JP4759326B2 - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP4759326B2
JP4759326B2 JP2005179430A JP2005179430A JP4759326B2 JP 4759326 B2 JP4759326 B2 JP 4759326B2 JP 2005179430 A JP2005179430 A JP 2005179430A JP 2005179430 A JP2005179430 A JP 2005179430A JP 4759326 B2 JP4759326 B2 JP 4759326B2
Authority
JP
Japan
Prior art keywords
side member
long
pair
long side
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005179430A
Other languages
Japanese (ja)
Other versions
JP2006346733A (en
Inventor
祐登 梅山
雅昭 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2005179430A priority Critical patent/JP4759326B2/en
Publication of JP2006346733A publication Critical patent/JP2006346733A/en
Application granted granted Critical
Publication of JP4759326B2 publication Critical patent/JP4759326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶鋼を凝固させて鋳片を製造するための連続鋳造用鋳型に関する。 The present invention relates to a continuous casting mold for producing a slab by solidifying molten steel.

従来、図4(A)に示すように、連続鋳造設備に使用される連続鋳造用鋳型(以下、単に鋳型ともいう)80は、一対の短辺部材(幅狭冷却部材又は短片部材ともいう)81、82と、この短辺部材81、82を挟み込むように配置される一対の長辺部材(幅広冷却部材又は長片部材ともいう)83、84とを備え、この向かい合う長辺部材83、84の両端部にそれぞれボルト(図示しない)を取付け、ばねを介してナットで固定した構造となっている。図4(B)に示すように、この短辺部材81、82の溶鋼接触面側には、溶射層85がそれぞれ形成され、対向する長辺部材83、84の内側対向面には、Ni(ニッケル)又はCo(コバルト)のめっき層86がそれぞれ形成されている。 Conventionally, as shown in FIG. 4A, a continuous casting mold (hereinafter also simply referred to as a mold) 80 used in a continuous casting facility is a pair of short side members (also referred to as narrow cooling members or short piece members). 81 and 82, and a pair of long side members (also referred to as wide cooling members or long piece members) 83 and 84 disposed so as to sandwich the short side members 81 and 82, and the long side members 83 and 84 facing each other. Bolts (not shown) are attached to both ends of each, and fixed with nuts via springs. As shown in FIG. 4B, a sprayed layer 85 is formed on the molten steel contact surface side of the short side members 81 and 82, respectively, and Ni ( Nickel) or Co (cobalt) plating layers 86 are respectively formed.

この鋳型80は、対向配置される一対の短辺部材81、82が移動可能な構成になっており、短辺部材81と短辺部材82の間隔を調整して、鋳型80内に形成される空間87に高温の溶鋼(例えば、1600℃程度)を注入しながら冷却し、連続的に鋳片を製造している。このため、短辺部材81、82の移動により、短辺部材81、82の長辺部材83、84との接触面側が損耗する。そこで、短辺部材の長辺部材接触面側の保護を行うため、短辺部材の長辺部材側端部に、Niのめっき層88を形成したり、また摩耗により減少した短辺部材の幅寸法の復元を行うため、摩耗部分に、Niのめっき層89を形成している(例えば、特許文献1参照)。 The mold 80 has a configuration in which a pair of opposed short side members 81 and 82 are movable, and is formed in the mold 80 by adjusting the distance between the short side member 81 and the short side member 82. Cooling is performed while pouring high-temperature molten steel (for example, about 1600 ° C.) into the space 87 to continuously produce slabs. For this reason, due to the movement of the short side members 81, 82, the contact surface side of the short side members 81, 82 with the long side members 83, 84 is worn out. Therefore, in order to protect the long side member contact surface side of the short side member, a Ni plating layer 88 is formed on the long side member side end of the short side member, or the width of the short side member reduced by wear. In order to restore the dimensions, a Ni plating layer 89 is formed on the worn portion (see, for example, Patent Document 1).

実開昭57−82440号公報(第2図)Japanese Utility Model Publication No. 57-82440 (Fig. 2)

