JPH0458403A - Conductor - Google Patents

Conductor

Info

Publication number
JPH0458403A
JPH0458403A JP16404690A JP16404690A JPH0458403A JP H0458403 A JPH0458403 A JP H0458403A JP 16404690 A JP16404690 A JP 16404690A JP 16404690 A JP16404690 A JP 16404690A JP H0458403 A JPH0458403 A JP H0458403A
Authority
JP
Japan
Prior art keywords
fibers
conductive
conductor
specific gravity
low specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16404690A
Other languages
Japanese (ja)
Inventor
Tokushige Yokomatsu
得滋 横松
Kazuo Yamaguchi
和男 山口
Mitsuyuki Imaizumi
今泉 三之
Mikio Yajima
幹夫 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPT D D MELCO LAB KK
Optec Dai Ichi Denko Co Ltd
Mitsubishi Electric Corp
Original Assignee
OPT D D MELCO LAB KK
Optec Dai Ichi Denko Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPT D D MELCO LAB KK, Optec Dai Ichi Denko Co Ltd, Mitsubishi Electric Corp filed Critical OPT D D MELCO LAB KK
Priority to JP16404690A priority Critical patent/JPH0458403A/en
Publication of JPH0458403A publication Critical patent/JPH0458403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To reduce cost per unit length as well as to increase the tensile strength, to decrease the weight and to reduce the diameter of a conductor by coating the surface of core materials of electrically non-conductive fibers having low specific gravity, high strength and high elasticity with metallic film having electrically high conductivity. CONSTITUTION:A conductor 1 is constituted in such a way that the surface of core materials 2 created by twisting a plurality of electrically non-conductive fibers 3 having low specific gravity, high strength and high elasticity is coated with an electrically conductive substrate plating layer 4 and a copper film 5 having approximately a plating thickness of 85mum by means of a plating device. Inorganic hollow glass fibers, ceramic alumina lint, tyranno lint or organic-paraffin-related total aromatic polyamide fibers are used for electrically non-conductive fibers 3. In this way, fibers having the low specific gravity, high strength and high elasticity are used as core materials so that an increase in tensile strength, weight reduction and diameter reduction can be realized. An obtained conductor has greater utility for an electrically conductive part of an electric power transmission aerial cable or a voice coil conductor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気機械の捲線や送電線、配電線。[Detailed description of the invention] [Industrial application field] The present invention relates to winding wires for electrical machines, power transmission lines, and power distribution lines.

屋内電線あるいは各種機器の給電線等として用いられる
導線に関する。
It relates to conducting wires used as indoor electric wires or power supply lines for various devices.

〔従来の技術〕[Conventional technology]

従来の導線としては、裸銅線、錫メツキ銅線。 Conventional conductors include bare copper wire and tin-plated copper wire.

ニッケルメッキ銅線、アルミニウム線などが知られてお
り、銅線の類は導電性に優れ、また、メツキ銅線は銅線
の酸化を防止すると同時にハンダ付は性能を向上させ、
アルミニウム線は非常に軽量であるなどの特性を有して
いる。
Nickel-plated copper wire, aluminum wire, etc. are known, and copper wire has excellent conductivity, and plated copper wire prevents oxidation of the copper wire, and at the same time, soldering improves performance.
Aluminum wire has characteristics such as being extremely lightweight.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、これらの導線は何れも、機械的強度を必要とす
る送電線や各種機器の給電線等として用る場合には、抗
張力が不足して断線を起し易いという欠点があった。
However, when these conductive wires are used as power transmission lines or power feed lines for various devices that require mechanical strength, they have the disadvantage that they lack tensile strength and are susceptible to wire breakage.

また、銅線に調芯を介在させて抗張力を高めた調芯銅線
もあるが、比重が大きいために重く、しかも、十分な抗
張力を得るためには調芯をある程度の太さにする必要が
あるので導線を細径化するにも限度があるという問題が
あった。
There is also cored copper wire that increases tensile strength by interposing a core in the copper wire, but it is heavy due to its high specific gravity, and it is necessary to make the core to a certain thickness in order to obtain sufficient tensile strength. Therefore, there was a problem in that there was a limit to how thin the conducting wire could be made.

