JPH0457425B2 - - Google Patents

Info

Publication number
JPH0457425B2
JPH0457425B2 JP25238486A JP25238486A JPH0457425B2 JP H0457425 B2 JPH0457425 B2 JP H0457425B2 JP 25238486 A JP25238486 A JP 25238486A JP 25238486 A JP25238486 A JP 25238486A JP H0457425 B2 JPH0457425 B2 JP H0457425B2
Authority
JP
Japan
Prior art keywords
mold
anode
nickel
electrolytic plating
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25238486A
Other languages
Japanese (ja)
Other versions
JPS63104752A (en
Inventor
Akyoshi Mori
Yoshitomo Yamawaki
Takao Bando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25238486A priority Critical patent/JPS63104752A/en
Publication of JPS63104752A publication Critical patent/JPS63104752A/en
Publication of JPH0457425B2 publication Critical patent/JPH0457425B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連続鋳造用鋳型の表面処理方法、特
に、連続鋳造用鋳型を分解することなくその設置
場所で補修するのに適した表面処理方法に関す
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a surface treatment method for continuous casting molds, and particularly a surface treatment method suitable for repairing continuous casting molds at their installation site without disassembling them. Regarding.

(従来の技術) 近年、連続鋳造においては、操業の高速化とオ
ンラインでの鋳造巾変更技術の発達に伴い、連続
鋳造用鋳型に要求される性能も過酷なものとな
り、銅製鋳型の耐久性を向上させるため、最近で
は、銅製鋳型の内壁面にNiメツキ層を形成した
もの、Niメツキ層のうえにNi−PやCrのメツキ
層を積層したもの(例えば、特開昭52−52828号
公報)、あるいは自溶合金を溶射して表面処理し
たものが汎用されてきている。
(Conventional technology) In recent years, in continuous casting, with the speeding up of operations and the development of online casting width changing technology, the performance required of continuous casting molds has become harsher, and the durability of copper molds has been reduced. In order to improve the performance, recently, copper molds with a Ni plating layer formed on the inner wall surface, and those with a Ni-P or Cr plating layer laminated on the Ni plating layer (for example, Japanese Patent Application Laid-Open No. 52-52828 ), or those whose surface has been treated by thermal spraying with a self-fluxing alloy are becoming widely used.

(発明が解決しようとする問題点) しかしながら、これにらの保護膜を形成した連
続鋳造用鋳型であつても反復使用すると、凝固殻
の摺動により鋳型下部の保護層が摩耗するため、
頻繁に鋳型の摩耗面を補修する必要がある。この
鋳型を補修する場合、まず、鋳造設備を停止させ
て鋳型を分解し、鋳型の補修後、再び組み立てな
ければならず、分解及び組み立てに多大の時間を
要するため、鋳造設備の可動率の低下をもたらす
という問題があつた。
(Problems to be Solved by the Invention) However, even if a continuous casting mold is formed with these protective films, if it is repeatedly used, the protective layer at the bottom of the mold will wear out due to the sliding of the solidified shell.
It is necessary to frequently repair worn surfaces of the mold. When repairing this mold, the casting equipment must first be stopped, the mold must be disassembled, and then reassembled after the mold is repaired. Disassembling and reassembling takes a lot of time, which reduces the operating rate of the casting equipment. There was a problem of bringing

しかも、保護層をメツキで形成したものでは、
局部的な補修ができないため、鋳型表面に残存し
ている総てのメツキ層を除去して再度メツキ層を
形成しなければならず、補修する度に銅の肉厚が
薄くなり数回の補修で使用不可能になるという問
題があつた。また、保護層を自溶合金で形成した
ものでは、補修する度に熱処理しなければならな
いことから熱変形を生じ、その反復使用が制限さ
れるという問題があつた。
Moreover, if the protective layer is made of plating,
Since local repair is not possible, all the plating layer remaining on the mold surface must be removed and a plating layer re-formed, and the thickness of the copper becomes thinner each time the mold is repaired, resulting in several repairs. There was a problem that it became unusable. Furthermore, in the case where the protective layer is made of a self-fluxing alloy, heat treatment must be performed each time it is repaired, which causes thermal deformation, which limits its repeated use.

他方、保護層形成材料として自溶合金以外の金
属材料、例えば、クロム、コバルト等を用い、そ
の粉末をプラズマ溶射法により銅素材表面に溶射
して保護層を形成することが考えられるが、これ
らの金属の溶射被膜は銅素材との密着力が弱いた
め、連続モードで操業される連続鋳造用鋳型には
適用することが不可能であつた。
On the other hand, it is conceivable to use a metal material other than a self-fluxing alloy as a material for forming the protective layer, such as chromium or cobalt, and to form a protective layer by spraying the powder onto the surface of the copper material using a plasma spraying method. Because the thermal sprayed metal coating has weak adhesion to the copper material, it has been impossible to apply it to continuous casting molds operated in continuous mode.

して、本発明は、鋳型の耐摩耗性及び耐熱性を
向上させるため、金属化物系複合材料からなる溶
射皮膜を適用できるようにすると共に、連続鋳造
用鋳型を分解することなくその設置場所で補修す
ることができるようにすることを目的として為さ
れたものである。
Therefore, the present invention makes it possible to apply a thermal spray coating made of a metal compound composite material in order to improve the wear resistance and heat resistance of a mold, and also to make it possible to apply a thermal spray coating made of a metal compound composite material, and to apply it at the installation site without disassembling the continuous casting mold. This was done for the purpose of making it possible to repair it.

(問題点を解決するための手段) 本発明は、前記問題を解決する手段として、多
孔質材を介在させてアノードを銅製鋳型の内壁面
に当接させ、該アノード及び多孔質材を介して電
解メツキ液を銅製鋳型表面に連続的に供給しなが
ら前記アノードと銅製鋳型との間に通電し、前記
アノードを前記鋳型内壁面に沿つて移動させつつ
電解メツキした後、形成された電解メツキ層上
に、ニツケル及び/又は金属炭化物系複合材料を
溶射して漸変被膜を形成することを特徴とする連
続鋳造用鋳型の表面処理方法を提供するものであ
る。
(Means for Solving the Problems) The present invention, as a means for solving the above problems, involves interposing a porous material to bring the anode into contact with the inner wall surface of a copper mold. An electrolytic plating layer is formed by electrolytically plating the anode and the copper mold while continuously supplying an electrolytic plating solution to the surface of the copper mold, and moving the anode along the inner wall surface of the mold. The present invention also provides a method for surface treatment of a continuous casting mold, characterized in that a nickel and/or metal carbide composite material is thermally sprayed to form a gradual coating.

前記電解メツキ浴としては任意のものを採用で
きるが、鋳型の材料である銅と溶射皮膜との間の
密着性を図る上では、ニツケルメツキ浴を使用す
るのが好ましい。
Although any electrolytic plating bath can be used, it is preferable to use a nickel plating bath in order to improve the adhesion between the copper, which is the material of the mold, and the thermally sprayed coating.

前記漸変皮膜は、アンダーコートをニツケルで
形成し、トツプコートを金属炭化物系複合材料で
形成するのが好ましい。
Preferably, the gradual change coating has an undercoat made of nickel and a top coat made of a metal carbide composite material.

金属炭化物系複合材料としては、コバルト、ニ
ツケルおよびクロムのうち少なくとも一種を含有
するタングステンカーバイトまたはチタンカーバ
イトが特に好適であるが、これらに限定されるも
のではない。
As the metal carbide composite material, tungsten carbide or titanium carbide containing at least one of cobalt, nickel, and chromium is particularly suitable, but the material is not limited thereto.

(作用) 本発明は、基本的には、金属炭化物系複合材料
からなる溶射皮膜を形成できるようにするため、
溶射皮膜の形成に先立つて、いわゆる筆メツキ法
によりニツケル、銅等の金属の肉盛りを施し、こ
れによつて溶射皮膜と鋳型材料である銅との密着
性を向上させると同時に、複数層の溶射皮膜の内
側の層中にニツケルを含有させることによりスラ
グとの反応を抑制し、かつ、高硬度であるが脆く
熱衝撃によるクラツクを発生し易いという金属炭
化物系複合材料からなる溶射皮膜の欠点を補うよ
うにしたものである。
(Function) The present invention basically includes the following steps in order to form a thermal spray coating made of a metal carbide composite material.
Prior to the formation of the thermal spray coating, metal such as nickel or copper is applied using the so-called brush plating method, which improves the adhesion between the thermal spray coating and the copper mold material, and at the same time improves the adhesion between the thermal spray coating and the copper mold material. Disadvantages of thermal spray coatings made of metal carbide composite materials include the inclusion of nickel in the inner layer of the coating to suppress the reaction with slag, and the fact that it is highly hard but brittle and prone to cracks due to thermal shock. It was designed to compensate for this.

しかし、通常の電解メツキ法ではメツキ槽の使
用が避けられず、従つて、鋳型の分解、再組み立
てが必要となることから、本発明方法において
は、電解メツキ法として、銅製鋳型の内壁面に当
接する多孔質材にアノードを介して電解メツキ液
を連続的に供給し鋳型内壁面とアノードとの間に
流動メツキ浴層を形成させると共に、前記アノー
ドと前記鋳型との間に通電して前記多孔質材をア
ノードと一体的に前記鋳型内壁面に沿つて移動さ
せつつ電解メツキする方法を採用することにより
前記問題を解決している。
However, in the ordinary electrolytic plating method, the use of a plating bath is unavoidable, and therefore the mold must be disassembled and reassembled. Therefore, in the method of the present invention, the inner wall surface of the copper mold is Electrolytic plating solution is continuously supplied to the abutting porous material through the anode to form a fluid plating bath layer between the inner wall surface of the mold and the anode, and electricity is applied between the anode and the mold to remove the plating solution. The above-mentioned problem is solved by adopting a method of electroplating while moving the porous material together with the anode along the inner wall surface of the mold.

なお、溶射法としては、簡便かつ小形の装置を
採用できるガスフレーム溶射法を使用するのが好
ましい。
In addition, as the thermal spraying method, it is preferable to use a gas flame thermal spraying method which can employ a simple and small-sized apparatus.

さらに、溶射皮膜中のニツケルの含有量をその
表面側から内側に向かつて段階的にあるいは連続
的に増大させる、換言すれば、鋳型表面から溶射
皮膜の表面側へ行くほど金属炭化物系複合材料の
含有量を連続的にあるいは段階的に増大させるこ
とにより、積層構造の溶射皮膜の欠陥である各層
間の物理的性質の相違による熱衝撃や層間の剥離
を緩和し、溶射皮膜の延展性および密着力を向上
させ、耐用度を向上させている。
Furthermore, the content of nickel in the sprayed coating is increased stepwise or continuously from the surface to the inside.In other words, the metal carbide composite material increases as it moves from the mold surface to the surface of the sprayed coating. By increasing the content continuously or stepwise, thermal shock and interlayer peeling caused by differences in physical properties between each layer, which are defects in thermal sprayed coatings with a laminated structure, are alleviated, and the spreadability and adhesion of thermal sprayed coatings are improved. Improves strength and durability.

以下、本発明方法を連続鋳造用鋳型の補修に適
用した場合について添付の図面を参照して説明す
る。
Hereinafter, a case where the method of the present invention is applied to repairing a continuous casting mold will be explained with reference to the attached drawings.

図に於いて、1は銅製鋳型、2はその長辺側鋳
型壁、3は短辺側鋳型壁、4は多孔質材で包囲さ
れたアノード、5はスタイラス、6は電源装置、
7はトレー、8はメツキ液循環用ポンプ8で、ア
ノード4は黒鉛などの導電性材料で形成され、ポ
ンプ8からアノード4に連続的に供給されたメツ
キ液は、多孔質材を介して短辺側鋳型壁3の表面
に送られ、溢れたメツキ液がトレー7に収集さ
れ、再びポンプ8によりアノード4に供給される
ようにしてある。
In the figure, 1 is a copper mold, 2 is a long side mold wall, 3 is a short side mold wall, 4 is an anode surrounded by a porous material, 5 is a stylus, 6 is a power supply device,
7 is a tray, 8 is a plating liquid circulation pump 8, and the anode 4 is formed of a conductive material such as graphite. The overflowing plating liquid is sent to the surface of the side mold wall 3 and collected in a tray 7, and is again supplied to the anode 4 by a pump 8.

本発明方法によれば、前記鋳型の補修は、例え
ば、次のようにして達成される。即ち、黒鉛製ア
ノード4をスポンジ状に多孔質材で包み、これを
スタイラス5に装着すると、電源装置6の正極を
リード線9でアノード4に、負極を鋳型1に接続
する。他方、ポンプ8からアノード4及び多孔質
材を介して短辺側鋳型壁3にニツケルメツキ液を
供給する一方、鋳型壁面に沿つて降下してくるニ
ツケルメツキ液をトレー7で収集し、ポンプ8で
再びアノード4に供給するようにする。それと同
時に、前記アノード4と鋳型壁3との間に電源装
置6から直流電圧を印加し、アノード4を手動ま
たは駆動機構により鋳型壁面に沿つて移動させる
ことにより、メツキ液中のニツケルが鋳型壁3の
表面に電着させる。
According to the method of the present invention, repair of the mold is accomplished, for example, in the following manner. That is, when the graphite anode 4 is wrapped in a sponge-like porous material and attached to the stylus 5, the positive electrode of the power supply device 6 is connected to the anode 4 with the lead wire 9, and the negative electrode is connected to the mold 1. On the other hand, the nickel plating liquid is supplied from the pump 8 to the short side mold wall 3 via the anode 4 and the porous material, while the nickel plating liquid falling down along the mold wall is collected in the tray 7 and pumped again by the pump 8. so that it is supplied to the anode 4. At the same time, a DC voltage is applied from the power supply 6 between the anode 4 and the mold wall 3, and the anode 4 is moved along the mold wall surface manually or by a drive mechanism, so that the nickel in the plating liquid is transferred to the mold wall. Electrodeposit on the surface of 3.

このようにして、鋳型壁面にニツケルメツキを
した後、洗浄、乾燥させ、そのニツケルメツキ層
上に、ニツケルとコバルト含有タングステンカー
バイトの粉末を材料として用い、粉末式フレーム
溶射法により溶射して、アンダーコートがニツケ
ルで、トツプコートがコバルト含有タングステン
カーバイトからなる漸変皮膜を形成することによ
り、補修を行う。
After the mold walls are plated with nickel in this way, they are washed and dried, and then nickel and cobalt-containing tungsten carbide powder are thermally sprayed onto the nickel plated layer using a powder flame spraying method to form an undercoat. The repair is carried out by forming a graded film where the top coat is made of nickel and the top coat is cobalt-containing tungsten carbide.

なお、これとは別に曲げ試験片を用意し、前記
方法により電解ニツケルメツキしてU字曲げ試験
を行つたところ剥離は全く認められなかつた。
Separately, a bending test piece was prepared, electrolytically plated with nickel using the method described above, and subjected to a U-shaped bending test. No peeling was observed at all.

(発明の効果) 以上の説明から明らかなように、本発明によれ
ば、メツキ槽を必要とせず、従つて、鋳型の分
解、組み立てが不要となり、また、メツキ装置自
体も鋳型装置内にセツトするのはアノードとスタ
イラスだけで良く、しかも、溶射装置も小型のも
のを使用できるので、現場での局部的な補修を行
うことができる。
(Effects of the Invention) As is clear from the above description, according to the present invention, there is no need for a plating tank, therefore, there is no need to disassemble and assemble the mold, and the plating device itself can be set in the mold device. All you need is an anode and a stylus, and you can also use a small thermal spraying device, so you can perform localized repairs on-site.

さらに、本発明方法によれば、ニツケルと金属
化物系複合材料からなる漸変皮膜を密着性良く形
成することができるので、鋳型の耐摩耗性及び耐
熱性を向上させ、耐久性に優れた連続鋳造用鋳型
を製造することができるだけでなく、局部的に摩
耗した場合であつても全体の溶射皮膜を除去する
ことなく補修をもすることができるなど優れた効
果が得られる。
Furthermore, according to the method of the present invention, it is possible to form a graded film made of nickel and a metal compound composite material with good adhesion, which improves the abrasion resistance and heat resistance of the mold, and provides a highly durable continuous film. Not only can casting molds be manufactured, but even if there is local wear, the sprayed coating can be repaired without removing the entire thermal spray coating, providing excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を連続鋳造用鋳型の補修に
適用する場合の一例を示す要部斜視図である。 1……銅製鋳型、2……その長辺側鋳型壁、3
……短辺側鋳型壁、4……多孔質材で包囲された
アノード、5……スタイラス、6……電源装置、
7……トレー、8……メツキ液循環用ポンプ。
FIG. 1 is a perspective view of a main part showing an example of applying the method of the present invention to repair of a continuous casting mold. 1...Copper mold, 2...Long side mold wall, 3
... short side mold wall, 4 ... anode surrounded by porous material, 5 ... stylus, 6 ... power supply,
7... Tray, 8... Metsuki liquid circulation pump.

Claims (1)

