JPS6049880A - Production of joining tool of sintered hard alloy and steel - Google Patents

Production of joining tool of sintered hard alloy and steel

Info

Publication number
JPS6049880A
JPS6049880A JP58158730A JP15873083A JPS6049880A JP S6049880 A JPS6049880 A JP S6049880A JP 58158730 A JP58158730 A JP 58158730A JP 15873083 A JP15873083 A JP 15873083A JP S6049880 A JPS6049880 A JP S6049880A
Authority
JP
Japan
Prior art keywords
steel
cemented carbide
welding
hard alloy
sintered hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58158730A
Other languages
Japanese (ja)
Other versions
JPH0452180B2 (en
Inventor
Masaya Miyake
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58158730A priority Critical patent/JPS6049880A/en
Publication of JPS6049880A publication Critical patent/JPS6049880A/en
Publication of JPH0452180B2 publication Critical patent/JPH0452180B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To provide a titled tool which is inexpensive and is usable under high forging pressure by welding a sintered hard alloy and a steel by a high energy beam in the annealed state of the steel material then subjecting the welded material to hardening and tempering thereby distributing uniformly the hardness of the steel material. CONSTITUTION:A cold, warm and hot forged tool is constituted of a steel and a sintered hard alloy and an annealed material is used for the steel. The sintered hard alloy to be used in direct contact with the material to be worked is pressed thereto directly or via a metallic filler and a high energy beam is irradiated to the contact part to weld both materials. The entire part of the joined tool after welding is subjected to a heat treatment such as hardening, tempering, etc. to distribute uniformly the hardness of the steel. The sintered hard alloy consists of WC having 1-20mu average drain size and 15-40wt% bond metal of 1 or >=2 kinds among Co, Ni, Cr and Fe.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は冷間および温熱間鍛造工具の金型およヒパンチ
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a method for manufacturing molds and punches for cold and hot forging tools.

(ロ)従来技術とその問題点 冷間、温熱間鍛造工具は加熱さ几た鋼片を鍛造して部品
を作るために用いられており常温あるいは600〜12
00℃に加熱した棒鋼の切断、鋼片の鍛造に利用される
(B) Conventional technology and its problems Cold and hot forging tools are used to forge heated and cooled steel pieces to make parts, and are used at room temperature or at 600 to 12
It is used for cutting steel bars heated to 00°C and forging billets.

金属の鍛造には大きな力を必要とするために、用いる金
型も大きな形状となる。従来、高温捷で硬度の低下が少
ないダイス鋼あるいは圧縮配圧強度の高い高速度鋼が主
として用いら几ている。しかしながらダイス鋼、高速度
鋼を用いても型寿命としては、3000〜10,000
回程度と一5aており、それを越えると製品の肌荒れが
起り型寿命となってしまう。超硬合金を鍛造に用いる効
果は広く認めらnながらも、応用分野が狭い理由は金型
が短寿命のために、経費が高くなるためである。また超
硬合金全鍛造分野で利用することも各種倹約されている
が、第1には重量が重いこと、第2には、コストが高い
こと、第3には熱亀裂に基く、割損等の問題があり、ま
だ実用化に至っていない。
Because forging metal requires a large amount of force, the molds used are also large in shape. Conventionally, die steel, which exhibits little loss of hardness during high-temperature cutting, or high-speed steel, which has high compression distribution strength, have been mainly used. However, even if die steel or high-speed steel is used, the mold life is 3000 to 10,000.
If it exceeds 15 times, the product's skin will become rough and the mold life will be shortened. Although the effectiveness of using cemented carbide for forging is widely recognized, the reason for its limited application is that the mold has a short lifespan, which increases costs. In addition, there are various savings in the use of cemented carbide in the full forging field, but the first is the heavy weight, the second is the high cost, and the third is the risk of breakage due to thermal cracking. However, it has not been put into practical use yet.

(ハ)発明の開示 本発明はかかる問題点を解決するために鋭意検討の結果
得られたものである。本発明の要旨は、冷間、温熱間鍛
造工具において鋼と超硬合金より構成さ几、少くとも被
加工材と接する部分が、超硬合金で構成さ几ておりかつ
、鋼と超硬合金が高エネルギービームによシ溶接さnて
いる冷間、温熱間鍛造工具の製造法に関するものである
。さらには該超硬合金のWCの平均粒度が1〜20μ。
(c) Disclosure of the Invention The present invention was obtained as a result of intensive studies to solve these problems. The gist of the present invention is that a cold or hot forging tool is made of steel and cemented carbide, and at least a portion in contact with a workpiece is made of cemented carbide, and the tool is made of steel and cemented carbide. The present invention relates to a method for manufacturing cold and hot forged tools in which welding is performed by high-energy beams. Furthermore, the average grain size of the WC of the cemented carbide is 1 to 20μ.