このため、本出願人は、軽くて強靭で導電性のある炭素
繊維を芯材として、その表面に金属被膜をコーティング
した導線を提案したが(特願平18197号)、当該導
線は高価な炭素繊維を用いるので単位長さ当たりのコス
トが割高となり、長距離にわたって布設する送電線等に
は不向きであった。
For this reason, the present applicant proposed a conductor wire with a core made of light, strong, and conductive carbon fiber and coated with a metal film on the surface (Japanese Patent Application No. 18197), but the conductor wire was made of expensive carbon fiber. Since fibers are used, the cost per unit length is relatively high, making it unsuitable for power transmission lines and the like that are laid over long distances.

また、導線に要求される様々な条件に対応するために、
炭素繊維を芯材とする導線より、さらに強く、軽<、m
い導線の開発が望まれていた。
In addition, in order to meet the various conditions required for conductors,
Stronger and lighter than conductor wire with carbon fiber core material
It was hoped that a new conductor would be developed.

そこで、本発明は、導線の抗張力を高め、軽量化、細径
化を図ると共に、単位長さ当たりのコストを低減するこ
とを課題としている。
Therefore, an object of the present invention is to increase the tensile strength of a conducting wire, reduce its weight and diameter, and reduce the cost per unit length.

〔課題を解決するための手段〕[Means to solve the problem]

この課題を解決するために、本発明は、低比重高強度、
高弾性の非導電性繊維で成る芯材の表面に、導電率の高
い金属被膜がコーティングされていることを特徴とする
In order to solve this problem, the present invention provides low specific gravity, high strength,
It is characterized by having a core material made of highly elastic non-conductive fibers coated with a highly conductive metal film.

〔作用〕[Effect]

本発明の導線は、低比重、高強度、高弾性の繊維を芯材
としているため、抗張力が強く、しかも、軽量化、細径
化を図ることができる。
Since the conducting wire of the present invention uses a fiber with low specific gravity, high strength, and high elasticity as a core material, it has strong tensile strength and can be made lighter and smaller in diameter.

特に、低比重、高強度、高弾性の繊維として、安価なセ
ラミック系や中空のガラス繊維を用いれば、非常に軽い
導線とすることができ、また、単位長さ当たりのコスト
も低減することができる。
In particular, if inexpensive ceramic or hollow glass fibers are used as fibers with low specific gravity, high strength, and high elasticity, it is possible to make a very light conductor and reduce the cost per unit length. can.

また、パラ系全芳香族ポリアミド繊維を用いれば、抗張
力を飛躍的に高めると共に、大幅な軽量化も図ることが
できる。
Furthermore, if para-based wholly aromatic polyamide fibers are used, the tensile strength can be dramatically increased, and the weight can also be significantly reduced.

なお、これらの低比重、高強度、高弾性の繊維は、何れ
もその物性から非導電性であるが、その表面に導電率の
高い金属被膜をコーティングすることにより、良好な導
電性を持った導線とすることができる。
These low specific gravity, high strength, and high elastic fibers are all non-conductive due to their physical properties, but by coating their surfaces with a highly conductive metal film, they can be made to have good conductivity. It can be a conductor.

また、これらの導線を複数本撚り合わせれば、抗張力を
更に強くすることができる。
Furthermore, by twisting a plurality of these conductive wires together, the tensile strength can be further increased.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて具体的に説明す
る。
Embodiments of the present invention will be specifically described below based on the drawings.

第1図は、本発明による導線の一例を示す断面図、第2
図及び第3図はその導線を製造するメンキ装置の正面図
及び平面図である。
FIG. 1 is a sectional view showing an example of the conductive wire according to the present invention, and FIG.
The figure and FIG. 3 are a front view and a plan view of the Menki apparatus for manufacturing the conducting wire.

第1図に示す導線1は、低比重、高強度、高弾性の非導
電性繊維3を複数本撚り合わせて成る芯材2の表面に、
第2図及び第3図のメツキ装置によって、導電性の下地
メツキ層4と、メツキ厚85μm程度の銅被膜5がコー
ティングされている。
The conducting wire 1 shown in FIG.
A conductive base plating layer 4 and a copper film 5 having a plating thickness of about 85 μm are coated by the plating apparatus shown in FIGS. 2 and 3.

前記非導電性繊維3には、無機系の中空のガラス繊維(
単繊維径:20ttm、tili維本数:250本。
The non-conductive fibers 3 include inorganic hollow glass fibers (
Single fiber diameter: 20ttm, number of tili fibers: 250.

引張強度:  350kgf / m rd 、密度:
2.54g/cj)や1、セラミック系のアルミナ長繊
維(単繊維径:3pm、繊維本数: 1500本、引張
強度:  100kgf/ m m 、密度: 3.4
 g /cl)や、チラノ長繊維、又は有機系のバラ系
全芳香族ポリアミド繊維(単繊維径:10μm、繊維本
数二500本、引張強度:369kgf / m rd
 、密度: 1.44 g /cd)等が用いられる。
Tensile strength: 350kgf/mrd, density:
2.54g/cj) and 1. Ceramic alumina long fibers (single fiber diameter: 3pm, number of fibers: 1500, tensile strength: 100kgf/mm, density: 3.4
g / cl), tyranno long fibers, or organic rose-based fully aromatic polyamide fibers (single fiber diameter: 10 μm, number of fibers: 2,500, tensile strength: 369 kgf / m rd
, density: 1.44 g/cd), etc. are used.

第2図及び第3図に示すメツキ装置は、前段の無電解メ
ツキ装置Aと、後段の電気メツキ装置Bとから構成され
ている。
The plating device shown in FIGS. 2 and 3 is composed of an electroless plating device A at the front stage and an electroplating device B at the rear stage.

無電解メツキ装置Aは、リコイラーなどの繰り出し装置
から巻き出された芯材2の表面を5%硫酸水溶液中に浸
漬して活性化する前処理槽6と、前処理液を芯材2から
除去する前処理水洗槽7と、無電解メツキの最初の析出
に必要な触媒核(Pd。
The electroless plating device A includes a pretreatment tank 6 that activates the surface of the core material 2 unwound from a feeding device such as a recoiler by immersing it in a 5% sulfuric acid aqueous solution, and a pretreatment tank 6 that removes the pretreatment liquid from the core material 2. A pre-treatment washing tank 7 is used to prepare catalyst nuclei (Pd.

Ag、 Auなど)を芯材2に形成させる触媒付与処理
槽8と、銅の無電解メツキを行う無電解メツキ槽9と、
当該無電解メツキ槽9によって下地メツキを施された芯
材2の表面を水洗するメッキ液水洗槽10と、その洗浄
水を乾燥除去する乾燥装置11とから構成されている。
a catalyst-imparting treatment tank 8 that forms a substance (Ag, Au, etc.) on the core material 2; an electroless plating tank 9 that performs electroless plating of copper;
It is comprised of a plating solution washing tank 10 that washes with water the surface of the core material 2 that has been plated by the electroless plating tank 9, and a drying device 11 that dries and removes the washing water.

そして、各種及び芯材2を搬送するガイドローラ12.
12−と、その回転軸13.13−は、何れも耐蝕性の
ある樹脂で成形されている。
A guide roller 12 for conveying various types and core material 2.
12- and its rotating shafts 13 and 13- are both molded from corrosion-resistant resin.

一方、電気メツキ装置Bは、無電解メツキ装置Aによっ
て下地メツキ層4が形成された芯材2の表面を洗浄する
前処理水洗槽14と、表面を洗浄された芯材2を硫酸銅
溶液から成る銅メツキ浴中に浸漬してその表面に銅被膜
5を形成させる電気メツキ槽15と、電気メツキにより
形成された銅被膜5の表面を洗浄する後処理水洗槽16
と、その洗浄水を乾燥除去する乾燥装置17とから構成
されている。
On the other hand, the electroplating device B includes a pre-treatment washing tank 14 for cleaning the surface of the core material 2 on which the base plating layer 4 has been formed by the electroless plating device A, and a pretreatment water washing tank 14 for cleaning the surface of the core material 2 on which the base plating layer 4 has been formed by the electroless plating device A, and a copper sulfate solution for cleaning the surface of the core material 2. an electroplating tank 15 that is immersed in a copper plating bath to form a copper film 5 on its surface; and a post-treatment washing tank 16 that washes the surface of the copper film 5 formed by electroplating.
and a drying device 17 for drying and removing the washing water.

電気メツキ槽15には、その入槽側と出槽側に、下地メ
ツキにより導電性を付与された芯材2に接触して給電す
る銅製のカソード電極用コンダクトローラ18a及び1
8bと、当該コンダクトローラ18a、18bに架は渡
して搬送される芯材2を電気メツキ槽15の浴中に浸漬
させるガイドローラ19a、19bが設けられている。
The electroplating tank 15 has conductor rollers 18a and 1 for cathode electrodes made of copper, which supply power by contacting the core material 2 which has been given conductivity by base plating, on the entry side and the exit side of the electroplating tank 15.
8b, and guide rollers 19a and 19b are provided for immersing the core material 2 conveyed across the conductor rollers 18a and 18b in the bath of the electroplating tank 15.

なお、メツキ浴中に浸漬して設けられる各ガイドローラ
19a、19bと、その回転軸20.20及び電気メツ
キ槽15は、何れも耐蝕性のある樹脂で成形されている
The guide rollers 19a, 19b, their rotating shafts 20, 20, and the electroplating tank 15, which are immersed in the plating bath, are all molded from a corrosion-resistant resin.

また、電気メッキ槽15内には、ガイドローラ19a、
19b間を通過する芯材2を挟んで、その左右両側に、
含りん銅板で形成された一対のアノード電極22.22
が設けられている。
Further, inside the electroplating tank 15, a guide roller 19a,
On both sides of the core material 2 passing between 19b,
A pair of anode electrodes 22.22 formed of phosphorous copper plates
is provided.

しかして、無電解メツキ装置Aでは、芯材2の表面に、
メツキ被膜の密着性を高めると共に親水性を付与する化
学エツチング処理が前処理槽6で行われ、次いで無電解
メツキの最初の析出に必要な触媒核(Pd、 Ag、^
Uなど)を形成させる触媒付与処理が触媒付与処理槽8
で行われる。
Therefore, in the electroless plating device A, on the surface of the core material 2,
A chemical etching treatment that increases the adhesion of the plating film and imparts hydrophilicity is carried out in the pretreatment tank 6, and then catalyst nuclei (Pd, Ag,
The catalyst application treatment to form U, etc.) is carried out in the catalyst application treatment tank 8.
It will be held in

そして、触媒付与処理された芯材2は、無電解メッキ槽
9内の銅イオンと還元剤を含む50℃のメツキ浴に浸漬
され、芯材2の表面に銅が析出して下地メツキ層4が形
成される。
The catalyst-applied core material 2 is then immersed in a 50° C. plating bath containing copper ions and a reducing agent in an electroless plating tank 9, and copper is deposited on the surface of the core material 2, forming a base plating layer 4. is formed.

この下地メツキ層4によって、非導電性繊維3から成る
芯材2は導電性を持つようになり、次いで、電気メツキ
装ff1Bへ搬送される。
This base plating layer 4 makes the core material 2 made of non-conductive fibers 3 conductive, and then it is transported to the electroplating equipment ff1B.

そして、電気メツキ装置Bの電気メッキ槽15内では、
メツキ浴となる硫酸銅溶液中でイオン解離(CuSO4
−−Cu  +So4 )が起こり、この溶液に、カソ
ード電極となる芯材2と、アノード電極2222を介し
て直流による電場をかけると、イオン電導が生じて、銅
イオンCu2“は芯材2の電極界面に近づき、部分カソ
ード反応によって芯材2の表面に金属銅として析出し、
導電率の高い銅被膜5が形成される。
In the electroplating tank 15 of the electroplating device B,
Ion dissociation (CuSO4
--Cu + So4) occurs, and when a direct current electric field is applied to this solution via the core material 2, which becomes the cathode electrode, and the anode electrode 2222, ionic conduction occurs, and the copper ions Cu2'' are transferred to the electrode of the core material 2. Close to the interface, metal copper is deposited on the surface of the core material 2 by a partial cathode reaction,
A copper coating 5 with high conductivity is formed.

なお、このような電気メ・7キを別紙表1.及び表2、
に示す浴組成と作業条件に従って、中空のガラス繊維、
アルミナ長繊維又はバラ系全芳香族ポリアミド繊維から
成る芯材2に実施した場合には、別紙表3.に示すよう
な特性を有する導線1が得られた。
In addition, these 7 electrical machines are shown in attached Table 1. and Table 2,
hollow glass fibers, according to the bath composition and working conditions shown in
When applied to the core material 2 made of alumina long fibers or loose wholly aromatic polyamide fibers, the results are shown in Appendix Table 3. A conductive wire 1 having the characteristics shown in was obtained.

この結果から明らかなように、本発明による導線lは、
これと同一の外径を有する電気用軟銅線と比較すれば、
導電率は低下するという難点はあるものの、引張強度は
2倍から5倍程度高まり、40%程度の軽量化を図るこ
とができる。
As is clear from this result, the conducting wire l according to the present invention is
If you compare it with electrical annealed copper wire which has the same outer diameter,
Although there is a drawback that the conductivity decreases, the tensile strength increases by about 2 to 5 times, and the weight can be reduced by about 40%.

また、炭素繊維を芯材とする導線と比較しても軽さの点
では、中空のガラス繊維、アルミナ長繊維、バラ系全芳
香族ポリアミド繊維ともに勝り、引張強度の点において
も、中空のガラス繊維とバラ系全芳香族ポリアミド繊維
は60%程度のアップを実現している。
In addition, compared to conducting wires with a core material of carbon fiber, hollow glass fibers, alumina long fibers, and rose-based wholly aromatic polyamide fibers are superior in terms of lightness, and hollow glass fibers are superior in terms of tensile strength. Fibers and loose wholly aromatic polyamide fibers have achieved an increase of about 60%.

しかも、導電率において、本発明による導線1は非導電
性繊維を用いているにもかかわらず、導電性を有する炭
素繊維を用いた導線と遜色のない58%の導電率を達成
している。
Furthermore, in terms of conductivity, although the conductive wire 1 according to the present invention uses non-conductive fibers, it achieves a conductivity of 58%, which is comparable to conductive wires using conductive carbon fibers.

また、安価な中空のガラス繊維やアルミナ長繊維を用い
ることにより、単位長さ当たりの大幅なコスト低減を図
ることが可能である。
Furthermore, by using inexpensive hollow glass fibers or alumina long fibers, it is possible to significantly reduce the cost per unit length.

なお、複数本の非導電性繊維3.3−を撚り合わせた芯
材2を使用すると、導線1の表面に多少の凹凸が生じて
、その表面の平滑性が若干損なわれるが、この導線1に
伸線ダイスによる軽度の冷間加工を施すと、引張強度、
導電率などの特性を大きく変化させることなく、凹凸を
なくして表面を平滑化することができると同時に、その
表面の銅被膜5の光沢も非常に良くなる。
Note that if a core material 2 made by twisting a plurality of non-conductive fibers 3.3- is used, some unevenness will occur on the surface of the conducting wire 1, and the smoothness of the surface will be slightly impaired. When subjected to mild cold working with a wire drawing die, the tensile strength and
It is possible to eliminate irregularities and smooth the surface without significantly changing characteristics such as electrical conductivity, and at the same time, the gloss of the copper coating 5 on the surface is also improved.

また、本発明は複数本の非導電性繊維3.3を撚り合わ
せて成る芯材2の表面に金属被膜5をコーティングする
場合に限らず、非導電性繊維の単繊維から成る芯材2の
表面に金属被膜5をコーティングしてもよいし、また、
このように金属被膜5がコーティングされた導体を複数
本撚り合わせて導線1を形成する場合であってもよい。
Further, the present invention is not limited to coating the surface of the core material 2 made of a plurality of non-conductive fibers 3.3 with the metal coating 5; The surface may be coated with a metal film 5, or
The conducting wire 1 may be formed by twisting a plurality of conductors coated with the metal film 5 in this manner.

また、非導電性繊維3は、中空のガラス繊維アルミナ長
繊維、バラ系全芳香族ポリアミド繊維に限らず、メタ系
芳香族ポリアミド繊維、チラノ長繊維やウィスカを撚り
合わせて長繊維にしたもの、あるいは通常のガラス繊維
等を用いてもよい。
The non-conductive fibers 3 are not limited to hollow glass fiber alumina long fibers, rose-based wholly aromatic polyamide fibers, but also meta-aromatic polyamide fibers, tyranno long fibers, long fibers made by twisting whiskers, etc. Alternatively, ordinary glass fiber or the like may be used.

また、電気メツキに用いるメツキ浴は、硫酸銅浴に限ら
ず、はうふつ化銅浴、シアン化銅浴や、レヘリング作用
に優れたビロリン酸銅浴などを採用し得る。
Further, the plating bath used for electroplating is not limited to a copper sulfate bath, but may also be a copper sulfate bath, a copper cyanide bath, a copper birophosphate bath having an excellent leveling effect, or the like.

更に、本発明は、実施例に示したように無電解メツキに
より下地メツキを施した後に、電気メツキによって金属
被膜を形成する場合に限らず、無電解メツキのみによっ
て、金属析出時間を長く設定して十分な膜厚の金属被膜
を形成するようにしてもよい。
Furthermore, the present invention is not limited to forming a metal coating by electroplating after base plating by electroless plating as shown in the examples, but also by setting a long metal deposition time only by electroless plating. Alternatively, a metal coating having a sufficient thickness may be formed.

この場合には、外部電源を必要とする電気メツキの工程
を省くことができる。
In this case, the electroplating process that requires an external power source can be omitted.

また、本発明による導線には、芯材2の表面に銅被膜等
の金属被膜5がコーティングされた導線1の外周に、塩
化ビニール樹脂等による絶縁被覆が施されたものも含ま
れる。
Further, the conducting wire according to the present invention includes a conducting wire 1 in which the surface of the core material 2 is coated with a metal coating 5 such as a copper coating, and the outer periphery of the conducting wire 1 is coated with an insulating coating made of vinyl chloride resin or the like.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明による溝線は、その芯材に低
比重、高強度、高弾性の繊維を使用しているため、抗張
力が強く、しかも、軽量化8細径化を図ることができる
という優れた効果がある。
As described above, the grooved wire according to the present invention uses fibers with low specific gravity, high strength, and high elasticity as its core material, so it has strong tensile strength and can be made lighter and smaller in diameter. There is an excellent effect that can be done.

特に、低比重、高強度、高弾性の繊維として、無機系の
安価な中空のガラス繊維やセラミック系繊維を用いる場
合には、非常に軽い導線とすることができ、単位長さ当
たりのコストも低減することができるという効果が得ら
れる。
In particular, when using cheap inorganic hollow glass fibers or ceramic fibers as fibers with low specific gravity, high strength, and high elasticity, the conductor can be made very light and the cost per unit length can be reduced. This has the effect of being able to reduce the

また、有機系のバラ系全芳香族ポリアミド繊維を用いる
場合には、抗張力を飛躍的に高めると共に、大幅な軽量
化を図ることができるという効果がある。
Furthermore, when organic rose-based wholly aromatic polyamide fibers are used, the tensile strength can be dramatically increased and the weight can be significantly reduced.

なお、これらの低比重、高強度、高弾性の繊維は、何れ
もその物性から非導電性であるが、その表面に導電率の
高い金属被膜をコーティングしているため、良好な導電
性を持った溝線とすることができ、送電用架空ケーブル
の導体部やボイスコイル用の導線などとして非常に有用
性の高いものである。
These low specific gravity, high strength, and high elasticity fibers are all non-conductive due to their physical properties, but because their surfaces are coated with a highly conductive metal film, they have good conductivity. It can be made into a grooved wire, and is extremely useful as a conductor part of an overhead power transmission cable or a conductor wire for a voice coil.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による導線の一例を示す断面図、第2図
及び第3図はその導線を製造するメツキ装置の正面図及
び平面図である。 く表1.〉「浴組成」 符号の説明 1−導線、2−芯材、3・−非導電性繊維、4−下地メ
ツキ層、5−銅被膜(金属被膜)。
FIG. 1 is a sectional view showing an example of a conductive wire according to the present invention, and FIGS. 2 and 3 are a front view and a plan view of a plating device for manufacturing the conductive wire. Table 1. 〉“Bath composition” Explanation of symbols 1-conductor wire, 2-core material, 3-non-conductive fiber, 4-base plating layer, 5-copper coating (metal coating).

Claims (1)

【特許請求の範囲】 〔1〕低比重、高強度、高弾性の非導電性繊維(3)で
成る芯材(2)の表面に、導電率の高い金属被膜(5)
がコーティングされていることを特徴とする導線。 〔2〕前記非導電性繊維(3)が、セラミック系繊維、
パラ系全芳香族ポリアミド繊維、又は中空のガラス繊維
である前記特許請求の範囲第1項記載の導線。 〔3〕低比重、高強度、高弾性の非導電性繊維(3)で
成る芯材(2)の表面に、導電率の高い金属被膜(5)
がコーティングされたものを、複数本撚り合わせて成る
ことを特徴とする導線。 〔4〕外周に絶縁被覆が施されている特許請求の範囲第
1項乃至第3項記載の導線。
[Scope of Claims] [1] A metal coating (5) with high conductivity on the surface of a core material (2) made of non-conductive fibers (3) with low specific gravity, high strength, and high elasticity.
A conductor wire characterized by being coated with. [2] The non-conductive fiber (3) is a ceramic fiber,
The conducting wire according to claim 1, which is a para-based wholly aromatic polyamide fiber or a hollow glass fiber. [3] Highly conductive metal coating (5) on the surface of the core material (2) made of low specific gravity, high strength, high elasticity non-conductive fiber (3)
A conductor wire characterized by being made by twisting together multiple coated wires. [4] The conducting wire according to any one of claims 1 to 3, wherein the outer periphery is coated with an insulating coating.
JP16404690A 1990-06-25 1990-06-25 Conductor Pending JPH0458403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16404690A JPH0458403A (en) 1990-06-25 1990-06-25 Conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16404690A JPH0458403A (en) 1990-06-25 1990-06-25 Conductor

Publications (1)

Publication Number Publication Date
JPH0458403A true JPH0458403A (en) 1992-02-25

Family

ID=15785773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16404690A Pending JPH0458403A (en) 1990-06-25 1990-06-25 Conductor

Country Status (1)

Country Link
JP (1) JPH0458403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130241A (en) * 2006-11-16 2008-06-05 Du Pont Toray Co Ltd Conductive high strength cord and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130241A (en) * 2006-11-16 2008-06-05 Du Pont Toray Co Ltd Conductive high strength cord and its manufacturing method

Similar Documents

Publication Publication Date Title
KR930001534B1 (en) Optical fiber cable coated with conductive metal coating and process therefor
GB601994A (en) Improvements in electroplating apparatus
US10126493B2 (en) Method and apparatus for fabrication of metal-coated optical fiber, and the resulting optical fiber
EP0156432B1 (en) Method of manufacturing an optical fibre comprising a coating of a metal
US4492615A (en) Process for plating a long span of metal with a metal layer
CN111732455B (en) Double-tin-layer ceramic conductive material and preparation method thereof
US3676322A (en) Apparatus and method for continuous production of electrolytically treated wires
WO1994026435A1 (en) Wire plating
JP2714922B2 (en) Manufacturing equipment for ultra-fine composite metal plated wire
JPH0458403A (en) Conductor
JPH02189811A (en) Conductor
GB1406081A (en) Method for electrolytic deposition
EP0149763A2 (en) Electroplating method for carbon fibers and apparatus therefor
JPH03240999A (en) Formation of tough electric insulating layer on surface of copper material
JP3329056B2 (en) Plating method and apparatus
WO2021020650A1 (en) Conductive flexible carbon fibers
US2689399A (en) Plated article and method of making it
JP2010037623A (en) Plating method for carbon material and method for producing carbon material
KR20090102170A (en) Apparatus and method for electro plating of coated conductor
WO2009108019A2 (en) Method for plating rf equipment and rf equipment manufactured therefrom
JP2016212960A (en) Polymer fiber conductive wire and manufacturing method thereof
KR20050107995A (en) Plating process of condutivity fiber
KR20210001634A (en) Method of Manufacturing Metal Coated Carbon Fiber
JPH0512462B2 (en)
JPH09106716A (en) Manufacture of coper planted wire