JP2000301542A - Heat conductive composite mold and its manufacture - Google Patents

Heat conductive composite mold and its manufacture

Info

Publication number
JP2000301542A
JP2000301542A JP11114424A JP11442499A JP2000301542A JP 2000301542 A JP2000301542 A JP 2000301542A JP 11114424 A JP11114424 A JP 11114424A JP 11442499 A JP11442499 A JP 11442499A JP 2000301542 A JP2000301542 A JP 2000301542A
Authority
JP
Japan
Prior art keywords
mold
heat
welding
copper
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11114424A
Other languages
Japanese (ja)
Inventor
Fumio Toyama
文夫 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11114424A priority Critical patent/JP2000301542A/en
Publication of JP2000301542A publication Critical patent/JP2000301542A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase an inner cooling effect with a low cost by forming a heat conductive layer of copper or copper alloy having specific heat conductivity at all or partial non-operating surface of a mold of steel at the surface by high energy overlay welding. SOLUTION: A heat conductive layer having heat conductivity of 250 W/m/K or above is formed in a predetermined thickness on a non-operating surface of a mold of steel at an operating surface by high energy overlay welding. Since smooth overlay is difficult due to large thermal conductivity of pure copper when two or above layers are overlaid to increase a thickness of the layer, a matrix is preheated to about 700 deg.C or above and overlaid. However, since the matrix is heated to a tempering temperature or above and softened, it is necessary to heat treat to re-quench and temper it. When the overlay welding of the pure copper is conducted, for example, by enhancing a density of an arc having a high energy density by a pulse power source, welding of no defect can be performed even when a preheating temperature of the matrix is lowered as compared with the tempering temperature. Thus, the mold having high internal heat conductivity and a good cooling efficiency can be easily, inexpensively provided, and an operating efficiency of molding can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融金属の鋳造用
金型、若しくは溶融プラスチックなどの各種材料を成形
する金型及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for casting molten metal or a mold for molding various materials such as molten plastic, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、溶融金属の鋳造用金型やプラスチ
ックなどを成形する成形用金型などの高温で使用される
金属材料には、熱間ダイス鋼、ステンレス鋼などの鋼や
鋳鉄が使用されるほか、一部にはこれらより熱伝導性の
大きい銅合金が一体型として用いられてきた。
2. Description of the Related Art Conventionally, steels such as hot die steel and stainless steel and cast iron are used as metal materials used at high temperatures such as a casting mold for molten metal and a molding mold for forming plastics. In addition, copper alloys having higher thermal conductivity than these have been used as integral parts.

【0003】しかし、鋼あるいは鋳鉄は熱伝導度が必ず
しも高くないため、成形作業の際に金型の成形面近傍の
温度が上昇して、金型の形状や構造によっては、金型内
に生ずる大きな温度むらのために金型に変形が生じた
り、摩耗などが増加する。このような金型の温度上昇の
ために、従来は単位時間当りの成形サィクル数を上げる
ことが困難であった。一方、熱伝導性の大きい銅合金の
金型は強度が小さいので摩耗が大きく寿命が短いという
問題点があった。
However, since the heat conductivity of steel or cast iron is not always high, the temperature in the vicinity of the molding surface of the mold rises during the molding operation, and the temperature is generated in the mold depending on the shape and structure of the mold. Due to the large uneven temperature, the mold is deformed and abrasion increases. Conventionally, it has been difficult to increase the number of molding cycles per unit time due to such a rise in the temperature of the mold. On the other hand, a mold of a copper alloy having high thermal conductivity has a problem that the wear is large and the life is short because the strength is low.

【0004】そこで出願人は、先に金型の作業面の裏面
に銅等を接合することにより熱伝導性を増して上記欠点
を改善した高熱伝導性複合金型の製造方法を開示した
(特許第2642661号)。これらの接合方法として
は、金型の作業面の裏面に溶融した銅等を鋳造して接合
したり、銅ろうを間に介在させて鋼と銅等を接合した
り、銅等の粉末をHIP(高温アイソスタティックプレ
ス)法により固着して銅層を形成させたりする方法が行
われた。これらの方法は厚い熱伝導層を形成することが
容易であるので、熱伝導性が良く金型の過熱を防止する
のに効果がある。
Therefore, the applicant has disclosed a method of manufacturing a high heat conductive composite mold in which the above-mentioned disadvantage is improved by increasing the heat conductivity by bonding copper or the like to the back surface of the work surface of the mold (Japanese Patent No. No. 2642661). These joining methods include casting and joining molten copper or the like to the back surface of the working surface of the mold, joining steel and copper or the like with copper brazing interposed, or powdering copper or the like by HIP. (High-temperature isostatic press) to form a copper layer by bonding. Since these methods can easily form a thick heat conductive layer, they have good thermal conductivity and are effective in preventing the mold from overheating.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記溶
融法では鋼と銅等との接合部の拡散層に脆化層が発生す
る場合があり、接合後の冷却時に接合部に剥離が生じや
すいという問題点があった。また、焼入れ・焼もどし熱
処理した鋼の作業面に銅等を溶融接合すると、接合の際
の予熱と接合時の温度上昇により型が焼き戻しされて軟
化するために、接合後に再熱処理しなければならなかっ
た。この再熱処理の際にも、鋼と銅等の膨張の差により
前記脆化層から剥離することがあるという問題点があっ
た。
However, in the above-mentioned melting method, an embrittlement layer may be generated in a diffusion layer at a joint between steel and copper or the like, and peeling is likely to occur at the joint during cooling after joining. There was a problem. Also, when copper and the like are melt-bonded to the work surface of steel that has been quenched and tempered, the mold is tempered and softened by preheating at the time of joining and temperature rise at the time of joining. did not become. Also during this reheat treatment, there is a problem that the material may be separated from the embrittlement layer due to a difference in expansion between steel and copper.