結合金属がCo+ Ni、 Cr、 Feの1種または
2種以上であり、含有量が15〜40重量%よりlる冷
間温熱間鍛造工具を提供するものである。
The present invention provides a cold-warm forging tool in which the bonding metal is one or more of Co+Ni, Cr, and Fe, and the content is from 15 to 40% by weight.

本発明の特徴は超硬合金と鋼の溶接において鋼材を焼土
じた状態で高エネルギービームにて溶接した後、該溶接
品を焼入れ、焼き戻しの処理を行つ一般に超硬合金の鋼
の接合ではロー付けが広く用いられており、ロー付は時
に鋼の硬度がなまシ、−またロー付は後の焼入れは不可
能であった。
A feature of the present invention is that in welding cemented carbide and steel, the steel is welded with a high-energy beam in a burnt state, and then the welded product is quenched and tempered. Brazing is widely used for joining, and sometimes the hardness of the steel is too low - and later hardening is not possible with brazing.

鍛造金型は、500〜600℃位の温度にまで達するた
め、従来公知のロー付けでは、耐熱性が不足してロー材
を使用することはできない。
Since a forging die reaches a temperature of about 500 to 600°C, conventionally known brazing cannot use brazing material due to insufficient heat resistance.

またロー付は時には、鋼の温度が上昇し、焼鈍されてし
まい鍛造圧300Kg7m4に(l−tilえられない
In addition, brazing sometimes raises the temperature of the steel and causes it to be annealed, making it impossible to increase the forging pressure to 300Kg7m4.

本発明ではかかる問題点が、超硬合金と鋼全電子ビーム
吐たは、レーザービームを用いて接合することによって
解決することができたものである。
In the present invention, such problems can be solved by bonding the cemented carbide and steel using an all-electron beam or a laser beam.

すなわち電子ビーム、レーザービームによる溶接では局
部的に高温を得ることが出来る。しかしながら超硬合金
と鋼の高温接合では超硬合金中にFe。
That is, welding using an electron beam or a laser beam can locally obtain high temperatures. However, in high-temperature joining of cemented carbide and steel, Fe is present in the cemented carbide.

Cが拡散し、Fe8W3C等の複炭化物の生成、Feの
急冷等があり、接合層は必ずしも強くならない。
Due to the diffusion of C, the formation of double carbides such as Fe8W3C, rapid cooling of Fe, etc., the bonding layer does not necessarily become strong.

超硬合金と鋼の当接面にCo、 Ni、 Cu、 Fe
等の純金属フィラーを挿入しビームのエネルギーでこれ
らの純金属を溶解接合すれば強固な接合強度を得ること
が出来る。
Co, Ni, Cu, Fe on the contact surface of cemented carbide and steel
By inserting pure metal fillers such as these and melting and bonding these pure metals using beam energy, strong bonding strength can be obtained.

さらに解決すべき問題点として、接合面では金属が溶解
する温度に上昇するため、接合面近傍の硬度が上り、さ
らに少し離れた部分が焼なましの温度に下がる。
A further problem to be solved is that the temperature at the joint surface rises to a point where the metal melts, which increases the hardness near the joint surface, and lowers the temperature a little farther away to the annealing temperature.

第1図に超硬合金と焼入れだ高速度鋼とを溶接した時、
鋼部の硬度変化を示した。接合層から数龍離nたところ
に硬度の下がる部分がある。
Figure 1 shows that when cemented carbide and hardened high speed steel are welded,
It shows the change in hardness of the steel part. There is a part where the hardness decreases a few inches away from the bonding layer.

このような硬度の不均一部分が出来ると高い圧縮耐力を
必要とする鍛造工具では鋼が座屈してしまう。本発明で
は生材を溶接した後、溶接品を熱処理することにより、
硬度分布を均一化することが出来る。
If such areas with uneven hardness are formed, the steel will buckle in forged tools that require high compressive strength. In the present invention, after welding the raw material, by heat-treating the welded product,
Hardness distribution can be made uniform.

第2図に溶接前、後の硬度分布の変化を示した。Figure 2 shows the change in hardness distribution before and after welding.