【特許請求の範囲】 1 多孔質材を介在させてアノードを銅製鋳型の
内壁面に当接させ、該アノード及び多孔質材を介
して電解メツキ液を銅製鋳型表面に連続的に供給
しながら前記アノードと銅製鋳型との間に通電
し、前記アノードを前記鋳型内壁面に沿つて移動
させつつ電解メツキした後、形成された電解メツ
キ層上に、ニツケル及び/又は金属炭化物系複合
材料を溶射して漸変被膜を形成することを特徴と
する連続鋳造用鋳型の表面処理方法。 2 前記電解メツキ浴がニツケルメツキ浴である
特許請求の範囲第1項記載の方法。 3 前記漸変皮膜のアンダーコートをニツケルで
形成し、トツプコートを金属炭化物系複合材料で
形成する特許請求の範囲第1項又は第2項記載の
方法。 4 前記金属炭化物系複合材料がコバルト、ニツ
ケルおよびクロムのうち少なくとも一種を含有す
るタングステンカーバイトまたはチタンカーバイ
トである特許請求の範囲第1項〜第3項のいづれ
か一項記載の方法。
[Scope of Claims] 1. An anode is brought into contact with the inner wall surface of a copper mold through a porous material, and an electrolytic plating solution is continuously supplied to the surface of the copper mold through the anode and the porous material. Electricity is applied between the anode and the copper mold, and after electrolytic plating is performed while moving the anode along the inner wall surface of the mold, nickel and/or metal carbide composite material is thermally sprayed onto the formed electrolytic plating layer. A method for surface treatment of a continuous casting mold, characterized by forming a gradual coating. 2. The method according to claim 1, wherein the electrolytic plating bath is a nickel plating bath. 3. The method according to claim 1 or 2, wherein the undercoat of the gradual change coating is formed of nickel, and the top coat is formed of a metal carbide composite material. 4. The method according to any one of claims 1 to 3, wherein the metal carbide composite material is tungsten carbide or titanium carbide containing at least one of cobalt, nickel, and chromium.
JP25238486A 1986-10-22 1986-10-22 Surface treating method for mold for continuous casting Granted JPS63104752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25238486A JPS63104752A (en) 1986-10-22 1986-10-22 Surface treating method for mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25238486A JPS63104752A (en) 1986-10-22 1986-10-22 Surface treating method for mold for continuous casting

Publications (2)

Publication Number Publication Date
JPS63104752A JPS63104752A (en) 1988-05-10
JPH0457425B2 true JPH0457425B2 (en) 1992-09-11

Family

ID=17236569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25238486A Granted JPS63104752A (en) 1986-10-22 1986-10-22 Surface treating method for mold for continuous casting

Country Status (1)

Country Link
JP (1) JPS63104752A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496890A (en) * 1990-08-13 1992-03-30 Omron Corp Card processor
JP3413836B2 (en) * 1992-05-15 2003-06-09 株式会社ユアサコーポレーション Rechargeable battery
JP5008111B2 (en) * 2002-05-27 2012-08-22 コンカスト アクチェンゲゼルシャフト Method for electrolytic coating of continuous casting mold
US7560015B2 (en) 2002-05-27 2009-07-14 Concast Ag Process for electrolytic coating of a strand casting mould
JP4759326B2 (en) * 2005-06-20 2011-08-31 三島光産株式会社 Continuous casting mold

Also Published As

Publication number Publication date
JPS63104752A (en) 1988-05-10

Similar Documents

Publication Publication Date Title
CA1097024A (en) Molds for continuous casting of metals
CN102925842A (en) Supersonic air plasma spraying method of ceramic coating on crystallizer copper plate surface
US20080093047A1 (en) Casting molds coated for surface enhancement and methods of making
CN102465294A (en) Method for carrying out laser-cladding on high-hardness nickel-based alloy material in large area
CN105568335B (en) A kind of technique that steel substrate surface prepares FeNiCoCuCr high entropy alloy coating
CN102794417A (en) Metal ceramic coating on surface of copper plate of continuous casting mold and manufacturing process for metal ceramic coating
CN101724874A (en) Surface repairing method for thin-strip continuous casting crystallizing roller or casting blank continuous casting crystallizer
JPS6344820B2 (en)
CN103302442A (en) Method for repairing surface of copper roller of amorphous nanocrystalline crystallizer
JPS6137955A (en) Roll for molten metal bath
JPH0457425B2 (en)
GB2108025A (en) Continuous casting mould having dissimilar metal coating layers
JPS6117912B2 (en)
JPS5824507B2 (en) Improved drum equipment for producing electrodeposited copper foil
JP7010008B2 (en) Manufacturing method of mold for continuous casting
JP2000345313A (en) Production of roll used for continuous casting improved in heat resistance, corrosion resistance and wear resistance of surface of base material of roll barrel part applied with repeated thermal impact and sliding wear
JP4579706B2 (en) Articles with improved zinc erosion resistance
JPS58212840A (en) Casting mold for continuous casting
JP2739409B2 (en) Manufacturing method of corrosion and wear resistant multilayer metal coating
JPS6046395A (en) Conductor roll for electroplating
JPH08187555A (en) Mold for continuous casting
JP2728264B2 (en) Method for producing conductor roll having excellent electrical conductivity and conductor roll
JPS62227554A (en) Mold for continuous casting
JPS61249647A (en) Mold for continuous casting
JPS58218351A (en) Casting mold for continuous casting and its production