しかしながら、短辺部材82(短辺部材81も同様)の長辺部材83との接触面側に形成されためっき層88は、短辺部材82の溶鋼との接触面側に形成された溶射層85と比較して耐摩耗性が劣るため(例えば、Niのめっき層の耐摩耗性はNi系の溶射層の耐摩耗性の1/4程度)、めっき層88の溶鋼との接触面側が部分的に摩耗され、図4(B)に示すように、短辺部材82の溶鋼との接触面側に段差部90が生じる。そして、この段差部90に、例えば、溶鋼の差し込み異常が発生したり、これに起因して溶射層85に欠け又は剥離91が発生したり、また鋳型80内側の角部の抜熱が悪くなるという問題が発生する。
特に、短辺部材82の幅寸法の復元を行う際には、残存するめっき層を除去するため、短辺部材82の端部を約0.5mm程度改削した後、この改削部分にめっき層89を施して再生させている。このため、図4(B)の一点鎖線に示すように、復元を行う毎に短辺部材82のめっき厚さが約0.5mmずつ増加するので、上記した現象がより顕著に発生する。
これがブレイクアウトの要因になり、鋳片の製造を安定して実施できない恐れがある。
また、短片部材の製造に溶射とめっきの双方を使用する場合、双方の工程が必要になり、製造工程の短縮及び簡略化を図ることができず、製造コストがかかり経済的でなく、しかも製造効率が悪くなり生産性が低下する恐れがある。
However, the plating layer 88 formed on the contact surface side of the short side member 82 (the same applies to the short side member 81) with the long side member 83 is the sprayed layer formed on the contact surface side of the short side member 82 with the molten steel. Since the wear resistance is inferior to 85 (for example, the wear resistance of the Ni plating layer is about ¼ of the wear resistance of the Ni-based sprayed layer), the contact surface side of the plating layer 88 with the molten steel is partially As shown in FIG. 4B, a stepped portion 90 is formed on the contact surface side of the short side member 82 with the molten steel. And in this level difference part 90, for example, abnormal insertion of molten steel occurs, or due to this, chipping or peeling 91 occurs in the sprayed layer 85, and heat removal at the corners inside the mold 80 becomes worse. The problem occurs.
In particular, when restoring the width dimension of the short side member 82, the end of the short side member 82 is cut by about 0.5 mm in order to remove the remaining plating layer, and then the cut portion is plated. The layer 89 is applied and reproduced. For this reason, as shown by the alternate long and short dash line in FIG. 4B, the plating thickness of the short side member 82 increases by about 0.5 mm each time restoration is performed, so the above phenomenon occurs more remarkably.
This causes a breakout, and there is a possibility that the slab cannot be stably manufactured.
In addition, when both thermal spraying and plating are used for manufacturing a short piece member, both processes are required, the manufacturing process cannot be shortened and simplified, and the manufacturing cost is high and it is not economical. Inefficiency and productivity may be reduced.

本発明はかかる事情に鑑みてなされたもので、従来よりも製造工程の短縮及び簡略化が図れ、鋳片の製造を安定して実施可能な連続鋳造用鋳型を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a continuous casting mold capable of shortening and simplifying the manufacturing process as compared with the prior art and capable of stably producing a slab.

前記目的に沿う本発明に係る連続鋳造用鋳型は、間隔を有して対向配置され移動可能な一対の短辺部材と、該短辺部材を挟み込んで配置される一対の長辺部材とを備え、該一対の短辺部材と該一対の長辺部材とで形成される空間内に溶鋼を流し込み凝固させて鋳片を製造する連続鋳造用鋳型において、前記一対の長辺部材の内側対向面にめっき層を形成すると共に、前記長辺部材に接する前記短辺部材の長辺部材接触面に溶射層を形成し、しかも、前記長辺部材接触面の溶射層の硬度は、前記一対の長辺部材の内側対向面に形成しためっき層の硬度よりも小さくしている。 A continuous casting mold according to the present invention that meets the above-described object includes a pair of movable short-side members that are opposed to each other with a gap therebetween, and a pair of long-side members that are disposed with the short-side member interposed therebetween. In a continuous casting mold for producing a slab by pouring molten steel into a space formed by the pair of short side members and the pair of long side members to solidify the inner surface of the pair of long side members, A plating layer is formed , and a thermal spray layer is formed on the long side member contact surface of the short side member in contact with the long side member , and the hardness of the thermal spray layer on the long side member contact surface is the pair of long sides It is made smaller than the hardness of the plating layer formed on the inner facing surface of the member.

請求項1、2記載の連続鋳造用鋳型は、短辺部材の長辺部材接触面に溶射層を有するので、短辺部材の耐摩耗性を向上でき、従来発生していた部分的な摩耗を抑制、更には防止できる。これにより、例えば、摩耗部分への溶鋼の差し込み異常、これに起因した溶射層の欠け又は剥離、更には連続鋳造用鋳型内側の角部の抜熱不良を、抑制、更には防止でき、鋳片の製造を安定して実施できる。
また、従来のように、溶射とめっきとを組み合わせて連続鋳造用鋳型を製造する場合と比較して、溶射のみで短辺部材を製造できるので、製造工程の短縮及び簡略化を図ることができ、生産性を向上できると共に、製造コストの低減を図ることができる。
Continuous casting mold according to claim 1, wherein, since having a sprayed layer in a long side member contact surface of the short side members, can improve the wear resistance of the short side members, a conventional generator to have partial abrasion It can be suppressed and further prevented. As a result, for example, abnormal insertion of molten steel into the worn part, chipping or peeling of the sprayed layer due to this, and heat extraction failure at the corner inside the continuous casting mold can be suppressed and further prevented. Can be stably implemented.
Also, as compared with the conventional case where a continuous casting mold is manufactured by combining thermal spraying and plating, the short side member can be manufactured only by thermal spraying, so that the manufacturing process can be shortened and simplified. Thus, productivity can be improved and manufacturing cost can be reduced.