1が溶接直後の鋼部分の硬度、2が溶接後熱処理した時
の硬度を示す。焼なましだ後、溶接し、溶接後に熱処理
することにより、靭性の高い鋼と超硬合金との接合工具
が得られることを見い出したのである。また本願に使用
する超硬合金は特に耐熱強度が要求されるため、WCの
粒度は1〜20μの範囲が良好である。1μ以下では、
耐熱亀裂性が低下し、また20μ以上では、実質的に工
業的に製造することができないし、結合金属とじてはC
o、 Ni、 Cry Fef主成分とし、15〜40
重量%、なお耐酸化性、耐食性、耐摩耗性等の特性を向
上するために、kl、 Zr、 B+ Sit Ti、
 Ta等、1種または2種以上を0〜0.5重量%含有
するものも可能である。結合金属が15重量%以上では
耐衝撃性に劣り、また40重量96ヲ起えると、硬度が
低下する。
1 indicates the hardness of the steel part immediately after welding, and 2 indicates the hardness when heat treated after welding. They discovered that a tool for joining steel and cemented carbide with high toughness could be obtained by welding after annealing and heat treating after welding. Further, since the cemented carbide used in the present application is particularly required to have heat-resistant strength, the grain size of the WC is preferably in the range of 1 to 20 μm. Below 1μ,
Thermal crack resistance decreases, and if it is 20μ or more, it is virtually impossible to manufacture it industrially, and as a bonding metal, carbon
o, Ni, Cry Fef as main components, 15 to 40
weight%, and in order to improve properties such as oxidation resistance, corrosion resistance, and wear resistance, kl, Zr, B+ Sit Ti,
It is also possible to use one or more of Ta or the like in an amount of 0 to 0.5% by weight. If the amount of bonding metal exceeds 15% by weight, the impact resistance will be poor, and if the amount of the bonding metal exceeds 15% by weight, the hardness will decrease.

本発明によって得られた鍛造工具はダイス鋼、高速度鋼
の鍛造工具よシ製品の肌荒れが少なく、また、高い鍛造
圧力下で使用することができる。同時に全体が、超硬合
金で構成されている鍛造工具に比較して、軽量でかつ安
価でありさらには、鋼の部分では冷却溝やネジ加工も可
能である。従ってこの種の鍛造用工具としては、ダイス
鋼製のものと超硬合金製のものの両方の長所を兼ね備え
た冷間及び温熱間鍛造工具を得ることができるのである
。本願発明の工具は例えば、冷間鍛造パンチ、熱間シャ
ダイ、および熱間ヘッディングダイ等へ利用することが
できる。
The forged tool obtained by the present invention has less surface roughness than the forged tool made of die steel or high-speed steel, and can be used under high forging pressure. At the same time, the entire tool is lighter and less expensive than a forged tool made of cemented carbide, and furthermore, the steel part can be machined with cooling grooves and screws. Therefore, as this type of forging tool, it is possible to obtain a cold and hot forging tool that combines the advantages of both die steel and cemented carbide forging tools. The tool of the present invention can be used, for example, in cold forging punches, hot forging dies, hot heading dies, and the like.

に)実施例 実施例1 第3図に示す熱間鍛造パンチは胴径D−30〆、先端径
d=260、全長L=+50mmであるが、このうち先
端部12=25mm’e超硬合金にした。ここで用いる
超硬合金は6μの平均粒径金持つWCにCo112重量
%、Niを12重量% 、 Crf 1重量%を配合、
焼結した超硬合金を用いた。胴部は焼鈍し1sKD−6
1とし、鋼と超硬の当接部全電子ビーム溶接した。
Example 1 The hot forged punch shown in Fig. 3 has a body diameter of D-30, a tip diameter of d=260, and a total length of L=+50 mm. I made it. The cemented carbide used here is made of WC with an average particle size of 6μ, mixed with 112% by weight of Co, 12% by weight of Ni, and 1% by weight of Crf.
Sintered cemented carbide was used. The body is annealed 1sKD-6
1, and the entire contact area between steel and carbide was electron beam welded.

溶接後800〜850°Cで予熱した後1000〜10
50°Cでノルドバス中15分間熱後焼入fL−2行っ
た。さらに600〜680℃で焼戻しを行った。超硬合
金と鋼の接合部はキレン、ハクリもなく強固な結合とな
っていた。このパンチの剪断強度を測定したところ35
1(g/mff1であった。
After welding and preheating at 800-850°C 1000-10
Post-heat quenching fL-2 was performed at 50°C in a Nord bath for 15 minutes. Furthermore, tempering was performed at 600 to 680°C. The joint between the cemented carbide and the steel was a strong bond with no cracks or peeling. The shear strength of this punch was measured and was 35
1 (g/mff1).

