間保持の加熱処理を
施して、Sb:10重量%を含有し、残りがSnO2
らなる組成を有する、平均粒径0.2μmのSb含有
SnO2微粉末を得た。 次いで、第1表に示される組成を有する溶剤
315gに35gのポリエステル樹脂(東洋紡バイロ
ン20)を溶解した溶液に、上記のSb含有SnO2
粉末:24gを加えて17時間ボールミルにて混合分
散し、塗料化して本発明塗料1〜4を製造し、さ
らに本発明の範囲から外れた溶剤を使用したこと
を除いて、上記と同様にして比較塗料1〜3を製
造し、これらを第1表に示した。 これらの塗料を製造直後塗布して形成させた塗
膜は、いずれも塗布厚さ:1μmにおいて、表面抵
抗:107〜108Ω/口、透明度:全透過で80%、ヘ
ーズ:20〜30%であつた。また、これらの各塗料
の試料:450ccを、直径:9cm、高さ:7cmの円
筒状のAl製容器に入れ、市販の攪拌機により
62.5r.p.m.の攪拌速度で試料を攪拌しながら温
度:20℃、相対湿度:70%の雰囲気中に放置した
ところ、それぞれ第1表に示される時間経過後に
導電性微粉末が塗料中から
The present invention relates to a coating material that is transparent, electrically conductive, and capable of forming a coated film having antistatic properties, and particularly to a conductive transparent coating material that is stable against moisture. In recent years, there has been a rapid increase in the number of cases in which static electricity prevention is required for IC storage containers, other electronic and electrical equipment components, and architectural components such as carpets, flooring materials, and wall materials. Additionally, there is an increasing demand for conductive paints to prevent electromagnetic interference caused by microwaves. Conventionally, in response to such requests, paints made of conductive materials mixed with carbon powder, metal powder, or carbon fibers or metal fibers were applied, and organic materials with ion conductivity such as alkylamine halides were applied. was used to impart conductivity to the nonconductor and prevent it from being charged. However, in the former case, the color tone of the coated film becomes gray or black, so In the latter case, it is possible to form a transparent film with antistatic ability by applying it, but it will not become static unless the humidity is high. They have the disadvantage that they do not have a protective effect and are easy to peel off. Furthermore, if a solvent that does not dissolve water at all or hardly dissolves water is used in these paints, precipitation may occur due to moisture from the atmosphere during storage. There were flaws. From the above-mentioned viewpoints, the present inventors have discovered that the coating film itself has transparency that does not impair the color tone of the base, has excellent coating film adhesion, and has good electrical conductivity. When applied to a nonconductor, it imparts good conductivity and exhibits sufficient antistatic ability, and can be stored stably without being affected by moisture in the atmosphere. As a result of repeated research to obtain paints, we found that (a) Tin oxide (hereinafter referred to as SnO 2 ) powder is white and conductive, but when antimony (Sb) is added to it, it becomes even more conductive. should be improved and thermally stable. (b) In order to prevent the transparency and color tone of the paint from being impaired even when the powder is mixed in, it is necessary that the powder to be mixed in does not absorb light, that is, it has a white color.
and its optical refractive index is close to the optical refractive index of the resin, which is the main component of the paint: 1.6 to 1.7, or the average particle size of the powder is 0.4 μm or less, that is, smaller than the wavelength of visible light, and the light scattering It is necessary that there be less (c) The above Sb-containing SnO 2 powder has an optical refractive index of 2.0 to 2.1, so it can be used in paints for the purpose of imparting conductivity without impairing their color tone, especially transparency. When mixing, it is necessary to refine the average particle size to 0.4 μm or less. (d) In general, there are various synthetic resins including polyester resin as the main component for forming the coating film of paints, and various organic solvents such as tunnel are conventionally used as solvents, but there are also various types of solvents such as toluene. If a solvent that does not easily absorb water is used, the fine powder will separate and coagulate from the paint due to moisture entering the paint mixed with the fine powder during storage or during application. If you use a solvent that dissolves water, it will absorb water and this separation and coagulation will be less likely to occur. (e) In order to suppress the separation and coagulation of such fine powders, it is necessary to have a solvent that dissolves 3% or more of water in the paint solvent in an amount of 20% or more by weight. The findings shown in sections (a) to (e) above were obtained. This invention was made based on the above knowledge, and contains Sb: 0.1 to 20% by weight, with the remainder being substantially
A conductive fine powder with a composition of SnO 2 and an average particle size of 0.4 μm or less, a resin that is the main element for forming a coating film, and a solvent in which at least 20% by weight dissolves at least 3% by weight of water. and a water-dissolving solvent consisting of one or more of MEK cyclohexane, THF, and acetone, and the blending ratio of the conductive fine powder is 5 to 5% of the total weight of the conductive fine powder and the resin. 95%, and the blending ratio of the solvent is 100 to 2000 parts per 100 parts of the total weight of the conductive fine powder and the resin.
By weight, it has good conductivity and antistatic ability, is transparent and can form a coating film without affecting the color tone of the base, and is stable against moisture intrusion. It is something. In the paint of this invention, synthetic resins used in general transparent paints such as acrylic, vinyl, carbonate, polyester, urethane, epoxy, and polyalkylene paints are used as the main component for forming the coating film. Can be done. In the paint of this invention, "a solvent that dissolves 3% by weight or more of water" means a solvent that has a water solubility of 3% by weight or more at the temperature normally encountered when the paint is stored or used, that is, at room temperature. , methyl ethyl ketone (MEK), cyclohexanone, tetrahydrofuran (THF), and acetone. In addition to the above-mentioned solvents that dissolve 3% by weight or more of water, the solvents of this invention include solvents that do not dissolve water at all or hardly, that is, solvents that dissolve less than 3% by weight of water, such as toluene,
It may contain less than 80% by weight of solvents commonly used in paints, such as xylene, cellosolves such as cellosolve acetate, petroleum spirits, solvent naphtha, methylene chloride, etc. The conductive fine powder and the main coating film-forming elements constituting the paint of this invention are designed to, on the one hand, provide the desired good conductivity and antistatic ability, and on the other hand, to ensure conductivity so as not to impair the transparency of the paint film. Fine powder: 5~