そして、造短辺部材の長辺部材接触面の溶射層の硬度が、一対の長辺部材の内側対向面に形成しためっき層の硬度よりも小さいので、例えば、一対の長辺部材の内側対向面上を短辺部材が移動する際に、めっき層の損傷を低減でき、鋳型の長寿命化を図ることができる。 And since the hardness of the thermal spray layer of the long side member contact surface of the short side member is smaller than the hardness of the plating layer formed on the inside facing surface of the pair of long side members, for example, the inside facing of the pair of long side members When the short side member moves on the surface, damage to the plating layer can be reduced, and the life of the mold can be extended.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1(A)は本発明の一実施の形態に係る連続鋳造用鋳型の平面図、(B)は(A)の点線内を部分拡大した説明図、図2は変形例に係る連続鋳造用鋳型の部分拡大平面図、図3(A)〜(E)は本発明の一実施の形態に係る連続鋳造用鋳型の製造方法の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1A is a plan view of a continuous casting mold according to an embodiment of the present invention, FIG. 1B is a partially enlarged explanatory view of the inside of the dotted line in FIG. Partial enlarged plan views of the continuous casting mold, FIGS. 3A to 3E are explanatory views of the method for manufacturing the continuous casting mold according to one embodiment of the present invention.

図1(A)、(B)に示すように、本発明の一実施の形態に係る連続鋳造用鋳型(以下、単に鋳型ともいう)10は、間隔Dを有して対向配置され、移動により間隔Dを調整可能な一対の短辺部材(幅狭冷却部材又は短片部材ともいう)11、12と、この短辺部材11、12を挟み込んで対向配置される一対の長辺部材(幅広冷却部材又は長片部材ともいう)13、14とを備え、一対の短辺部材11、12と一対の長辺部材13、14とで形成される空間15内に溶鋼を流し込み凝固させて鋳片を製造するものであり、短辺部材11、12の溶鋼接触面16と長辺部材接触面17に、平面視してその角の直角を維持した溶射層18を有するものである。なお、一対の短辺部材11、12は、実質的に同様の構成となっているので、以下、短辺部材12について詳しく説明する。 As shown in FIGS. 1 (A) and 1 (B), a continuous casting mold (hereinafter also simply referred to as a mold) 10 according to an embodiment of the present invention is disposed to face each other with a distance D, and is moved by movement. A pair of short-side members (also referred to as narrow cooling members or short piece members) 11 and 12 capable of adjusting the distance D, and a pair of long-side members (wide cooling members) arranged to face each other with the short-side members 11 and 12 interposed therebetween (Also referred to as long piece members) 13 and 14, and molten steel is poured into a space 15 formed by the pair of short side members 11 and 12 and the pair of long side members 13 and 14, and solidified to produce a slab. In this case, the molten steel contact surface 16 and the long-side member contact surface 17 of the short-side members 11 and 12 are provided with a sprayed layer 18 that maintains a right angle of the angle in plan view. Since the pair of short side members 11 and 12 have substantially the same configuration, the short side member 12 will be described in detail below.

短辺部材12は、例えば、厚みが30mm以上50mm以下の銅又は銅合金で構成される冷却板19を有し、鋳型10の外側となる冷却板19の裏面側には、上下方向に多数の導水溝が形成され、その裏面にステンレス製のバックプレート(図示しない)が取付けられている。
この冷却板19の表面側である溶鋼接触面側に形成されている溶射層(以下、溶鋼側溶射層ともいう)20は、その厚みT1が例えば0.3mm以上1.5mm以下となっており、冷却板19の長辺部材側に形成される溶射層(以下、長辺部材側溶射層ともいう)21は、その厚みT2が例えば0.3mm以上2.5mm以下(ここでは1mm)となっている。
この長辺部材側溶射層21の溶鋼側端面22は、溶鋼側溶射層20で覆われている。
The short side member 12 has, for example, a cooling plate 19 made of copper or a copper alloy having a thickness of 30 mm or more and 50 mm or less. A water guide groove is formed, and a stainless steel back plate (not shown) is attached to the back surface thereof.
The sprayed layer (hereinafter also referred to as a molten steel side sprayed layer) 20 formed on the molten steel contact surface side which is the surface side of the cooling plate 19 has a thickness T1 of, for example, 0.3 mm to 1.5 mm. The sprayed layer (hereinafter also referred to as a long-side member-side sprayed layer) 21 formed on the long-side member side of the cooling plate 19 has a thickness T2 of, for example, 0.3 mm to 2.5 mm (here 1 mm). ing.
The molten steel side end surface 22 of the long side member side sprayed layer 21 is covered with the molten steel side sprayed layer 20.

溶鋼側溶射層20は、例えば、Cr:0又は0を超え18質量%以下、B:1.0質量%以上4.5質量%以下、Si:1.5質量%以上5.0質量%以下、C:1.1質量%以下、Fe:5.0質量%以下、Co:1.0質量%以下、Mo:4.0質量%以下、Cu:4.0質量%以下、残部NiからなるNi基自溶合金で構成されている。
また、長辺部材側溶射層21の硬度は、一対の長辺部材13、14の内側(表面側)対向面に形成したNiのめっき層23の硬度(例えば、Hv200程度)より、例えば、Hv10以上(好ましくはHv30以上、更に好ましくはHv50以上)小さい。このような硬度が得られる溶射材としては、例えば、Ni:5質量%以上30質量%以下、Si:1.0質量以上4.0質量%以下、B:0.5質量%以上3.0質量%以下、残部CuのようなCu系の自溶合金(例えば、Hv180程度)がある。このCu系の自溶合金は、熱伝導率がNiのめっき層よりも良好であるため、鋳型10内側の角部の抜熱も良好になる。
The molten steel side sprayed layer 20 is, for example, Cr: 0 or more than 0 and 18% by mass or less, B: 1.0% by mass to 4.5% by mass, Si: 1.5% by mass to 5.0% by mass C: 1.1 mass% or less, Fe: 5.0 mass% or less, Co: 1.0 mass% or less, Mo: 4.0 mass% or less, Cu: 4.0 mass% or less, and balance Ni It is made of a Ni-based self-fluxing alloy.
Further, the hardness of the long-side member-side sprayed layer 21 is, for example, Hv10 from the hardness (for example, about Hv200) of the Ni plating layer 23 formed on the inner (surface side) facing surface of the pair of long-side members 13 and 14. Above (preferably Hv30 or more, more preferably Hv50 or more) is small. Examples of the thermal spray material capable of obtaining such hardness include Ni: 5 mass% to 30 mass%, Si: 1.0 mass % to 4.0 mass%, and B: 0.5 mass% to 3. There is a Cu-based self-fluxing alloy (for example, about Hv180) such as 0% by mass or less and the balance Cu. Since this Cu-based self-fluxing alloy has better thermal conductivity than the Ni plating layer, the heat removal at the corners inside the mold 10 is also improved.

なお、溶鋼側溶射層及び長辺部材側溶射層は、上記した合金をマトリックスとして、更にサーメットを添加することが好ましい。ここで、サーメットを構成する耐摩耗性硬質セラミックスとしては、例えば、炭化物、酸化物、硼化物、窒化物、及びケイ化物のいずれか1又は2以上を使用できる。
また、溶鋼側溶射層及び長辺部材側溶射層は、冷却板表面に直接溶射して形成できるが、Ni又はNiを主体とする合金のめっき層を介して、冷却板に溶射して形成することも可能である。
そして、図2に示すように、冷却板19に形成された溶鋼側溶射層24の長辺部材側端面25を、長辺部材側溶射層26で覆うことも可能である。
この場合、長辺部材側溶射層26の端面27は溶鋼と接触することになるので、溶鋼による部分的な摩耗が発生する恐れがある。このため、溶鋼側溶射層24と長辺部材側溶射層26の硬度を溶鋼側溶射層20の硬度と同程度にすることが好ましい。
In addition, it is preferable to add a cermet to the molten steel side sprayed layer and the long side member side sprayed layer, using the above-mentioned alloy as a matrix. Here, as the wear-resistant hard ceramic constituting the cermet, for example, any one or more of carbide, oxide, boride, nitride, and silicide can be used.
The molten steel side sprayed layer and the long side member side sprayed layer can be formed by spraying directly on the surface of the cooling plate, but are formed by spraying on the cooling plate through a plating layer of Ni or an alloy mainly composed of Ni. It is also possible.
As shown in FIG. 2, the long-side member-side end surface 25 of the molten steel-side sprayed layer 24 formed on the cooling plate 19 can be covered with the long-side member-side sprayed layer 26.
In this case, since the end surface 27 of the long-side member-side sprayed layer 26 comes into contact with the molten steel, there is a possibility that partial wear due to the molten steel occurs. For this reason, it is preferable that the hardness of the molten steel side sprayed layer 24 and the long-side member-side sprayed layer 26 is set to the same level as the hardness of the molten steel side sprayed layer 20.

鋳型10の使用に際しては、製造する鋳片の大きさに応じて間隔Dを調整するために、一対の長辺部材13、14の長手方向中央部を中心として、一対の短辺部材11、12を線対称に移動させるので、短辺部材11、12の端部が損耗する。このため、溶射によって短辺部材の幅の減少分を再生する。この方法としては、短辺部材の端部の損耗部分を切削することなく、その上から溶射を行うことができるが、従来のめっき層を形成する場合のように、冷却板の側面と溶射層の境界部から冷却板側へ、例えば、1mm以下(好ましくは0.5mm以下)程度切削した後、溶射を行うこともできる。
このように、短辺部材の端部に生じた損耗部分を溶射により再生し、短辺部材の復元ができるので、従来のようにめっき処理を行う必要がなく、作業工程の短縮及び簡略化を図ることができる。
When using the mold 10, the pair of short side members 11, 12 is centered on the center in the longitudinal direction of the pair of long side members 13, 14 in order to adjust the distance D according to the size of the slab to be manufactured. Are moved in line symmetry, so that the ends of the short side members 11 and 12 are worn out. For this reason, the reduced portion of the width of the short side member is regenerated by thermal spraying. As this method, it is possible to perform thermal spraying from above without cutting the worn part at the end of the short side member. However, as in the case of forming a conventional plating layer, the side surface of the cooling plate and the thermal spray layer After cutting from the boundary portion to the cooling plate side, for example, by about 1 mm or less (preferably 0.5 mm or less), thermal spraying can also be performed.
In this way, the worn part generated at the end of the short side member can be regenerated by thermal spraying, and the short side member can be restored, so there is no need to perform plating as in the conventional case, and the work process can be shortened and simplified. Can be planned.

次に、本発明の一実施の形態に係る連続鋳造用鋳型の製造方法について、図1及び図3(A)〜(E)を参照しながら説明する。
まず、図3(A)に示すように、短辺部材12(短辺部材11も同様)を構成する冷却板19を準備し、図3(B)に示すように、冷却板19の両端面(長辺部材接触面側)に、前記したCu系の自溶合金を溶射し、仮長辺部材側溶射膜28を形成する。
次に、図3(C)に示すように、仮長辺部材側溶射膜28が形成された冷却板19の溶鋼との接触側となる面に、前記したNi基自溶合金を溶射し、仮溶鋼側溶射膜29を形成する。
これにより、仮長辺部材側溶射膜28の溶鋼側の端面30は、仮溶鋼側溶射膜29に覆われる。
Next, a method for manufacturing a continuous casting mold according to an embodiment of the present invention will be described with reference to FIGS. 1 and 3A to 3E.
First, as shown in FIG. 3A, a cooling plate 19 constituting the short side member 12 (the same applies to the short side member 11) is prepared, and as shown in FIG. 3B, both end faces of the cooling plate 19 are prepared. The above-described Cu-based self-fluxing alloy is sprayed on the long-side member contact surface side to form the temporary long-side member-side sprayed film 28.
Next, as shown in FIG. 3C, the above-described Ni-based self-fluxing alloy is sprayed on the surface of the cooling plate 19 on which the temporary long-side member-side sprayed film 28 is formed in contact with the molten steel, A temporary molten steel side sprayed film 29 is formed.
Thereby, the end surface 30 on the molten steel side of the temporary long side member-side sprayed film 28 is covered with the temporary molten steel-side sprayed film 29.

なお、図3(B)と図3(C)に示す溶射の順序を逆にして、冷却板19の溶鋼との接触側となる面に仮溶鋼側溶射膜を形成した後、冷却板19の両端面(長辺部材接触面側)に仮長辺部材側溶射膜を形成することも可能である。この方法で短辺部材を製造する場合、図2に示すように、長辺部材側溶射層26の端面27は溶鋼に接触するので、溶鋼側溶射層24と長辺部材側溶射層26を構成する溶射材に、例えば、同一のNi基自溶合金を使用することが好ましい。
また、使用した短辺部材12の幅の減少分を再生する場合には、必要に応じてその損耗部分を平滑に研削した後、また、冷却板の側面と溶射層の境界部から冷却板側へかけて研削した後、その上から溶射を行って短辺部材を復元する。
In addition, after reversing the order of the thermal spraying shown in FIG. 3 (B) and FIG. 3 (C), after forming the temporary molten steel side sprayed film on the surface of the cooling plate 19 on the contact side with the molten steel, It is also possible to form a temporary long-side member-side sprayed film on both end surfaces (long-side member contact surface side). When the short side member is manufactured by this method, as shown in FIG. 2, the end surface 27 of the long side member-side sprayed layer 26 is in contact with the molten steel, so that the molten steel side sprayed layer 24 and the long side member-side sprayed layer 26 are configured. For example, the same Ni-based self-fluxing alloy is preferably used as the thermal spraying material.
In addition, when regenerating the reduced width of the used short side member 12, the worn portion is ground smoothly as necessary, and the cooling plate side is also separated from the boundary between the side surface of the cooling plate and the sprayed layer. After grinding, the thermal spraying is performed from above to restore the short side member.

そして、図3(D)に示すように、仮溶鋼側溶射膜29の端面31に、更にNi基自溶合金を溶射して、仮溶鋼側溶射膜29の端部の溶射不足部に補充溶射層32を形成する。なお、この補充溶射層は、溶射層18の厚みに応じて形成しなくてもよい。
冷却板19に仮溶射層33(仮長辺部材側溶射膜28、仮溶鋼側溶射膜29及び補充溶射層32によって構成される)を形成した後は、この溶射層33を900℃以上1100℃以下(ここでは980℃)で熱処理(フュージング)する。この熱処理は無酸素雰囲気中、又は例えば窒素ガスを充満させた不活性雰囲気中で、例えば10分以上30分以下程度行うことが好ましい。その方法として、鋳型品質を均一にするという観点から、加熱炉を用いて炉内で行うことが好ましいが、例えば、バーナー又はレーザーを用いて行うことも可能である。
このように、熱処理を900℃以上で実施することで、冷却板の溶体化処理を行うと共に、溶射層の溶融処理が行われ、溶射膜の冷却板への密着力が向上する。一方、熱処理を1100℃以下としたのは、溶射膜の融点が約1100℃であることに起因する。
Then, as shown in FIG. 3 (D), Ni-based self-fluxing alloy is further sprayed onto the end face 31 of the provisional molten steel side sprayed film 29, and supplementary spraying is applied to the sprayed shortage portion at the end of the provisional molten steel side sprayed film 29. Layer 32 is formed. This supplementary sprayed layer may not be formed according to the thickness of the sprayed layer 18.
After forming the temporary sprayed layer 33 (comprised of the temporary long-side member-side sprayed film 28, the temporary sprayed steel-side sprayed film 29, and the supplementary sprayed layer 32) on the cooling plate 19, the sprayed layer 33 is heated to 900 ° C. or higher and 1100 ° C. Heat treatment (fusing) is performed below (here, 980 ° C.). This heat treatment is preferably performed in an oxygen-free atmosphere or in an inert atmosphere filled with nitrogen gas, for example, for about 10 minutes to 30 minutes. The method is preferably performed in a furnace using a heating furnace from the viewpoint of uniform mold quality, but can also be performed using, for example, a burner or a laser.
Thus, by performing heat processing at 900 degreeC or more, while performing the solution treatment of a cooling plate, the fusion | melting process of a sprayed layer is performed and the adhesive force to the cooling plate of a sprayed film improves. On the other hand, the heat treatment is set to 1100 ° C. or lower because the melting point of the sprayed film is about 1100 ° C.

以上の方法で、冷却板19の裏面側を除く部分に形成した仮溶射層33を、図3(E)の一点鎖線に示す位置で切削(研削)し、厚みT1の溶鋼側溶射層20と厚みT2の長辺部材側溶射層21をそれぞれ形成する。このように、機械加工を施すことで、角を直角にした溶射層18を形成できる。
なお、長辺部材は、図1(B)に示すように、鋳型10を構成する際に一対の長辺部材13、14が対向する面となる冷却板34の面に、Ni又はCoのめっき層23を形成して製造する。
The temporary sprayed layer 33 formed on the portion excluding the back surface side of the cooling plate 19 by the above method is cut (ground) at the position indicated by the one-dot chain line in FIG. Long-side member-side sprayed layers 21 having a thickness T2 are formed. Thus, the thermal spraying layer 18 which made the angle | corner a right angle can be formed by machining.
As shown in FIG. 1B, the long-side member is plated with Ni or Co on the surface of the cooling plate 34 which is a surface where the pair of long-side members 13 and 14 face when the mold 10 is formed. Layer 23 is formed and manufactured.

この一対の短辺部材11、12及び一対の長辺部材13、14の冷却板19、34の裏面側にバックプレートを取付けた後、図1(A)、(B)に示すように、一対の短辺部材11、12を間隔Dを有して対向配置し、この短辺部材11、12を挟み込んで一対の長辺部材13、14を配置して、空間15を有する連続鋳造用鋳型10を製造する。なお、短辺部材と長辺部材の各冷却板への導水溝の形成は、バックプレートが取付けられる前に予め行っておく。
この鋳型10の使用に際しては、製造する鋳片の形状に応じて、一対の長辺部材13、14の長手方向中央部を中心とし、一対の短辺部材11、12を線対称に移動させて間隔Dを調整した後、空間15内に溶鋼を流し込み凝固させて鋳片を製造する。
以上のことから、従来のように、例えば、短辺部材の端面保護のためにめっき処理を行うことなく、また短辺部材の端部の損耗部分の復元のために溶接処理を行うことなく、短辺部材を製造できるので、製造工程の短縮と簡略化を図ることができる。
After attaching a back plate to the back side of the cooling plates 19 and 34 of the pair of short side members 11 and 12 and the pair of long side members 13 and 14, as shown in FIGS. The short-side members 11 and 12 are opposed to each other with a distance D, and the pair of long-side members 13 and 14 are arranged with the short-side members 11 and 12 sandwiched therebetween, and a continuous casting mold 10 having a space 15. Manufacturing. In addition, formation of the water guide groove to each cooling plate of the short side member and the long side member is performed in advance before the back plate is attached.
When using this mold 10, depending on the shape of the slab to be manufactured, the pair of short side members 11, 12 are moved symmetrically about the center in the longitudinal direction of the pair of long side members 13, 14 After adjusting the distance D, the molten steel is poured into the space 15 and solidified to produce a slab.
From the above, as in the prior art, for example, without performing a plating process for protecting the end face of the short side member, and without performing a welding process for restoring the worn part at the end of the short side member, Since the short side member can be manufactured, the manufacturing process can be shortened and simplified.

以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の連続鋳造用鋳型及びその製造方法を構成する場合も本発明の権利範囲に含まれる。
また、溶射層の材質は、前記実施の形態に記載されたものに限定されるものでなく、鋳造条件(例えば、溶鋼温度又は鋳造速度)に応じて適宜選択できる。
As described above, the present invention has been described with reference to one embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. Other embodiments and modifications conceivable within the scope of the above are also included. For example, the case where the continuous casting mold of the present invention and the manufacturing method thereof are configured by combining some or all of the above-described embodiments and modifications are also included in the scope of the present invention.
Further, the material of the sprayed layer is not limited to those described in the above embodiment, and can be appropriately selected according to casting conditions (for example, molten steel temperature or casting speed).

(A)は本発明の一実施の形態に係る連続鋳造用鋳型の平面図、(B)は(A)の点線内を部分拡大した説明図である。(A) is a top view of the casting mold for continuous casting according to an embodiment of the present invention, and (B) is an explanatory view in which the inside of the dotted line in (A) is partially enlarged. 変形例に係る連続鋳造用鋳型の部分拡大平面図である。It is the elements on larger scale of the continuous casting mold which concerns on a modification. (A)〜(E)は本発明の一実施の形態に係る連続鋳造用鋳型の製造方法の説明図である。(A)-(E) are explanatory drawings of the manufacturing method of the casting mold for continuous casting which concerns on one embodiment of this invention. (A)は従来例に係る連続鋳造用鋳型の平面図、(B)は(A)の点線内を部分拡大した説明図である。(A) is a top view of the casting mold for continuous casting according to the conventional example, (B) is an explanatory view partially enlarged in the dotted line of (A).

10:連続鋳造用鋳型、11、12:短辺部材、13、14:長辺部材、15:空間、16:溶鋼接触面、17:長辺部材接触面、18:溶射層、19:冷却板、20、21:溶射層、22:溶鋼側端面、23:めっき層、24:溶鋼側溶射層、25:長辺部材側端面、26:長辺部材側溶射層、27:端面、28:仮長辺部材側溶射膜、29:仮溶鋼側溶射膜、30、31:端面、32:補充溶射層、33:仮溶射層、34:冷却板 10: mold for continuous casting, 11, 12: short side member, 13, 14: long side member, 15: space, 16: molten steel contact surface, 17: long side member contact surface, 18: sprayed layer, 19: cooling plate 20, 21: sprayed layer, 22: molten steel side end surface, 23: plated layer, 24: molten steel side sprayed layer, 25: long side member side end surface, 26: long side member side sprayed layer, 27: end surface, 28: temporary Long side member side sprayed film, 29: Temporary steel side sprayed film, 30, 31: End face, 32: Supplementary sprayed layer, 33: Temporary sprayed layer, 34: Cooling plate

Claims (2)

間隔を有して対向配置され移動可能な一対の短辺部材と、該短辺部材を挟み込んで配置される一対の長辺部材とを備え、該一対の短辺部材と該一対の長辺部材とで形成される空間内に溶鋼を流し込み凝固させて鋳片を製造する連続鋳造用鋳型において、前記一対の長辺部材の内側対向面にめっき層を形成すると共に、前記長辺部材に接する前記短辺部材の長辺部材接触面に溶射層を形成し、しかも、前記長辺部材接触面の溶射層の硬度は、前記一対の長辺部材の内側対向面に形成しためっき層の硬度よりも小さいことを特徴とする連続鋳造用鋳型。 A pair of short side members that are arranged to be opposed to each other with a gap and movable, and a pair of long side members that are sandwiched between the short side members, and the pair of short side members and the pair of long side members In a continuous casting mold for producing a slab by pouring molten steel into a space formed by and solidifying, a plating layer is formed on the inner facing surface of the pair of long side members, and the long side member is in contact with the long side member A thermal spray layer is formed on the long side member contact surface of the short side member, and the hardness of the thermal spray layer of the long side member contact surface is higher than the hardness of the plating layer formed on the inner facing surface of the pair of long side members. A continuous casting mold characterized by its small size. 請求項1記載の連続鋳造用鋳型において、前記長辺部材の内側対向面に形成されためっき層はNiめっき層であって、前記溶射層を形成する溶射材は、Ni:5質量%以上30質量%以下、Si:1.0質量以上4.0質量%以下、B:0.5質量%以上3.0質量%以下、残部Cuからなる自溶合金であることを特徴とする連続鋳造用鋳型。 2. The continuous casting mold according to claim 1, wherein the plating layer formed on the inner facing surface of the long side member is a Ni plating layer, and the thermal spray material forming the thermal spray layer is Ni: 5 mass% or more and 30%. Continuous casting, characterized in that it is a self-fluxing alloy comprising: mass% or less, Si: 1.0 mass % or more and 4.0 mass% or less, B: 0.5 mass% or more and 3.0 mass% or less, and the balance Cu. Mold.
JP2005179430A 2005-06-20 2005-06-20 Continuous casting mold Active JP4759326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179430A JP4759326B2 (en) 2005-06-20 2005-06-20 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005179430A JP4759326B2 (en) 2005-06-20 2005-06-20 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP2006346733A JP2006346733A (en) 2006-12-28
JP4759326B2 true JP4759326B2 (en) 2011-08-31

Family

ID=37643115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179430A Active JP4759326B2 (en) 2005-06-20 2005-06-20 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP4759326B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528005U (en) * 1978-08-05 1980-02-23
JPS5764446A (en) * 1980-10-06 1982-04-19 Hitachi Zosen Corp Mold for continuous casting equipment
JPS5782440U (en) * 1981-09-01 1982-05-21
JPS5813446A (en) * 1981-07-18 1983-01-25 Mishima Kosan Co Ltd Mold for continuous casting
JPS58221634A (en) * 1982-06-16 1983-12-23 Mishima Kosan Co Ltd Casting mold for continuous casting
JPS5954446A (en) * 1982-09-22 1984-03-29 Mishima Kosan Co Ltd Casting mold for continuous casting and its production
JPS5973153A (en) * 1982-10-21 1984-04-25 Mishima Kosan Co Ltd Mold for continuous casting and its production
JPS63104752A (en) * 1986-10-22 1988-05-10 Sumitomo Metal Ind Ltd Surface treating method for mold for continuous casting
JPH0881750A (en) * 1994-09-13 1996-03-26 Nippon Steel Corp Thermal spraying method to casting mold for continuous casting
JPH10305351A (en) * 1997-05-08 1998-11-17 Nkk Corp Mending method of continuous casting mold
JPH1157949A (en) * 1997-08-19 1999-03-02 Mishima Kosan Co Ltd Mold for continuous casting
JPH11179491A (en) * 1997-12-22 1999-07-06 Mishima Kosan Co Ltd Mold for continuous casting

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528005U (en) * 1978-08-05 1980-02-23
JPS5764446A (en) * 1980-10-06 1982-04-19 Hitachi Zosen Corp Mold for continuous casting equipment
JPS5813446A (en) * 1981-07-18 1983-01-25 Mishima Kosan Co Ltd Mold for continuous casting
JPS5782440U (en) * 1981-09-01 1982-05-21
JPS58221634A (en) * 1982-06-16 1983-12-23 Mishima Kosan Co Ltd Casting mold for continuous casting
JPS5954446A (en) * 1982-09-22 1984-03-29 Mishima Kosan Co Ltd Casting mold for continuous casting and its production
JPS5973153A (en) * 1982-10-21 1984-04-25 Mishima Kosan Co Ltd Mold for continuous casting and its production
JPS63104752A (en) * 1986-10-22 1988-05-10 Sumitomo Metal Ind Ltd Surface treating method for mold for continuous casting
JPH0881750A (en) * 1994-09-13 1996-03-26 Nippon Steel Corp Thermal spraying method to casting mold for continuous casting
JPH10305351A (en) * 1997-05-08 1998-11-17 Nkk Corp Mending method of continuous casting mold
JPH1157949A (en) * 1997-08-19 1999-03-02 Mishima Kosan Co Ltd Mold for continuous casting
JPH11179491A (en) * 1997-12-22 1999-07-06 Mishima Kosan Co Ltd Mold for continuous casting

Also Published As

Publication number Publication date
JP2006346733A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP7425944B2 (en) Manufacturing method of continuous casting mold
JP4759326B2 (en) Continuous casting mold
JP6360188B2 (en) Manufacturing method of machining tool spare material and corresponding spare material
CN108570674A (en) A kind of low-melting alloy laser cladding forming method
JP4659796B2 (en) Method for repairing continuous casting mold and repaired continuous casting mold
JP3563587B2 (en) Hot width reduction press tool and manufacturing method thereof
KR101942932B1 (en) Mold and method for manufacturing the same
CN101450410B (en) Conticaster crystallizer copperplate surface alloy brazing method
JP2000301542A (en) Heat conductive composite mold and its manufacture
KR101281757B1 (en) Electro Gas Welding Method
JP7422302B2 (en) Manufacturing method of continuous casting mold
KR20190076735A (en) Method for coating mold of continuous casting apparatus and mold with coating layer
JP3380425B2 (en) Twin drum type continuous casting drum
JP3622437B2 (en) Continuous casting mold and continuous casting method using the same
JPH10230348A (en) Mold for continuous casting
JP4694227B2 (en) Continuous casting mold
JPH10211558A (en) Continuous casting method for high speed tool steel billet
JPS5929342B2 (en) Method of applying differential thickness plating to the inner surface of a continuous casting mold
JP2009160632A (en) Mold for continuous casting
JPH06269925A (en) Production of composite material having excellent wear resistance and toughness and composite material having excellent wear resistance and toughness
JPS62114749A (en) Wear plate member for ingot supporting device
JPH01162571A (en) Manufacture of die
JP2004017076A (en) Die for hot slab width-reducing press
JPH11226722A (en) Composite roll for rolling
JPH10220175A (en) Manufacture of cemented-carbide cutter bit and cemented-carbide cutter bit thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Ref document number: 4759326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250