この鍛造パンチを用いて545cy材料温度900°C
1鍛造圧力200 tonにて、熱間鍛造を行った。パ
ンチは5万個の打ち抜きが、可能であり、従来5KD6
1を使用した時の寿命a、ooo個に対して約17倍で
実施例2 第4図に示す熱間シャダイにおいて切断刃として平均粒
子径10μのWCKCOを20重量%、Niを10重量
%、Tlを2重量%配合し、焼結した超硬合金を焼きな
ましを行ったS K D 6 ’1の/ヤンクの間に1
00μの鋼フィラーを入れて電子ビーム溶接した。
Using this forged punch, 545cy material temperature 900°C
Hot forging was performed at a forging pressure of 200 tons. It is possible to punch 50,000 pieces, and the conventional 5KD6
The life a when using No. 1 was about 17 times that of ooo pieces. Example 2 In the hot Shadai shown in FIG. S K D 6 '1 of sintered cemented carbide containing 2% by weight of Tl and 1 between yanks.
Electron beam welding was performed with a 00μ steel filler added.

該接合品を実施例1に示す熱処理条件で硬度の均一化を
行った。
The hardness of the bonded product was made uniform under the heat treatment conditions shown in Example 1.

この接合シャダイで190の鋼材を切断した。従来に4
ライトの肉盛の時145,000個で寿命であったが超
硬合金を溶接したものはlO万個の切断が可能であった
190 pieces of steel material were cut with this joining machine. Traditionally 4
When using light welding, the lifespan was 145,000 pieces, but when welding cemented carbide, it was possible to cut 10,000 pieces.

実施例3 第1図に示す冷間鍛造パンチにおい士、平均粒子径3μ
のW CにNiを18重量%、coを2重量%、/Vk
1重量%加えた超硬合金を用いて鋼(SKH9)に電子
ビーム溶接した。電子ビーム溶接条件ば150KV、 
1 (h+zA、 500mm7mmであった。
Example 3 Cold forged punch odor shown in Fig. 1, average particle size 3μ
18% by weight of Ni and 2% by weight of co in WC, /Vk
Electron beam welding was performed on steel (SKH9) using 1% by weight cemented carbide. Electron beam welding conditions are 150KV,
1 (h+zA, 500mm 7mm.

超硬合金にビームを当て超硬と鋼の当接面に挿入したN
iフィラーを溶解し完全接合を行った。溶接後850°
Cで予熱、1180℃、160秒加熱後焼入れし、57
0°Cで焼戻しを行った。鍛造圧力300Tonにて熱
間鍛造を行ったが、このパンチによす10万個の加工が
できた。
N beam is inserted into the cemented carbide and the contact surface of the carbide and steel.
The i-filler was dissolved and complete bonding was performed. 850° after welding
Preheated at 1180°C for 160 seconds and then quenched.
Tempering was performed at 0°C. Hot forging was performed at a forging pressure of 300 tons, and 100,000 pieces could be processed using this punch.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼入れ材と超硬合金の電子ビーム溶接後の鋼の
硬度分布、第2図は生材鋼と超硬合金の溶接直後、及び
熱処理後の鋼の硬度分布、第3図は本願発明によって得
られた熱間鍛造パンチの図であり、第4図は本願発明に
よって得らルた熱間シャダイである。図中斜線部は超硬
合金であり、Dは直径、Lは全長を示す。 I・生材鋼の溶接後の鋼の硬度分布、2−溶接後熱処理
した後の硬度分布、3・−・超硬合金、4 鋼。 1七:、−′1、−′− 許1図 」駐イλ−F力・9り1巨敞(mm) W2図 芳3図 ア4図
Figure 1 shows the hardness distribution of steel after electron beam welding of hardened material and cemented carbide, Figure 2 shows the hardness distribution of raw steel and cemented carbide immediately after welding and after heat treatment, and Figure 3 shows the hardness distribution of the steel in this application. FIG. 4 is a diagram of a hot forging punch obtained by the invention, and FIG. 4 is a hot forging punch obtained by the invention. The shaded area in the figure is a cemented carbide, where D is the diameter and L is the total length. I. Hardness distribution of raw steel after welding, 2. Hardness distribution after heat treatment after welding, 3. - Cemented carbide, 4. Steel. 17:, -'1, -'-

Claims (2)