It is preferable to mix the ratio of 95% by weight to 95% to 10% by weight of the main elements forming the coating film, and the remaining component, the solvent, makes it easier to apply the paint and disperses the conductive fine powder appropriately and uniformly. For example, 100 to 2000 parts of the solvent may be added to 100 parts of the total weight of the conductive fine powder and the main coating film forming elements.
Parts by weight can be added. The paint of this invention is produced by mixing the main film-forming element such as polyester resin with a solvent, and then adding and mixing conductive fine powder thereto. To improve dispersibility, anionic surfactants such as sodium phosphate, sodium sulfonate, sodium oleate, sodium stearate, and sodium citrate, silane coupling agents such as alkylsilanes and alkoxysilanes, and alkyl titanates are used. A titanate coupling agent such as acrylic titanate or the like may be mixed and contained in the paint. Furthermore, the paint of this invention can be applied by any coating method used for general paints, but especially when spraying, bar coating, gravure coating, roll coating, and doctor blade methods are adopted. , good results are obtained. Next, in the coating material of the present invention, the reason why the Sb content and average particle size of the conductive fine powder and the water solubility and blending ratio of the solvent are limited as described above will be explained. (a) Sb content If the Sb content is less than 0.1% by weight, the electrical resistance will be high and the desired good conductivity cannot be secured, so the antistatic ability will not be sufficient. In this case, the fine powder loses its white color and becomes bluish, which impairs the color tone and transparency when mixed into paint. % by weight. (b) Average particle size If the average particle size exceeds 0.4μm, visible light will be scattered more and the transparency of the paint will be impaired when mixed into the paint. The average particle size must be as follows. The average particle size of the conductive fine powder in the conductive transparent paint of the present invention is determined by first placing 5 g of the fine powder and 40 cc of water in a polyethylene cylindrical container with an inner diameter of 45 mm and a capacity of 100 cc. After charging with 50 sintered alumina balls with a diameter of approximately 10 mm and rotating this container at a rotation speed of 400 rpm for 10 hours,
The contents, excluding the sintered alumina balls, are placed in a container of a centrifugal sedimentation device, and the powder is sedimented while changing the rotation speed and rotation time of the centrifugal sedimentation device, and the weight of each sedimented powder is measured. Based on this, a particle size distribution was created, and the average particle size was determined by taking the cumulative value of 50% of the particle size distribution. (c) Water solubility of the solvent and blending ratio of the solvent As the solvent for the conductive transparent paint containing the conductive fine powder and resin of this invention, a solvent that dissolves less than 3% by weight of water is used, or a solvent that dissolves less than 3% by weight of water is used. When less than 20% by weight of a solvent is used, when the paint is left in the atmosphere at a relative humidity of 70% and a temperature of 20°C, fine particles will be separated within 0.5 hours.
Coagulation is observed, but if the total solvent contains 20% by weight or more of a solvent that dissolves 3% or more of water, the above separation and coagulation will not occur within 3 hours, and the paint will not dissolve for more than 3 hours. As the water solubility of the solvent and the blending ratio of the solvent increase, the stability of the paint against water increases. and 20% by weight or more. The conductive fine powder of the present invention is produced by dissolving tin chloride (hereinafter referred to as SnCl4 ) and antimony chloride (hereinafter referred to as SbCl3 ) in one or more mixed liquids of alcohol, hydrochloric acid aqueous solution, and acetone. It can be produced by a method in which a solution consisting of Sb-containing SnO 2 is precipitated by adding it to heated water. Incidentally, Sb-containing SnO 2 powder manufactured by a known method such as a method of firing SnO 2 powder and an Sb compound, or a method of mixing a Sn compound and an Sb compound and then firing, both have a concentration of 0.4 The electrically conductive fine powder of the present invention having an average particle size of more than 0.4 μm cannot be produced by these known methods. Next, the conductive transparent paint of the present invention will be specifically explained with reference to Examples. Example While heating and maintaining 3000 cc of water at a temperature of 90°C and stirring vigorously, 173 g of SnCl 4 and 20.9
Sb-containing SnO 2 was obtained by slowly injecting a solution of 1 g of SbCl 3 dissolved in 300 cc of alcohol over 4 hours.
Precipitate a powder, then separate this powder,
For the purpose of cleaning and subsequently improving crystallinity,
Heat treated in air at a temperature of 500°C for 2 hours to produce a Sb-containing product with an average particle size of 0.2 μm, containing 10% by weight of Sb and the remainder consisting of SnO 2
SnO2 fine powder was obtained. Then, a solvent having the composition shown in Table 1
24 g of the above Sb-containing SnO 2 fine powder was added to a solution of 35 g of polyester resin (Toyobo Vylon 20) dissolved in 315 g, mixed and dispersed in a ball mill for 17 hours, and made into a paint to produce paints 1 to 4 of the present invention. Comparative paints 1 to 3 were produced in the same manner as above, except that a solvent outside the scope of the present invention was used, and these are shown in Table 1. The coating films formed by applying these paints immediately after manufacture have a coating thickness of 1 μm, a surface resistance of 10 7 to 10 8 Ω/mouth, a transparency of 80% in total transmission, and a haze of 20 to 30. It was %. In addition, 450 cc of each of these paint samples was placed in a cylindrical aluminum container with a diameter of 9 cm and a height of 7 cm, and mixed using a commercially available stirrer.
When the sample was stirred at a stirring speed of 62.5 rpm and left in an atmosphere at a temperature of 20°C and a relative humidity of 70%, conductive fine powder was removed from the paint after the time shown in Table 1.

【表】 分離、凝析した。 なお、上記微粉末の分離、凝析は、攪拌中の上
記試料の粘度が初期粘度(通常2〜100センチポ
アズ)の5倍に上昇した時点とした。 第1表に示される結果から、本発明塗料1〜4
は、いずれも水分に対して著しく安定であるのに
対し、本発明の範囲外の溶剤を用いた比較塗料1
〜3は、短時間で導電性微粉末が分離、凝析し、
雰囲気中の水分の侵入に対して不安定であること
がわかる。 上述のように、この発明の塗料は、すぐれた導
電性と帯電防止能を有し、かつ下地の色調をほと
んど損なうことのない透明な塗膜を形成すること
ができるので、これを電子電機部材や建築用部材
などの帯電防止並びに電磁波の遮蔽などに用いた
場合著しくすぐれた性能を発揮するとともに、保
管中および塗装中雰囲気から侵入する水分に対し
てすぐれた安定性を発揮するものである。
[Table] Separated and coagulated. The fine powder was separated and coagulated at the time when the viscosity of the sample during stirring rose to five times the initial viscosity (usually 2 to 100 centipoise). From the results shown in Table 1, the present invention paints 1 to 4
are all extremely stable against moisture, whereas Comparative Paint 1 using a solvent outside the scope of the present invention
~3, conductive fine powder separates and coagulates in a short time,
It can be seen that it is unstable against the intrusion of moisture in the atmosphere. As mentioned above, the paint of the present invention has excellent conductivity and antistatic ability, and can form a transparent coating film that hardly impairs the color tone of the base, so it can be used for electronic and electrical parts. It exhibits outstanding performance when used to prevent static electricity and shield electromagnetic waves in construction materials, etc., and also exhibits excellent stability against moisture that enters from the atmosphere during storage and painting.

Claims (1)

【特許請求の範囲】 1(a) アンチモン:0.1〜20重量%を含有し、残
りが実質的に酸化錫からなる組成を有し、かつ
0.4μm以下の平均粒径をもつた導電性微粉末、 (b) 塗膜形成主要素たる樹脂、 (c) 溶剤のうちの20重量%以上が水分を3重量%
以上溶解するMEK、シクロヘキサノン、
THF、およびアセトンのうちの1種以上から
なる水分溶解溶剤である溶剤、 以上(a)〜(c)で構成され、 (d) 上記導電性微粉末の配合割合が、上記樹脂と
の合計重量に占める割合で5〜95%であり、 (e) かつ上記溶剤の配合割合が、上記導電性微粉
末と上記樹脂との合計重量:100部に対して、
100〜2000重量部であること、 を特徴とする水分に対して安定な導電性透明塗
料。
[Claims] 1(a) Antimony: Contains 0.1 to 20% by weight, with the remainder consisting essentially of tin oxide, and
Conductive fine powder with an average particle size of 0.4 μm or less; (b) resin, which is the main element for forming the coating film; and (c) 20% by weight or more of the solvent contains 3% by weight of water.
MEK, cyclohexanone, which dissolves more than
A solvent that is a water-dissolving solvent consisting of one or more of THF and acetone, consisting of the above (a) to (c), (d) The blending ratio of the above conductive fine powder is the total weight of the above resin. (e) and the blending ratio of the solvent is 5 to 95% in terms of the total weight of the conductive fine powder and the resin: 100 parts;
100 to 2000 parts by weight of a conductive transparent paint that is stable against moisture.
JP23304382A 1982-12-28 1982-12-28 Electrically conductive transparent paint stable to moisture Granted JPS59122561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23304382A JPS59122561A (en) 1982-12-28 1982-12-28 Electrically conductive transparent paint stable to moisture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23304382A JPS59122561A (en) 1982-12-28 1982-12-28 Electrically conductive transparent paint stable to moisture

Publications (2)

Publication Number Publication Date
JPS59122561A JPS59122561A (en) 1984-07-16
JPH0458511B2 true JPH0458511B2 (en) 1992-09-17

Family

ID=16948904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23304382A Granted JPS59122561A (en) 1982-12-28 1982-12-28 Electrically conductive transparent paint stable to moisture

Country Status (1)

Country Link
JP (1) JPS59122561A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278705A (en) * 1986-05-26 1987-12-03 多木化学株式会社 Transparent conducting material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767674A (en) * 1980-10-13 1982-04-24 Tokyo Denshi Kagaku Kabushiki Solution forming transparent electro-conductive film
JPS5785866A (en) * 1980-11-18 1982-05-28 Mitsubishi Metal Corp Antistatic transparent paint
JPS57212268A (en) * 1981-06-24 1982-12-27 Hitachi Ltd Pasty composition for forming transparent electrically conductive film and forming method of said film
JPS5891777A (en) * 1981-11-25 1983-05-31 Mitsubishi Metal Corp Electrically conductive clear paint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767674A (en) * 1980-10-13 1982-04-24 Tokyo Denshi Kagaku Kabushiki Solution forming transparent electro-conductive film
JPS5785866A (en) * 1980-11-18 1982-05-28 Mitsubishi Metal Corp Antistatic transparent paint
JPS57212268A (en) * 1981-06-24 1982-12-27 Hitachi Ltd Pasty composition for forming transparent electrically conductive film and forming method of said film
JPS5891777A (en) * 1981-11-25 1983-05-31 Mitsubishi Metal Corp Electrically conductive clear paint

Also Published As

Publication number Publication date
JPS59122561A (en) 1984-07-16

Similar Documents

Publication Publication Date Title
US4431764A (en) Antistatic transparent coating composition
JPS6313463B2 (en)
US5919518A (en) Electrically conductive barium sulfate filler and method for preparing same
CN1865367B (en) Aqueous light color nanometer static-conductive coating for inner wall
JP4778139B2 (en) White conductive powder and its application
JPH0458511B2 (en)
JP3976484B2 (en) Conductive powder organic solvent dispersion and conductive paint
EP0587105B1 (en) Electrically-conductive barium sulfate filler and method for preparing same
JP3979465B2 (en) Conductive powder organic solvent dispersion and conductive paint
JP3195072B2 (en) Fibrous conductive filler and method for producing the same
JP3186893B2 (en) Antistatic coating composition for plastics
JP3321931B2 (en) Composition for forming conductive film
JP3233758B2 (en) Antistatic coating composition for plastics
JP2003276105A (en) Antistatic paint and antistatic molded object
JPS59136167A (en) Antistatic painting method
JPH0953030A (en) Clear conductive coating material and clear conductive film
JP3186895B2 (en) Antistatic coating composition for plastics
JPH06157947A (en) Transparent coating
JP3233742B2 (en) Antistatic coating composition for plastics
JPS6354311B2 (en)
JPH06200185A (en) Antistatic coating composition for plastic
JP3262645B2 (en) Antistatic paint and antistatic molded product using the same
EP1069072A1 (en) Conductive powder and transparent conductive composition
JPH02127478A (en) Antistatic coating
JPH0323229B2 (en)