【0006】一方、銅ろうを用いて接合すると、鋼と銅
等との間の熱伝導度が低下して冷却効果が減ずるという
欠点があり、HIP法ではコストが高くなるという問題
点がある。
[0006] On the other hand, when joining is performed using copper brazing, there is a disadvantage that the thermal conductivity between steel and copper or the like is reduced and the cooling effect is reduced, and the HIP method has a problem that the cost is increased.

【0007】また、この熱伝導層を肉盛溶接により形成
することもできるが、通常の肉盛溶接では銅などの熱伝
導度が大きい材料は溶融プールができ難いために、2層
以上の肉盛が難しく厚い熱伝導層を得ることが困難であ
った。この場合、厚い肉盛層を形成するには作業面の母
材を700℃以上に予熱して溶接するのが通常である
が、500〜700℃で焼もどしされた母材を700℃
以上に予熱すると硬さが低下するため、溶接後再焼入れ
・焼もどし処理が必要になる。この再熱処理の際に接合
面が剥離したり、あるいは金型に歪みが生ずるなどの問
題点があった。
[0007] The heat conductive layer can be formed by overlay welding. However, in ordinary overlay welding, it is difficult to form a molten pool of a material having high thermal conductivity such as copper. It was difficult to assemble and obtain a thick heat conductive layer. In this case, in order to form a thick build-up layer, it is usual to preheat the base material of the working surface to 700 ° C. or more and weld it. However, the base material tempered at 500 to 700 ° C. is heated to 700 ° C.
Preheating as described above lowers the hardness, so that re-quenching / tempering treatment is required after welding. At the time of this reheat treatment, there were problems such as peeling of the bonding surface or distortion of the mold.

【0008】そこで本発明は、厚い熱伝導層を有して冷
却効果が大きく、かつ鋼と銅等との接合部の脆化層の生
成をできる限り防止して、接合面の接合不良の発生を無
くするとともに、接合処理後の再焼入れなどの熱処理を
不要にした高熱伝導性複合金型の製造方法を提供するこ
とを目的とする。
Accordingly, the present invention has a large heat conducting layer, has a large cooling effect, and prevents the formation of an embrittlement layer at the joint between steel and copper as much as possible, thereby causing poor joint at the joint surface. It is an object of the present invention to provide a method of manufacturing a high heat conductive composite mold which eliminates heat treatment and eliminates the need for heat treatment such as re-quenching after the joining treatment.

【0009】このように熱伝導層を厚くして金型内部の
熱伝導性を増し、内部冷却効果を大きくして金型内の温
度むらを小さくすることにより、金型の変形を抑えると
ともに、ヒートクラックの発生進展が抑えられ、金型寿
命が向上する。かつ製品成形サイクル時間を短縮して成
形能率を向上することができる。さらに本発明の金型
は、HIP法などよりも低コストで提供できる。
As described above, by increasing the thermal conductivity inside the mold by increasing the thickness of the heat conducting layer, increasing the internal cooling effect and reducing the temperature unevenness inside the mold, the deformation of the mold can be suppressed. The development of heat cracks is suppressed, and the life of the mold is improved. In addition, the molding efficiency can be improved by shortening the product molding cycle time. Further, the mold of the present invention can be provided at a lower cost than the HIP method or the like.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明の高熱伝導性複合金型及びその製造方法は、作
業面が鋼からなる金型の非作業面の全体または一部に、
250W/m/K以上の熱伝導率を有する銅または銅合
金の熱伝導層を高エネルギ肉盛溶接により形成させたこ
とを特徴とするものである。
SUMMARY OF THE INVENTION In order to achieve the above object, a highly heat conductive composite mold and a method of manufacturing the same according to the present invention include:
A heat conductive layer of copper or a copper alloy having a heat conductivity of 250 W / m / K or more is formed by high-energy overlay welding.

【0011】また、前記作業面が焼入れ・焼もどし熱処
理された鋼からなり、前記熱伝導層が高エネルギ肉盛溶
接による10mm以上の厚さの純銅により形成されるこ
とが望ましい。この純銅としては99.99%Cu以上
の純度であることが熱伝導率の点から望ましい。
It is preferable that the work surface is made of quenched and tempered heat-treated steel, and the heat conductive layer is formed of pure copper having a thickness of 10 mm or more by high-energy overlay welding. It is desirable that the pure copper has a purity of 99.99% Cu or more from the viewpoint of thermal conductivity.

【0012】また、前記高エネルギ肉盛溶接はパルスM
IG溶接によることが望ましく、前記金型の作業面は焼
入れ後500℃以上の温度で焼もどし熱処理された鋼か
らなり、前記肉盛溶接時に前記焼もどし温度以下に予熱
し、肉盛溶接中の作業面の温度を前記焼もどし温度以下
に保持しつつ高エネルギ肉盛溶接することが望ましい。
Further, the high energy overlay welding is performed by using a pulse M
It is desirable to perform IG welding, and the working surface of the mold is made of steel that has been tempered and heat-treated at a temperature of 500 ° C. or more after quenching, and is preheated to the tempering temperature or less at the time of the overlay welding. It is desirable to perform high-energy overlay welding while maintaining the temperature of the work surface at or below the tempering temperature.

【0013】ここで金型の作業面とは、単に面をいうだ
けでなく作業面を含む金型の部分(以下母材ともいう)
を総称する。また、非作業面とは、該母材の型面などに
対する裏面や側面などの面をいうものである。また熱伝
導層とは、母材より熱伝導率の高い材料で形成された母
材の熱を伝熱して母材を均一に冷却させるための層をい
う。
Here, the work surface of the mold means not only a surface but also a portion of the mold including the work surface (hereinafter also referred to as a base material).
Are collectively referred to. The non-work surface refers to a surface such as a back surface or a side surface with respect to a mold surface of the base material. In addition, the heat conductive layer refers to a layer for transferring heat of a base material formed of a material having higher thermal conductivity than the base material and uniformly cooling the base material.

【0014】本発明は、熱伝導層に熱伝導率の高い高純
度の純銅を、高エネルギ肉盛溶接による10mm以上の
厚さに形成させて型の冷却効率を増したものである。即
ち、銅は熱伝導率が大きいので熱伝導層として好まし
く、一層冷却効率を上げるためには99.99%Cu以
上の純銅が望ましい。また、熱伝導層の厚さが薄いと均
一に熱伝達せず冷却効率が落ちるので、熱伝導層は10
mm以上の厚さが要求される。
According to the present invention, the cooling efficiency of the mold is increased by forming high-purity pure copper having a high thermal conductivity on the heat conductive layer to a thickness of 10 mm or more by high energy overlay welding. That is, copper is preferable as the heat conductive layer because of its high thermal conductivity, and pure copper of 99.99% Cu or more is desirable for further improving the cooling efficiency. Further, if the thickness of the heat conductive layer is small, heat is not uniformly transferred and the cooling efficiency is reduced.
mm or more is required.

【0015】かかる純銅の熱伝導層の形成方法として、
鋼に一層だけ純銅を肉盛溶接することは一般的溶接法
(MIG法、TIG法、粉体肉盛法等)によっても、そ
れ程困難ではなく、予熱無しに溶接肉盛することも可能
である。
As a method for forming such a pure copper heat conductive layer,
It is not so difficult to weld only one layer of pure copper to steel by a general welding method (MIG method, TIG method, powder overlay method, etc.), and it is also possible to perform overlay welding without preheating. .

【0016】しかし、肉盛層を厚くするために2層以上
肉盛する際に、熱伝導率が250W/m/Kのように高
い金属、例えば純銅の上にさらに純銅を肉盛する場合に
は、純銅の熱伝導率が大きいために溶融プールができ難
く平滑な肉盛ができない。そのために、通常の肉盛溶接
では予熱無しに復層の肉盛を行うことは困難で、前記1
0mmのような厚い熱伝導層を形成することは難しい。
このために、母材を700℃以上に予熱して溶接肉盛す
るのが通常である。
However, when two or more layers are clad in order to increase the thickness of the cladding layer, when pure copper is further clad on a metal having a high thermal conductivity such as 250 W / m / K, for example, pure copper. However, since the thermal conductivity of pure copper is large, it is difficult to form a molten pool and a smooth build-up cannot be performed. For this reason, it is difficult to perform resurfacing without preheating by ordinary overlay welding.
It is difficult to form a heat conductive layer as thick as 0 mm.
For this purpose, it is usual to preheat the base material to 700 ° C. or higher and build up the weld by welding.

【0017】しかし、このように700℃以上に予熱す
ると、通常500〜700℃で焼もどし熱処理される母
材は焼もどし温度以上に加熱されて軟化するため、再焼
入れ・焼もどし熱処理が必要になる。そして、この再熱
処理の際に接合面が剥離したり、あるいは金型に歪みが
生ずるなどの問題点があった。
However, when preheating to 700 ° C. or more, the base material that is usually tempered and heat-treated at 500 to 700 ° C. is heated to a temperature equal to or higher than the tempering temperature and softens, so that re-quenching and tempering heat treatment is required. Become. Then, at the time of this re-heat treatment, there were problems such as peeling of the bonding surface or distortion of the mold.

【0018】本発明者らは、純銅の肉盛溶接を高エネル
ギ密度の溶接、例えばパルス電源を用いてアークを高密
度化した溶接によれば、母材の予熱温度をその焼もどし
温度(500〜700℃)より低くし、かつ肉盛溶接中
の母材の温度上昇も焼もどし温度(500〜700℃)
より低くして肉盛溶接しても、無欠陥で健全な肉盛溶接
が可能になることを見出だし、上記問題点を解決したも
のである。この高エネルギ溶接は2層目以降の肉盛にの
み使用しても良い。
According to the present inventors, according to the high-energy-density welding of pure copper overlay welding, for example, welding in which the arc is densified using a pulse power source, the preheating temperature of the base material is set to the tempering temperature (500%). -700 ° C), and the temperature rise of the base metal during overlay welding and tempering temperature (500-700 ° C)
It has been found that even if the welding is performed at a lower temperature, it is possible to achieve a sound welding without any defect and that the above problem is solved. This high-energy welding may be used only for the second and subsequent layers.

【0019】このように肉盛溶接時の保持温度を焼もど
し温度より低くすれば、純銅の熱伝導層を肉盛しても鋼
母材の硬さの低下がなく、従来の溶接法のような肉盛溶
接後の再熱処理を基本的には必要としないので、熱伝導
層の剥離や型の歪みが少なくなる。肉盛後の型は、通常
残留応力の除去のために歪み取り熱処理されるが、歪み
取り熱処理は焼もどし温度以下で行われるので硬さの低
下などはない。
If the holding temperature during the overlay welding is lower than the tempering temperature in this manner, the hardness of the steel base material does not decrease even when the thermal conduction layer of pure copper is overlaid, and the conventional welding method is used. Since a reheat treatment after the overlay welding is basically not required, peeling of the heat conductive layer and distortion of the mold are reduced. The mold after the overlaying is usually subjected to a heat treatment for removing the residual stress to remove the residual stress. However, since the heat treatment for removing the distortion is performed at a temperature equal to or lower than the tempering temperature, there is no reduction in hardness.

【0020】また、高エネルギ密度溶接によれば、前記
焼もどし温度より低温度の予熱でも復層の肉盛が容易に
なり、熱伝導が良好な厚い熱伝導層が容易に得られる。
こうして得られた複合金型材の接合面は良好で、接合界
面の伝熱抵抗を無視して伝熱計算ができる接合度を有す
ることが分かった。
Further, according to the high energy density welding, it is easy to build up the return layer even with preheating at a temperature lower than the tempering temperature, and it is possible to easily obtain a thick heat conductive layer having good heat conduction.
It was found that the joint surface of the composite mold material obtained in this way was good and had a degree of joint that allows heat transfer calculation ignoring the heat transfer resistance at the joint interface.

【0021】また、前記金型の作業面が重量比でC≦
1.1、Si≦2.00%、Mn≦2.00%、Ni≦
4.00%、Cr≦18.00%、WおよびMoの単独
または複合で(1/2W+ Mo)≦12.00%を含有
し、さらにV≦3.00%、Co≦6.5%、A1≦
l.50%、Cu≦3.00%の一種以上を含有し、残
部実質Feからなる鋼であることが高度の金型特性を得
るために望ましい。
Further, the working surface of the mold has a weight ratio of C ≦ C.
1.1, Si ≦ 2.00%, Mn ≦ 2.00%, Ni ≦
4.00%, Cr ≦ 18.00%, alone or in combination of W and Mo, containing (1 / W + Mo) ≦ 12.00%, further V ≦ 3.00%, Co ≦ 6.5% , A1 ≦
l. It is desirable to use a steel containing 50%, one or more of Cu ≦ 3.00%, and the balance substantially consisting of Fe in order to obtain high mold characteristics.

【0022】前記金型の作業面は鍛造品から切削加工に
よって作製しても良いし、鋳造により作製しても良い。
The working surface of the mold may be manufactured from a forged product by cutting or casting.

【0023】[0023]

【発明の実施の形態】以下、本発明を図示の一実施形態
について具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to an embodiment shown in the drawings.

【0024】[0024]

【実施例1】図1は実施例に用いた金型の断面図を示
す。金型の作業面(以下母材という)1は内面寸法が直
径200mm、深さ100mm、肉厚10mmの円筒キ
ャビティ1aを有し、SUS420J2鋼の鋳造により
作成された。この母材は980℃で焼入れ後、650℃
で焼もどしされてHRC27の硬さに熱処理された。
Embodiment 1 FIG. 1 is a sectional view of a mold used in the embodiment. The work surface (hereinafter, referred to as a base material) 1 of the mold has a cylindrical cavity 1a having an inner surface dimension of 200 mm in diameter, 100 mm in depth, and 10 mm in thickness, and was formed by casting SUS420J2 steel. After quenching at 980 ° C,
And heat-treated to the hardness of HRC27.

【0025】この母材は、裏面をショットブラストによ
り清浄された後、下記の条件のパルスMIG溶接によ
り、20mm厚さの純銅の肉盛層を形成した。 肉盛溶接後600℃×1.5hrの歪み取り焼きなまし
を行った。
After cleaning the back surface of the base material by shot blasting, a 20 mm thick build-up layer of pure copper was formed by pulse MIG welding under the following conditions. After the overlay welding, a strain relief annealing at 600 ° C. × 1.5 hr was performed.

【0026】肉盛溶接部界面を切断し、顕微鏡調査をし
た結果は溶接部界面は極めて良好で欠陥は認められなか
った。
As a result of cutting the interface of the weld overlay and conducting a microscopic examination, it was found that the interface of the weld zone was extremely good and no defect was observed.

【0027】また、溶接部界面の近傍の熱伝導率をレー
ザフラッシュ法により測定した結果は、SUS420J
2側で21W/m/K、界面を含む1mmの厚さの部分
(拡散層)で43W/m/K、界面より3mmはなれた
銅側(1層目)で260W/m/Kとなり、界面より6
mmはなれた銅側(2層目)では320W/m/Kとほ
ぼ純銅に近い値を示した。
The results of measuring the thermal conductivity near the weld interface by the laser flash method are shown in SUS420J.
21 W / m / K on the 2nd side, 43 W / m / K on the 1 mm thick portion (diffusion layer) including the interface, and 260 W / m / K on the copper side (1st layer) 3 mm away from the interface. 6 more
In mm, the value on the copper side (second layer) was 320 W / m / K, which was almost a value close to pure copper.

【0028】また、肉盛溶接後の母材の硬さはHRC2
7の肉盛前と変わらず、ミクロ組織も肉盛前と変化は見
られなかった。
The hardness of the base material after the overlay welding is HRC2.
7 and the microstructure was not changed from that before the buildup.

【0029】[0029]

【実施例2】実施例2は、実施例1と同じ図1に示す寸
法の金型を、SKD61鋼の鍛造材から切削加工して作
成した。この型を1050℃で焼入れ後、650℃で焼
もどししてHRC37の硬さに熱処理した。
Example 2 In Example 2, a metal mold having the same dimensions as in Example 1 shown in FIG. 1 was formed by cutting a forged material of SKD61 steel. This mold was quenched at 1050 ° C., then tempered at 650 ° C. and heat-treated to the hardness of HRC37.

【0030】この母材の裏面をショットブラストにより
清浄にした後、下記の条件のパルスMIG溶接により、
13mm厚さの純銅層を形成した。 肉盛溶接後600℃×1.5hrの歪み取り焼きなまし
を行った。
After cleaning the back surface of this base material by shot blast, pulse MIG welding under the following conditions
A pure copper layer having a thickness of 13 mm was formed. After the overlay welding, a strain relief annealing at 600 ° C. × 1.5 hr was performed.

【0031】肉盛溶接部界面を切断し、顕微鏡調査をし
た結果は溶接部界面は極めて良好で欠陥は認められなか
った。
As a result of cutting the interface of the weld overlay and examining it with a microscope, it was found that the interface of the weld zone was extremely good and no defect was observed.

【0032】溶接部界面の近傍の熱伝導率の測定結果
は、SKD61側で30W/m/Kであったが、界面を
含む1mmの厚さの部分(拡散層)、界面より3mmは
なれた銅側(1層目)では実施例1とほぼ同一数値で、
界面より6mmはなれた銅側(2層目)では同様に32
0W/m/Kとほぼ純銅に近い値を示した。
The measurement result of the thermal conductivity near the interface of the welded portion was 30 W / m / K on the SKD61 side, but the portion having a thickness of 1 mm including the interface (diffusion layer) and the copper 3 mm away from the interface were included. On the side (first layer), the values are almost the same as those in Example 1,
Similarly, on the copper side (second layer) 6 mm away from the interface, 32
0W / m / K showed a value almost equivalent to pure copper.

【0033】また、肉盛溶接後の母材の硬さ、ミクロ組
織も実施例1と同様に肉盛前と変化は見られなかった。
Further, the hardness and microstructure of the base material after the overlay welding were not changed from those before the overlay as in Example 1.

【0034】以上のべたように、本発明の高熱伝導性複
合金型及びその製造方法によれば、金型の非作業面の全
体または一部に、250W/m/K以上の熱伝導率を有
する銅、とくに純銅の10mm以上の厚い熱伝導層を有
するので、金型の熱伝導性が良く内部冷却効果が増加し
て、金型内の温度むらが小さくなり金型の変形が抑えら
れるとともに、ヒートクラックの発生が減少し金型寿命
が向上する。これにより、製品成形サイクル時間を短縮
することができ、成形能率を向上できる。
As described above, according to the high thermal conductive composite mold and the method of manufacturing the same of the present invention, the entire or a part of the non-working surface of the mold has a thermal conductivity of 250 W / m / K or more. Having a thick thermal conductive layer of 10 mm or more of copper, especially pure copper, improves the thermal conductivity of the mold and increases the internal cooling effect, reduces the temperature unevenness in the mold and suppresses the deformation of the mold. In addition, the occurrence of heat cracks is reduced and the life of the mold is improved. Thereby, the product molding cycle time can be shortened, and the molding efficiency can be improved.

【0035】この熱伝導層は、パルスMIG溶接などの
高エネルギ肉盛溶接により形成されるので、10mm以
上の厚い熱伝導層が容易に肉盛りでき、かつ鋼と純銅と
の接合部の脆化層の生成が少なく、熱伝導層の剥離など
の接合面の接合不良の発生が減少する。
Since this heat conductive layer is formed by high-energy build-up welding such as pulse MIG welding, a heat conductive layer having a thickness of 10 mm or more can be easily built up, and embrittlement of the joint between steel and pure copper. The generation of layers is small, and the occurrence of poor bonding at the bonding surface such as peeling of the heat conductive layer is reduced.

【0036】また、肉盛溶接時の母材の予熱温度、作業
温度を母材の焼もどし温度より低くしても溶接界面に欠
陥のない健全な肉盛ができるので、作業面が焼入れ・焼
もどし熱処理された鋼の場合も、肉盛溶接後の再焼入れ
焼もどしの熱処理が不要になりコストが低減できる。
Further, even if the preheating temperature and working temperature of the base material during overlay welding are lower than the tempering temperature of the base material, a sound overlay without defects at the welding interface can be obtained, so that the working surface is hardened and hardened. In the case of the steel that has been subjected to the tempering heat treatment, the heat treatment for the re-quenching and tempering after the overlay welding is not required, and the cost can be reduced.

【0037】母材を重量比でC≦1.1,Si≦2.0
0%、Mn≦2.00%、Ni≦4.00%、Cr≦1
8.00%、WおよびMoの単独または複合で(1/2
W+Mo)≦12.00%を含有し、さらにV≦3.0
0%、Co≦6.5%、A1≦l.50%、Cu≦3.
00%の一種以上を含有し、残部実質Feからなる鋼に
すると寿命の長い高性能の金型が得られ、この母材は切
削加工によっても、鋳造によって作製されても良い。
The weight ratio of the base material is C ≦ 1.1 and Si ≦ 2.0.
0%, Mn ≦ 2.00%, Ni ≦ 4.00%, Cr ≦ 1
8.00%, alone or in combination of W and Mo (1/2
W + Mo) ≦ 12.00%, and further V ≦ 3.0
0%, Co ≦ 6.5%, A1 ≦ l. 50%, Cu ≦ 3.
If the steel is made of steel containing at least one of 00% and the balance being substantially Fe, a high-performance mold having a long life is obtained, and this base material may be produced by cutting or casting.

【0038】[0038]

【発明の効果】以上説明したように、本発明の高熱伝導
性複合金型及びその製造方法によれば、内部の熱伝導性
が高く冷却効率のよい金型が、容易にかつHIP法など
より安価に提供できるので、成形の作業能率が向上して
産業の発展に寄与できる。
As described above, according to the high heat conductive composite mold and the method of manufacturing the same according to the present invention, a mold having high internal heat conductivity and good cooling efficiency can be easily and easily prepared by the HIP method or the like. Since it can be provided at low cost, the working efficiency of molding is improved, and it can contribute to the development of industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の高熱伝導性複合金型の断面図で
ある。
FIG. 1 is a sectional view of a high heat conductive composite mold according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 母材(作業面) 1a キャビティ 2 熱伝導層(肉盛部) Reference Signs List 1 base material (work surface) 1a cavity 2 heat conduction layer (facing part)

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 作業面が鋼からなる金型の非作業面の全
体または一部に、250W/m/K以上の熱伝導率を有
する銅または銅合金の熱伝導層を高エネルギ肉盛溶接に
より形成させたことを特徴とする高熱伝導性複合金型。
1. A high-energy overlay welding of a heat conductive layer of copper or a copper alloy having a heat conductivity of 250 W / m / K or more to the whole or a part of a non-work surface of a mold whose work surface is made of steel. A highly heat conductive composite mold characterized by being formed by:
【請求項2】 前記作業面が焼入れ・焼もどし熱処理さ
れた鋼からなり、前記熱伝導層が高エネルギ肉盛溶接に
よる10mm以上の厚さの純銅により形成されたことを
特徴とする請求項1に記載の高熱伝導性複合金型。
2. The work surface is made of quenched and tempered heat-treated steel, and the heat conductive layer is made of pure copper having a thickness of 10 mm or more by high-energy overlay welding. 2. The high thermal conductive composite mold according to the above.
【請求項3】 作業面が鋼からなる金型の非作業面の全
体または一部に、250W/m/K以上の熱伝導率を有
する銅または銅合金の熱伝導層を高エネルギ肉盛溶接に
より形成させたことを特徴とする高熱伝導性複合金型の
製造方法。
3. A high-energy overlay welding of a heat conductive layer of copper or a copper alloy having a heat conductivity of 250 W / m / K or more to the entire or part of the non-work surface of a mold whose work surface is made of steel. A method for producing a high heat conductive composite mold, characterized by being formed by:
【請求項4】 前記作業面が焼入れ・焼もどし熱処理さ
れた鋼からなり、前記熱伝導層が高エネルギ肉盛溶接に
よる10mm以上の厚さの純銅により形成されたことを
特徴とする請求項3に記載の高熱伝導性複合金型の製造
方法。
4. The work surface is made of quenched and tempered heat-treated steel, and the heat conductive layer is made of pure copper having a thickness of 10 mm or more by high-energy build-up welding. 3. The method for producing a highly heat-conductive composite mold according to item 1.
【請求項5】 前記金型の作業面は焼入れ後500℃以
上の温度で焼もどし熱処理された鋼からなり、前記肉盛
溶接時に前記焼もどし温度以下に予熱し、肉盛溶接中の
作業面の温度を前記焼もどし温度以下に保持しつつ高エ
ネルギ肉盛溶接することを特徴とする請求項3及び4に
記載の高熱伝導性複合金型の製造方法。
5. The work surface of the mold is made of steel that has been tempered and heat-treated at a temperature of 500 ° C. or more after quenching, and is preheated to the tempering temperature or less during the build-up welding. 5. The method for producing a high thermal conductive composite mold according to claim 3, wherein high energy overlay welding is performed while maintaining the temperature at or below the tempering temperature.
【請求項6】 前記高エネルギ肉盛溶接はパルスMIG
溶接によることを特徴とする請求項3から5のいずれか
に記載の高熱伝導性複合金型の製造方法。
6. The high-energy overlay welding is performed by pulse MIG.
The method for producing a highly heat-conductive composite mold according to any one of claims 3 to 5, wherein the method is performed by welding.
【請求項7】 前記金型の作業面が重量比でC≦1.
1、Si≦2.00%、Mn≦2.00%、Ni≦4.
00%、Cr≦18.00%、WおよびMoの単独また
は複合で(1/2W+ Mo)≦12.00%を含有し、
さらにV≦3.00%、Co≦6.5%、A1≦l.5
0%、Cu≦3.00%の一種以上を含有し、残部実質
Feからなる鋼であることを特徴とする請求項1から6
のいずれかに記載の高熱伝導性複合金型及びその製造方
法。
7. The work surface of the mold has a weight ratio of C ≦ 1.
1, Si ≦ 2.00%, Mn ≦ 2.00%, Ni ≦ 4.
00%, Cr ≦ 18.00%, containing (1 / W + Mo) ≦ 12.00% alone or in combination of W and Mo,
Further, V ≦ 3.00%, Co ≦ 6.5%, A1 ≦ l. 5
7. A steel containing at least one of 0% and Cu.ltoreq.3.00%, the balance being substantially Fe.
And a method for producing the same.
【請求項8】 前記金型の作業面は鍛造品から切削加工
によって作製されたことを特徴とする請求項1から7の
いずれかに記載の高熱伝導性複合金型及びその製造方
法。
8. The high thermal conductive composite mold according to claim 1, wherein the working surface of the mold is formed by cutting from a forged product.
【請求項9】 前記金型の作業面は鋳造により作製され
たことを特徴とする請求項1から7のいずれかに記載の
高熱伝導性複合金型及びその製造方法。
9. The high thermal conductive composite mold according to claim 1, wherein the working surface of the mold is produced by casting.
JP11114424A 1999-04-22 1999-04-22 Heat conductive composite mold and its manufacture Pending JP2000301542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11114424A JP2000301542A (en) 1999-04-22 1999-04-22 Heat conductive composite mold and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11114424A JP2000301542A (en) 1999-04-22 1999-04-22 Heat conductive composite mold and its manufacture

Publications (1)

Publication Number Publication Date
JP2000301542A true JP2000301542A (en) 2000-10-31

Family

ID=14637380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11114424A Pending JP2000301542A (en) 1999-04-22 1999-04-22 Heat conductive composite mold and its manufacture

Country Status (1)

Country Link
JP (1) JP2000301542A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025381A (en) * 2001-07-17 2003-01-29 Ricoh Co Ltd Mold apparatus for molding
WO2004039518A1 (en) * 2002-10-30 2004-05-13 Honda Motor Co., Ltd. Mold for casting and method for manufacture thereof
JP2011207143A (en) * 2010-03-30 2011-10-20 Castem:Kk Hybrid mold
CN104191547A (en) * 2014-08-09 2014-12-10 歌尔声学股份有限公司 Processing technique of core inserts and cavity inserts
CN109128733A (en) * 2018-09-29 2019-01-04 河北安迪模具有限公司 Glass mold is at blank mould fine-processing technique
CN111230430A (en) * 2019-10-23 2020-06-05 浙江中集铸锻有限公司 Manufacturing process of front die of hub forging
CN112207526A (en) * 2020-10-20 2021-01-12 江苏亨睿碳纤维科技有限公司 Composite material autoclave forming die and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025381A (en) * 2001-07-17 2003-01-29 Ricoh Co Ltd Mold apparatus for molding
WO2004039518A1 (en) * 2002-10-30 2004-05-13 Honda Motor Co., Ltd. Mold for casting and method for manufacture thereof
CN1310717C (en) * 2002-10-30 2007-04-18 本田技研工业株式会社 Mold for casting and method for manufacture thereof
US7497243B2 (en) 2002-10-30 2009-03-03 Honda Motor Co., Ltd. Mold for casting and method for manufacture thereof
JP2011207143A (en) * 2010-03-30 2011-10-20 Castem:Kk Hybrid mold
CN104191547A (en) * 2014-08-09 2014-12-10 歌尔声学股份有限公司 Processing technique of core inserts and cavity inserts
CN109128733A (en) * 2018-09-29 2019-01-04 河北安迪模具有限公司 Glass mold is at blank mould fine-processing technique
CN111230430A (en) * 2019-10-23 2020-06-05 浙江中集铸锻有限公司 Manufacturing process of front die of hub forging
CN112207526A (en) * 2020-10-20 2021-01-12 江苏亨睿碳纤维科技有限公司 Composite material autoclave forming die and manufacturing method thereof

Similar Documents

Publication Publication Date Title
ES2661397T3 (en) Work roller manufactured by laser coating and method for this
CN108950543B (en) Heat-conducting wear-resistant fatigue-resistant die and manufacturing process thereof
WO2019156168A1 (en) Method for reclaiming tool material and tool material
CN101704084B (en) Centrifugal cast tube die and manufacturing technique thereof
JP2000301542A (en) Heat conductive composite mold and its manufacture
JP3563587B2 (en) Hot width reduction press tool and manufacturing method thereof
JP5726114B2 (en) Recycling method of used roll composite rolls
JP5268431B2 (en) Recycling method of used roll composite rolls
JP2012110968A5 (en)
RU2507027C1 (en) Method of inductive hardening and reconditioning of parts
JP5437669B2 (en) Hot and hot forging die
JP4230025B2 (en) Clad mold for hot press and manufacturing method thereof
JPS60170585A (en) Joining member for sintered hard alloy and steel and its production
JPH07214568A (en) Resin molding die
JPS5838602A (en) Hot rolling roll made of composite sintered hard alloy
JP2002035884A (en) Gear die for warm or hot forging and manufacturing method thereof
JPS58387A (en) Production of composite roll
JP2004017076A (en) Die for hot slab width-reducing press
JP2000202548A (en) Clad metallic mold for hot pressing and manufacture thereof
JPS6049880A (en) Production of joining tool of sintered hard alloy and steel
JPH11300461A (en) Sleeve for die casting machine
JPS6123071B2 (en)
JP5760074B2 (en) Recycled composite roll
JP3643292B2 (en) Casting method by die casting machine and die casting machine
JPS5838682A (en) Composite abrasion resistance member and its manufacture