【特許請求の範囲】[Claims] (1)超硬合金と鋼との接合工具の製造法において、鋼
に焼なまし材を用い、これに被加工材に接して用いられ
る超硬合金を直接呼たけ金属フィラーを介して当接せし
め、該当接部に高エネルギービームを照射して溶接せし
め、溶接後接合工具全体を焼入、焼戻しなどの熱処理を
施し鋼の硬度分布を均一化することを特徴とする超硬合
金と鋼の接合工具の製造法。
(1) In the manufacturing method of a joining tool for cemented carbide and steel, an annealed material is used for the steel, and the cemented carbide used in contact with the workpiece is directly brought into contact with this material through a metal filler. Welding is performed by irradiating high-energy beams on the relevant joints, and after welding, the entire joining tool is subjected to heat treatment such as quenching and tempering to make the hardness distribution of the steel uniform. Manufacturing method for joining tools.
(2)該超硬合金は粒度1〜20μのW 、Cが60〜
85重量%でありこnがCo、 Ni、 Cr、 Fe
がら選ばn′#L1種または2種以上の結合金属15〜
40重量%を生成分とすること全特徴とする特許請求の
範囲第(+)項記載の超硬合金と鋼の接合工具の製造法
(2) The cemented carbide contains W with a grain size of 1 to 20μ and C of 60 to
85% by weight of Co, Ni, Cr, Fe
Selected from n'#L 1 or 2 or more bonding metals 15~
A method for producing a joining tool for cemented carbide and steel according to claim (+), characterized in that the production component is 40% by weight.
JP58158730A 1983-08-29 1983-08-29 Production of joining tool of sintered hard alloy and steel Granted JPS6049880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58158730A JPS6049880A (en) 1983-08-29 1983-08-29 Production of joining tool of sintered hard alloy and steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158730A JPS6049880A (en) 1983-08-29 1983-08-29 Production of joining tool of sintered hard alloy and steel

Publications (2)

Publication Number Publication Date
JPS6049880A true JPS6049880A (en) 1985-03-19
JPH0452180B2 JPH0452180B2 (en) 1992-08-21

Family

ID=15678074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158730A Granted JPS6049880A (en) 1983-08-29 1983-08-29 Production of joining tool of sintered hard alloy and steel

Country Status (1)

Country Link
JP (1) JPS6049880A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238484A (en) * 1985-04-12 1986-10-23 Fujitsu Ltd Laser welding method
JPS6350443A (en) * 1986-08-19 1988-03-03 Sumitomo Electric Ind Ltd Warm-and hot-forging tool
CN113664352A (en) * 2021-07-08 2021-11-19 成都东升鸿光科技有限公司 Welding process of high-hardness hard alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238484A (en) * 1985-04-12 1986-10-23 Fujitsu Ltd Laser welding method
JPS6350443A (en) * 1986-08-19 1988-03-03 Sumitomo Electric Ind Ltd Warm-and hot-forging tool
CN113664352A (en) * 2021-07-08 2021-11-19 成都东升鸿光科技有限公司 Welding process of high-hardness hard alloy

Also Published As

Publication number Publication date
JPH0452180B2 (en) 1992-08-21

Similar Documents

Publication Publication Date Title
US1887372A (en) Cutting and forming tools, implements, and the like
US4232096A (en) Composite steel material and composite steel tool made from this material
EP1634670B1 (en) Method to improve properties of aluminium alloys processed by solid state joining
US4606778A (en) Joining method
TWI450974B (en) Tools with a thermo-mechanically modified working region and methods of forming such tools
US1977845A (en) Cutting and forming tool, implement, and the like and method of making same
JP6958765B1 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
CN109894473A (en) A kind of method that continuous casting billet directly forges production hot die steel
CN109136628A (en) A kind of hot rolling technology of 6xxx aluminium alloy
JPH01268846A (en) Hot pressing tool steel
US5616187A (en) Tool steel
JPS6049880A (en) Production of joining tool of sintered hard alloy and steel
JPS591678A (en) Production of composite tool steel for hot working
JPH11256271A (en) Tool for hot edging press and its manufacture
JP2006297427A (en) Method for manufacturing forged sleeve roll for rolling wide flange shape
JP2000301542A (en) Heat conductive composite mold and its manufacture
JPH07116780A (en) Production of roll for continuous casting and roll for continuous casting manufactured by this method
CN113684426B (en) High-tungsten steel and preparation method thereof
JP4707318B2 (en) Aluminum alloy material joining method and press forming joining material
CN100348763C (en) Method for manufacturing non-carbide segregation high-alloy ledeburite steel by phase transition resistance diffusion welding
JPH02221304A (en) Manufacture of high speed steel tool
SU1715497A1 (en) Method of manufacturing cutting tools
JPS5890385A (en) Manufacture of composite wear resistance member
Cooke et al. Solid-phase bonding of aluminum alloys to steel
CN105950995A (en) High-carbon steel ultrathin alloy ribbon and preparation technology thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees