JP2011207143A - Hybrid mold - Google Patents

Hybrid mold Download PDF

Info

Publication number
JP2011207143A
JP2011207143A JP2010078792A JP2010078792A JP2011207143A JP 2011207143 A JP2011207143 A JP 2011207143A JP 2010078792 A JP2010078792 A JP 2010078792A JP 2010078792 A JP2010078792 A JP 2010078792A JP 2011207143 A JP2011207143 A JP 2011207143A
Authority
JP
Japan
Prior art keywords
iron
mold
material layer
built
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010078792A
Other languages
Japanese (ja)
Other versions
JP5501823B2 (en
Inventor
Mitsuo Ogami
光生 大上
Hitoshi Ogami
仁士 大上
Yoshio Torisu
芳雄 鳥巣
Hidero Sasaki
英郎 佐々木
Kiyoshi Kusakai
清志 草開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CASTEM KK
Original Assignee
CASTEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CASTEM KK filed Critical CASTEM KK
Priority to JP2010078792A priority Critical patent/JP5501823B2/en
Publication of JP2011207143A publication Critical patent/JP2011207143A/en
Application granted granted Critical
Publication of JP5501823B2 publication Critical patent/JP5501823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hybrid mold which unites characteristics of high strength of steel material and high heat conduction of a nonferrous metal body (copper alloy body).SOLUTION: The hybrid mold is characterized in that at least a heat exchange range of the forming mold 1 is formed of the nonferrous metal body 3 (copper alloy body 3A), the nonferrous metal body is provided with a cavity E and a product relating part 7, a load concentration range which is susceptible to damage in a product-forming surface (e) of the cavity and a cavity continuous part 3a of a parting line PL of the product relating part are thinned into a thickness of several millimeters or less, the build-up welding of a ferrous material F having a fusion temperature higher than that of the nonferrous metal body is performed to form a ferrous build-up part 4 on a thin thickness part 13 by using a heat source of high energy density, a finish-processed iron material layer 4A is disposed on the build-up part surface 4a and the load concentration range susceptible to damage of the nonferrous metal body in the iron material layer is protected. Further, by constituting the forming mold 1 with a steel material mold 10 and a nesting mold 20 made of the nonferrous metal body, the same characteristics can be obtained.

Description

本発明は、各種製品の成形に用いる金型に関するもので、非鉄金属製金型、特に銅合金製金型を母材としたハイブリッド金型に関する。   The present invention relates to a mold used for molding various products, and more particularly, to a hybrid mold using a non-ferrous metal mold, particularly a copper alloy mold as a base material.

金型として、合成樹脂成形用金型、ゴム成形用金型、ダイカスト金型、ガラス金型等が知られている。また、これらの金型の製作には高価な工作機械と専門のオペレーターが必要とされ、特に、最後の仕上げ加工では、熟練工による手磨きが必要でありため、多額のコストと製作日数が必要となることも知られている。
一方、金型材料として、特に合成樹脂成形用金型材として鋼材が多く使用されており、鋼材以外の非鉄金属を用いることは極めて限定的である。その理由として、鋼材は技術と経験が豊富で、高強度、多種類、安価、高品質(特に日本製)等が挙げられる。
As molds, synthetic resin molding molds, rubber molding molds, die casting molds, glass molds and the like are known. In addition, these machines require expensive machine tools and specialized operators.In particular, the final finishing process requires hand polishing by skilled workers, which requires a large amount of cost and production days. It is also known that
On the other hand, a steel material is often used as a mold material, especially as a mold material for molding a synthetic resin, and the use of non-ferrous metals other than the steel material is extremely limited. The reason for this is that steel materials are rich in technology and experience, such as high strength, various types, low cost, and high quality (particularly made in Japan).

しかし、金型において、熱伝導性もまた重要な必須要素(金型は樹脂製品の成形のみならず、高温樹脂を冷却固化するための熱交換器でもある)であるが、鋼材金型は非鉄金属金型に比べて高強度である反面、熱伝導率が格段に劣る。
その結果、鋼材金型内に射出された溶融樹脂が「均一」に素早く「冷却・固化」せず、冷却時間が長くなり、成形サイクルが非鉄金属に比べて長くなると言う欠点がある。
このことは、鋼材金型の冷却速度に起因する製品成形速度の低下と、それに付随するコスト競争力の低下、及び製品の外観への悪影響等をもたらすので、製造現場で大きな課題となっている。
更に、熱バランスが取り難いために金型温度が安定せず、結果として成形品の変形、ヒケが発生し、品質問題や生産性に大きな課題を抱えている。(金型は熱交換器と言える)
そのため、鋼材金型の設計では、冷却回路をいかに充実させるかが重要視されているが、鋼材の熱伝導率が亜鉛合金、アルミ合金、銅合金等の非鉄金属に比べて数段劣るので、熱伝導率を十分にカバーすることは容易でない。
従って、設計変更、加工ミス、成形段階での事故による破損、摩耗等の劣化に対処するには部分的又は全体を作り変える他に選択技がなかった。
However, in the mold, thermal conductivity is also an important indispensable element (the mold is not only a resin product molding but also a heat exchanger for cooling and solidifying high temperature resin), but the steel mold is a non-ferrous metal While it is stronger than metal molds, its thermal conductivity is significantly inferior.
As a result, the molten resin injected into the steel mold does not “cool and solidify” quickly and uniformly, resulting in a longer cooling time and a longer molding cycle than non-ferrous metals.
This is a major issue at the manufacturing site because it causes a reduction in the product forming speed due to the cooling speed of the steel mold, a reduction in cost competitiveness associated therewith, and an adverse effect on the appearance of the product. .
Furthermore, since the heat balance is difficult to achieve, the mold temperature is not stable, and as a result, deformation and sink marks of the molded product occur, and there are significant problems in quality and productivity. (The mold is a heat exchanger)
Therefore, in the design of steel molds, it is important to enhance the cooling circuit, but the thermal conductivity of steel is several times inferior to non-ferrous metals such as zinc alloy, aluminum alloy, copper alloy, It is not easy to sufficiently cover the thermal conductivity.
Therefore, there has been no alternative technique to deal with design changes, processing errors, damage due to accidents at the molding stage, deterioration such as wear, etc. other than partially or entirely remodeling.

特開平08−118049号公報Japanese Patent Laid-Open No. 08-118049 特開平10−85972号公報Japanese Patent Laid-Open No. 10-85972 特開2000−153380号公報JP 2000-153380 A 特開2008−80388号公報JP 2008-80388 A 特開2009−6191号公報JP 2009-6191 A 特許第2509125号公報Japanese Patent No. 2509125 実公平07−19667号公報Japanese Utility Model Publication No. 07-19667

そこで熱伝導性に優れた高強度銅合金が開発され、金型の一部または全体を銅合金に置き換えて使用されるようになった。
しかし、高強度銅合金と言えども、所詮は鋼材に匹敵する強度は無く、金型寿命が劣るのが現状である。
更に、鋼材では一般に行われているTIGによる肉盛溶接が、銅合金では非常に難しく不可能に近いことが知られている。
一方、肉盛溶接として、最近YAGレーザー溶接(イットリウム、アルミニウム、ガーネットレーザー)が注目され、著しい発展を見せている。
これにより金型修復技術は格段の進歩を見るに至っている。
銅合金金型に対する異種材の鋼材を接合する技術は未だ確立されておらず、その技術が確立できれば熱伝導と強度に優れた銅合金と鋼材から成るハブリッド金型の製造が可能となり、新しい産業として世に送り出せる。
即ち、熱伝導に優れた銅合金と、強度とコストに優れた鋼材の特徴を兼ね備えたハイブリッド金型が出来れば革新的な技術となる。
Therefore, high-strength copper alloys with excellent thermal conductivity were developed, and some or all of the molds were replaced with copper alloys and used.
However, even though it is a high-strength copper alloy, it does not have a strength comparable to that of steel, and the die life is inferior.
Furthermore, it is known that overlay welding by TIG, which is generally performed for steel materials, is very difficult and impossible with copper alloys.
On the other hand, as overlay welding, YAG laser welding (yttrium, aluminum, garnet laser) has recently attracted attention, and is showing remarkable development.
This has led to significant progress in mold repair technology.
Technology for joining dissimilar steel materials to copper alloy molds has not yet been established, and if that technology can be established, it will be possible to manufacture hybrid molds made of copper alloys and steel materials with excellent heat conduction and strength, and a new industry Can be sent to the world.
In other words, if a hybrid mold that combines the characteristics of a copper alloy with excellent heat conduction and a steel material with excellent strength and cost can be produced, it becomes an innovative technology.

発明者は、銅合金製金型に対するマイクロYAGレーザー溶接による補修の際、誤って銅合金体に鋼材ワイヤで肉盛溶接した所、思わぬ健全性を有することを見出したことから、本発明の着想を得て、「鋼材の高強度」と「銅合金の高熱伝導」の特徴を兼ね備えたハイブリッド金型を、必要に応じて任意に作り出すことを可能としたものである。   The inventor found that when repairing a copper alloy mold by micro YAG laser welding, the steel alloy wire was accidentally welded to the copper alloy body with unexpected soundness. Inspired by the idea, a hybrid mold having the features of “high strength of steel” and “high thermal conductivity of copper alloy” can be arbitrarily created as needed.

上記目的を達成するために、本発明のハイブリッド金型は、請求項1として、成形金型の少なくとも熱交換範囲を非鉄金属体にて形成し、非鉄金属体にキャビティと製品関連部を備え、キャビティの製品形成面の損傷しやすい負荷集中範囲を所定の仕上げ厚みよりも薄肉化した薄肉部を形成し、薄肉部に高エネルギ密度の熱源を用いて非鉄金属体より溶融温度の高い鉄系材を肉盛溶接し、鉄系肉盛部を形成し、その肉盛部表面に仕上げ加工した鉄材層を設け、鉄材層で製品形成面の損傷しやすい負荷集中範囲を保護していることを特徴とする。
請求項2は、請求項1記載のハイブリッド金型において、製品関連部が非鉄金属体のパーテイングライン(以下、PLとする)のキャビティ連続部であり、概連続部を所定の仕上げ厚みよりも数mm以内の厚さで薄肉化し、薄肉部に高エネルギ密度の熱源を用いて鉄系材を肉盛溶接し、鉄系肉盛部を形成し、その肉盛部表面に仕上げ加工した鉄材層を設け、鉄材層にPLのキャビティ連続部を形成していることを特徴とする。
In order to achieve the above object, a hybrid mold according to the present invention includes, as claimed in claim 1, at least a heat exchange range of a molding mold made of a non-ferrous metal body, the non-ferrous metal body including a cavity and a product-related portion, An iron-based material with a melting point higher than the non-ferrous metal body by using a heat source with a high energy density in the thin-walled portion, where the load concentration range on the product forming surface of the cavity is thinner than the specified finish thickness. Is built-up welded to form an iron-based built-up part, and a finished iron layer is provided on the surface of the built-up part, which protects the load concentration range where the product formation surface is easily damaged by the iron layer. And
According to a second aspect of the present invention, in the hybrid mold according to the first aspect, the product-related portion is a cavity continuous portion of a nonferrous metal parting line (hereinafter referred to as PL), and the substantially continuous portion is less than a predetermined finish thickness. An iron material layer that has been thinned to a thickness of a few millimeters and overlaid and welded an iron-based material to the thin-walled portion using a heat source with a high energy density to form an iron-based built-up portion and finish the surface of the built-up portion And a continuous cavity portion of PL is formed in the iron material layer.

ここでハイブリッド金型とは、熱伝導の良い軽金属体と、耐久力のある鉄系とから構成した金型を言う。
ここでキャビティとは、成形金型内に設ける成形品を形成するための空部、溶湯樹脂を入れる空部、溶湯樹脂が通過する空部等を言う。
ここで鉄系肉盛部とは、鉄系材の肉盛溶接により形成さあれた部位を言い、仕上げ加工とは、鉄系肉盛部の表面に対する切削や研磨加工等を言い、鉄材層とは、仕上げ加工が終わった鉄系肉盛部を言う。
ここで熱交換範囲とは、加熱状態と冷却状態が交互に繰り返される範囲で、特に短時間で熱交換を頻繁に行なう必要がある範囲を言い、損傷しやすい負荷集中範囲とは、キャビティにあっては、ダイレクトゲートの相対向側製品形成面、溶湯が強く当るキャビティ角部や形状急変化部等を言い、製品関連部にあっては、溶湯に触れる範囲とその近辺、及びPLのキャビティ連続部を言う。
Here, the hybrid mold refers to a mold composed of a light metal body having good heat conductivity and a durable iron-based material.
Here, the cavity refers to an empty part for forming a molded product provided in the molding die, an empty part for containing molten resin, an empty part through which the molten resin passes, and the like.
Here, the iron-based built-up portion refers to a part formed by overlay welding of an iron-based material, and the finish processing refers to cutting or polishing processing on the surface of the iron-based built-up portion, and the iron material layer Means an iron-based overlay that has been finished.
Here, the heat exchange range is a range in which the heating state and the cooling state are alternately repeated, and particularly a range in which the heat exchange must be frequently performed in a short time. This refers to the product formation surface on the opposite side of the direct gate, the cavity corner where the molten metal hits strongly, the shape suddenly changing portion, etc. Say department.

請求項3は、請求項1または2記載のハイブリッド金型において、製品関連部がキャビティに向けて往復動する摺動体と、その摺動体をスライド自在にガイドする摺動体受部であり、摺動体受部は少なくとも入口側を所定の仕上げ厚みよりも数mm以内の厚さで薄肉化し、薄肉部に高エネルギ密度の熱源を用いて鉄系材を肉盛溶接し、鉄系肉盛部を形成し、その肉盛部表面に仕上げ加工した鉄材層を設け、鉄材層で摺動体受部の入口側を保護していることを特徴とする。
請求項4は、請求項3記載のハイブリッド金型において、摺動体は非鉄金属体にて形成され、その少なくとも頭部を数mm以内の厚さで薄肉化し、薄肉部に高エネルギ密度の熱源を用いて鉄系材を肉盛溶接し、鉄系肉盛部を形成し、その肉盛部表面に仕上げ加工した鉄材層を設け、鉄材層にて摺動体頭部を保護していることを特徴とする。
Claim 3 is the hybrid mold according to claim 1 or 2, wherein the product-related portion is a sliding body that reciprocates toward the cavity, and a sliding body receiving portion that guides the sliding body slidably. The receiving part is thinned at least at the inlet side to a thickness within a few millimeters of the predetermined finish thickness, and an iron-based material is welded to the thin-walled part using a high energy density heat source to form an iron-based built-up part And the iron material layer finished by the process is provided in the surface of the build-up part, and the entrance side of the sliding body receiving part is protected by the iron material layer.
According to a fourth aspect of the present invention, in the hybrid mold according to the third aspect, the sliding body is formed of a non-ferrous metal body, and at least the head thereof is thinned to a thickness within several millimeters, and a high energy density heat source is provided in the thin-walled portion. Using the overlay welding of iron-based material, forming an iron-based overlay, providing a finished iron layer on the surface of the overlay, and protecting the sliding body head with the iron layer And

ここで成形金型とは、固定金型と可動金型とから構成されるもの、更にコア金型を組み込むものを言い、主に合成樹脂製品の射出成形やブロー成形に用いる金型を言うが、圧縮成形、押出し成形等にも応用し得るし、金属製品の製造金型等にも応用し得る。
ここでPLとは、成形金型を構成する固定金型と可動金型との当接面、或は成形金型を構成する非鉄金属体の当接面を言う。
ここで製品関連部とは、キャビティに関連する例えば摺動体と摺動体受部、部分成形体、キャビティに向けて開口する保持部、及びPLのキャビティ連続部を言い、摺動体とは、キャビティに向けて往復動する突き出しピンとスライドコア等を言い、摺動体頭部とは、キャビティ内に突出する露出部と、それに続く一定範囲を言い、摺動体受部とは、突き出しピン挿入孔とコアガイドを言う。
ここで摺動体受部の入口側とは、キャビティに面している側を言い、摺動体頭部とは、キャビティ内に突出する範囲とそれに続く範囲を言う。
Here, the molding die refers to a die composed of a fixed die and a movable die, and further to a core die, and mainly refers to a die used for injection molding and blow molding of synthetic resin products. It can also be applied to compression molding, extrusion molding, etc., and can also be applied to metal product manufacturing molds.
Here, PL refers to a contact surface between a fixed mold and a movable mold constituting the molding die, or a contact surface of a non-ferrous metal body constituting the molding die.
Here, the product-related portion refers to, for example, a sliding body and a sliding body receiving portion, a partially molded body, a holding portion that opens toward the cavity, and a PL cavity continuous portion related to the cavity, and the sliding body refers to the cavity. This refers to the projecting pin and slide core that reciprocate toward the sliding body. The sliding body head refers to the exposed portion that projects into the cavity and the fixed range that follows. The sliding body receiving portion refers to the projecting pin insertion hole and the core guide. Say.
Here, the inlet side of the sliding body receiving portion refers to the side facing the cavity, and the sliding body head refers to a range protruding into the cavity and a range following it.

請求項5は、請求項1,2,3または4記載のハイブリッド金型において、製品関連部がキャビティの一部を形成する部分成形体の保持部であり、保持部はキャビティに向けて開口し、その少なくとも入口側を数mm以内の厚さで薄肉化し、薄肉部に高エネルギ密度の熱源を用いて鉄系材を肉盛溶接し、鉄系肉盛部を形成し、その肉盛部表面に仕上げ加工した鉄材層を設け、鉄材層で保持部入口側を保護していることを特徴とする。
請求項6は、請求項1〜5の内の1に記載のハイブリッド金型において、成形金型は鋼材型と、鋼材型に組み込む入れ子型とから成り、入れ子型が非鉄金属体で形成されていることを特徴とする。
請求項7は、請求項1に記載のハイブリッド金型において、成形金型が左金型と右金型から成るブロー成形金型であり、左右金型の少なくとも熱交換範囲を非鉄金属体にて各々形成し、非鉄金属体の突合せ部を数mm以内の厚さで薄肉化し、薄肉部に高エネルギ密度の熱源を用いて鉄系材を肉盛溶接し、鉄系肉盛部を形成し、その肉盛部表面に仕上げ加工した鉄材層を設け、鉄材層にてバリ食い切り部を形成していることを特徴とする。
A fifth aspect of the present invention provides the hybrid mold according to the first, second, third, or fourth aspect, wherein the product-related portion is a holding portion of the partially molded body that forms a part of the cavity, and the holding portion opens toward the cavity. Then, at least the inlet side is thinned to a thickness of several mm or less, and an iron-based material is welded to the thin-walled portion using a high energy density heat source to form an iron-based building-up portion, and the surface of the building-up portion It is characterized in that a finished iron material layer is provided, and the holding portion entrance side is protected by the iron material layer.
A sixth aspect of the present invention is the hybrid mold according to one of the first to fifth aspects, wherein the molding mold includes a steel material mold and a nested mold incorporated in the steel material mold, and the nested mold is formed of a non-ferrous metal body. It is characterized by being.
A seventh aspect of the present invention provides the hybrid mold according to the first aspect, wherein the molding mold is a blow molding mold including a left mold and a right mold, and at least the heat exchange range of the left and right molds is a non-ferrous metal body. Each formed, the butt portion of the non-ferrous metal body is thinned to a thickness of a few mm or less, and the steel-based material is welded and welded to the thin-walled portion using a high energy density heat source to form the iron-based built-up portion, An iron material layer that is finished on the surface of the built-up portion is provided, and a burr cut portion is formed by the iron material layer.

ここで部分成形体とは、インサート体とゲート体と微細成形体と中子体等を言い、保持部とは、キャビティに向けて開口していて、部分成形体やコア金型をしっかり保持する部位を言う。但し、インサート体は、型開きの祭に、保持部から離反する。
ここで鋼材型とは、従来金型と同様の材質で形成した金型を言い、入れ子型とは、成形金型を構成する一部材を言い、通常、鋼材型の中に組み込まれる。
ここでブロー成形金型の左金型と右金型とは、例えば、射出成形金型の固定金型と可動金型に相当し、バリ食い切り部とは、ブロー成形金型の離型時に、ブロー成形金型に形成された製品のバリ(食み出し)を切断する部位を言う。
ここで非鉄金属体とは、銅合金体、アルミ合金体、ニッケル合金体等を言い、具体的にはHIT75の銅合金体を用いる。
ここで鉄系材とは、例えば鋼材等を言い、具体的にはKD1VAX、NAK等のワイヤ、ステンレス系鋼材の商品名「スターバックス」を言う。
Here, the partial molded body refers to an insert body, a gate body, a fine molded body, a core body, and the like, and the holding portion opens toward the cavity, and holds the partial molded body and the core mold firmly. Say the part. However, the insert body separates from the holding part during the mold opening festival.
Here, the steel mold refers to a mold formed of the same material as that of a conventional mold, and the nested mold refers to one member constituting the molding mold, and is usually incorporated in the steel mold.
Here, the left mold and the right mold of the blow mold correspond to, for example, a fixed mold and a movable mold of an injection mold, and the burr cutting portion is a mold release of the blow mold. This refers to the part that cuts burrs (protruding) of products formed on blow molding dies.
Here, the non-ferrous metal body means a copper alloy body, an aluminum alloy body, a nickel alloy body or the like, and specifically, a copper alloy body of HIT75 is used.
Here, the iron-based material means, for example, a steel material or the like, specifically, a wire such as KD1VAX or NAK, or a product name “Starbucks” of a stainless steel material.

請求項8は、請求項1〜7の内の1に記載のハイブリッド金型において、鉄材層は、高エネルギ密度の熱源を用いて鉄系材を単層又は多層に肉盛溶接し、鉄系肉盛部を形成した後、その表面に仕上げ加工し、肉盛高さが平均2mm以内であることを特徴とする。
請求項9は、請求項1〜8の内の1に記載のハイブリッド金型において、非鉄金属体はキャビティに連続する切欠部を備え、概切欠部に高エネルギ密度の熱源を用いて鉄系材を肉盛溶接し、ゲート用鉄系肉盛部を設け、概肉盛部にゲート路を、肉盛部表面に仕上げ加工したゲート用鉄材層を設け、概鉄材層で切欠部を塞いでいることを特徴とする。
請求項10は、請求項1〜9の内の1に記載のハイブリッド金型において、鉄系材は溶接用の鋼材ワイヤであり、非鉄金属体は鉄系材より溶融温度が低く、熱伝道の良好な銅合金体やアルミニウム合金体等であることを特徴とする。
請求項11は、請求項1〜10の内の1に記載のハイブリッド金型において、鉄系材の肉盛溶接に用いる高エネルギ密度の熱源は、レ−ザ溶接(YAGレ−ザ溶接)、パルス溶接、電子ビーム溶接、超音波溶接等であり、その中の少なくも1手段を用いて肉盛溶接することを特徴とする。
Claim 8 is the hybrid mold according to one of claims 1 to 7, wherein the iron material layer is formed by overlaying an iron-based material into a single layer or multiple layers using a heat source having a high energy density, After the build-up portion is formed, the surface is finished and the build-up height is within an average of 2 mm.
A ninth aspect of the present invention is the hybrid mold according to one of the first to eighth aspects, wherein the non-ferrous metal body has a notch portion continuous to the cavity, and a heat source having a high energy density is used for the notch portion. Is built-up welded, provided with an iron-based built-up part for the gate, a gate path is provided on the approximate built-up part, and an iron material layer for the finished gate is provided on the surface of the built-up part, and the notched part is closed with the approximate iron material layer. It is characterized by that.
Claim 10 is the hybrid mold according to one of claims 1 to 9, wherein the ferrous material is a steel wire for welding, and the non-ferrous metal body has a melting temperature lower than that of the ferrous material, It is a good copper alloy body or aluminum alloy body.
The eleventh aspect of the present invention is the hybrid mold according to one of the first to tenth aspects, wherein the high energy density heat source used for overlay welding of the iron-based material is laser welding (YAG laser welding), Pulse welding, electron beam welding, ultrasonic welding, and the like, characterized by overlay welding using at least one of them.

ここで肉盛高さとは、薄肉部の形成深さと同じであり、採用し得る範囲は最大2mm、望ましい範囲は1mmである。
ここで切欠部とは、薄肉部より深く形成する部位で、他の部材を組み込んだり、嵌着する部位を言う。
ここで高エネルギ密度の熱源とは、アーク溶接、レーザー溶接、パルス溶接、電子ビーム溶接、超音波溶接を言い、レーザー溶接として、例えばYAGレーザー溶接やマイクロYAGレーザー溶接を用いる。
これらの溶接は、一般に、一つの手段で全溶接を行なうが、先ず鉄系をレ−ザ溶接して第一肉盛層を形成し、その第一肉盛層の上に鉄系をパルス溶接することも可能である。
更に、レ−ザ溶接で鉄系の第一肉盛層を形成すれば、その第一肉盛層の上にパルス溶接以外の溶接手段でも鉄系を溶接し得ると思われる。
ここでゲート路とは、サイドゲート、トンネルゲート、ダイレクトゲートを言う。
Here, the build-up height is the same as the formation depth of the thin portion, and the range that can be adopted is 2 mm at the maximum, and the desirable range is 1 mm.
Here, the notch portion is a portion formed deeper than the thin portion, and refers to a portion into which another member is incorporated or fitted.
Here, the high energy density heat source refers to arc welding, laser welding, pulse welding, electron beam welding, and ultrasonic welding, and for example, YAG laser welding or micro YAG laser welding is used as laser welding.
In general, all welding is performed by one means, but first, the iron system is laser welded to form a first overlay layer, and the iron system is pulse-welded on the first overlay layer. It is also possible to do.
Furthermore, if an iron-based first build-up layer is formed by laser welding, it is considered that the iron-base can be welded on the first build-up layer by welding means other than pulse welding.
Here, the gate path means a side gate, a tunnel gate, or a direct gate.

本発明のハイブリッド金型は上記の通りであるから、次に記載する効果を奏する。
請求項1のハイブリッド金型は、成形金型の熱交換範囲を非鉄金属体で形成し、非鉄金属体にキャビティと製品関連部を備え、少なくともキャビティ製品形成面の負荷集中範囲に高エネルギ密度の熱源を用いて鉄系材を肉盛溶接し、その肉盛部表面に仕上げ加工した鉄材層を設けているので、即ち、熱伝導性に優れた非鉄金属体でありながら、「鋼製の鎧」を纏った強度のハイブリッド金型が得られることになる。
鉄材層は、初めから正確(適正寸法)に鉄系材を肉盛溶接して形成することも可能であるが、初めから適正寸法に溶接するには高度の熟練を要するので、適正寸法より僅かに大きく肉盛溶接し、余分な所を後加工により切削(仕上げ加工)すれば、従来技術で簡単に加工し得る。
Since the hybrid mold of the present invention is as described above, the following effects can be obtained.
The hybrid mold according to claim 1 is configured such that the heat exchange range of the molding mold is formed of a non-ferrous metal body, the non-ferrous metal body includes a cavity and a product-related portion, and has a high energy density at least in a load concentration range of the cavity product forming surface. Since the iron material is overlay welded using a heat source, and the iron material layer finished on the surface of the overlay is provided, that is, although it is a non-ferrous metal body with excellent thermal conductivity, The strength of the hybrid mold is obtained.
The iron material layer can be formed by overlay welding of iron-based materials accurately (appropriate dimensions) from the beginning, but it requires a high degree of skill to weld to the appropriate dimensions from the beginning, so it is slightly less than the appropriate dimensions. Can be easily machined by conventional techniques if the excess part is welded to a large thickness and the extra part is cut (finished) by post-processing.

請求項2のハイブリッド金型は、請求項1の特徴に加えて、製品関連部が非鉄金属体のPLのキャビティ連続部であり、このキャビティ連続部は、薄肉部に鉄材層を形成したものであるので、例え母材が非鉄金属体であっても、金型の開閉による損傷(型締め時の衝突、衝撃によることが多い)、即ち、耐久力は従来の鋼材製金型と略同様になる。
請求項3のハイブリッド金型は、請求項1,2の特徴に加えて、成形金型にキャビティに向けて往復動する摺動体と、その摺動体をスライド自在にガイドする摺動体受部を備えていても、摺動体受部の少なくとも入口側に鉄材層を形成しているので、例え母材が非鉄金属体であっても、摺動体のスライドによる損傷、及び溶湯による損傷等は、従来の鋼材製金型と略同様になる。
請求項4のハイブリッド金型は、請求項3の特徴に加えて、少なくとも摺動体頭部に鉄材層を設けているので、例え摺動体が非鉄金属体であって、しかも摺動体頭部がキャビティ内に突出し、高温の溶湯に触れるとしても、溶湯による損傷は従来の鋼材製金型と略同様になる。
In addition to the features of claim 1, the hybrid mold of claim 2 is a non-ferrous metal PL cavity continuous part in addition to the features of claim 1, and this cavity continuous part is a thin part formed with an iron material layer. Therefore, even if the base material is a non-ferrous metal body, damage due to opening and closing of the mold (often due to collision and impact during mold clamping), that is, durability is almost the same as that of conventional steel molds. Become.
In addition to the features of claims 1 and 2, the hybrid mold according to claim 3 includes a sliding body that reciprocates toward the cavity in the molding mold, and a sliding body receiving portion that guides the sliding body slidably. However, since the iron material layer is formed at least on the inlet side of the sliding body receiving portion, even if the base material is a non-ferrous metal body, damage due to sliding of the sliding body, damage due to molten metal, etc. It is almost the same as a steel mold.
In addition to the features of claim 3, the hybrid mold according to claim 4 is provided with an iron material layer at least on the sliding body head. For example, the sliding body is a non-ferrous metal body, and the sliding body head is a cavity. Even if it protrudes inside and touches the high-temperature molten metal, the damage caused by the molten metal is almost the same as that of a conventional steel mold.

請求項5のハイブリッド金型は、請求項1,2,3,4の特徴に加えて、キャビティの一部を部分成形体にて形成するものであっても、部分成形体の保持部は、その入口側を数mm以内で薄肉化し、薄肉部に鉄材層を設け、鉄材層で保持部入口側を保護しているので、例え保持部入口側が高温の溶湯に触れても、溶湯よる損傷は従来の鋼材製金型と略同様になる。
請求項6のハイブリッド金型は、請求項1〜5の内の1の特徴に加えて、鋼材型に組み込む入れ子型を非鉄金属体で形成しているが、入れ子型は負荷集中範囲に薄肉部を設け、薄肉部に鉄系材を肉盛溶接し、その肉盛部表面に仕上げ加工した鉄材層を設け、鉄材層で守られているので、少なくとも請求項1と略同様の効果が得られる。
成形金型の少なくとも50%以上を非鉄金属体で作り、非鉄金属体の損耗しやすい部分(高温の溶湯が触れる部分)を鉄材層でカバーすることで、高価な非鉄金属体の使用量が少なくなり、その分、安価に提供できる。
即ち、成形金型を作る側と、その成形金型を使う側の双方にとって極めて実用的な技術であり、周辺技術の整備と熟成を伴えば夢の技術と言っても過言ではない。
In addition to the features of the first, second, third, and fourth aspects, the hybrid mold according to the fifth aspect is configured so that a part of the cavity is formed by a partial molded body. The inlet side is thinned within a few millimeters, an iron layer is provided on the thin part, and the holding part inlet side is protected by the iron layer, so even if the holding part inlet side touches the hot molten metal, damage caused by the molten metal is not This is substantially the same as a conventional steel mold.
The hybrid mold according to claim 6 is characterized in that, in addition to the feature of one of claims 1 to 5, the nested mold to be incorporated into the steel material mold is formed of a non-ferrous metal body. Since the steel material layer is overlaid and welded to the thin-walled portion and the finished iron material layer is provided on the surface of the built-up portion, and is protected by the iron material layer, at least substantially the same effect as in claim 1 can be obtained. .
By making at least 50% of the mold with non-ferrous metal body and covering the non-ferrous metal body where it is easy to wear (the part where high-temperature molten metal touches) with the iron material layer, the amount of expensive non-ferrous metal body used is small Therefore, it can be provided at a low cost.
In other words, it is an extremely practical technology for both the mold making side and the side using the molding die, and it is no exaggeration to say that it is a dream technology with the development and aging of peripheral technologies.

請求項7のハイブリッド金型は、請求項項1〜6の内の1の特徴に加えて、ブロー成形金型の熱交換範囲を非鉄金属体にて形成しても、金型の突合せ部に薄肉部に設け、その薄肉部に鉄系材を肉盛溶接し、鉄系肉盛部を設け、鉄材層にてバリ食い切り部を形成しているので、バリ食い切り部の損傷は従来の鋼材製金型と略同様になる。
請求項8のハイブリッド金型は、請求項1〜7の内の1の特徴に加えて、鉄系材の肉盛溶接を単層とすれば、その分、鉄材層の形成は容易になる。
しかし、単層では十分な耐久力が得られない場合、多層に肉盛溶接し、肉盛高さを最大2mmにすれば、十分な耐久力が得られる。
但し、層を重ねる毎に肉盛溶接に時間を要する。
In addition to the feature of one of claims 1 to 6, the hybrid mold of claim 7 can be used as a butt portion of the mold even if the heat exchange range of the blow mold is formed of a non-ferrous metal body. It is provided in the thin wall part, and the iron-based material is built-up welded to the thin-walled part, the iron-based built-up part is provided, and the burr cut-out part is formed in the iron material layer, so the burr cut-out part is damaged by the conventional steel material It is almost the same as the mold.
In the hybrid mold according to the eighth aspect, in addition to the feature of one of the first to seventh aspects, if the build-up welding of the iron-based material is a single layer, the formation of the iron material layer is facilitated accordingly.
However, if sufficient durability cannot be obtained with a single layer, sufficient durability can be obtained by overlay welding in multiple layers and setting the overlay height to a maximum of 2 mm.
However, it takes time for overlay welding each time the layers are stacked.

請求項9のハイブリッド金型は、請求項1〜8の内の1の特徴に加えて、キャビティに連続するゲート用鉄系肉盛部を形成し、概肉盛部にゲート路を、肉盛部表面に仕上げ加工したゲート用鉄材層を設けているので、高温の溶湯が流れるゲート部の近辺まで非鉄金属体で形成することが可能となる。
請求項10のハイブリッド金型は、請求項1〜9の内の1の特徴に加えて、鉄系材として鋼材ワイヤを、非鉄金属体として銅合金体を用い、鋼材ワイヤを肉盛溶接する高エネルギ密度の熱源にレ−ザ溶接(YAGレ−ザ溶接)、又はレ−ザ溶接とパルス溶接を用いることで、初めて非鉄金属体と鉄材層の積層が可能となるものである。
即ち、銅合金体の薄肉部に鉄系材を単層又は多層に肉盛溶接し、その鉄系肉盛部の表面に仕上げ加工し、鉄材層としたことで、銅合金体でも高温の溶湯から十分に守ることができる。
他の高エネルギ密度の熱源についても実験中であるし、銅合金体以外の非鉄金属体、例えばアルミニウム合金体に対する鉄材層の形成について実験中である。
請求項11のハイブリッド金型は、請求項1〜10の内の1の特徴に加えて、非鉄金属体に鉄系材を肉盛溶接する高エネルギ密度の熱源として、レ−ザ溶接、特にYAGレ−ザ溶接を用いることで、非鉄金属体に対する鉄系材の肉盛溶接が初めて可能となった。
更に、YAGレ−ザ溶接にて1〜2層の鉄系肉盛部を形成した後、その上にパルス溶接にて鉄系肉盛部を形成すれば、能率良く肉盛溶接し得る。
その結果、高機能複合化による金型製造が可能となる。
The hybrid mold according to claim 9 is characterized in that, in addition to the feature of one of claims 1 to 8, an iron-based built-up portion for a gate continuous with the cavity is formed, and a gate path is formed in the roughly built-up portion. Since the iron material layer for gate finishing is provided on the surface of the part, it is possible to form the non-ferrous metal body up to the vicinity of the gate part through which the high-temperature molten metal flows.
A hybrid mold according to a tenth aspect is characterized in that, in addition to the feature of one of the first to ninth aspects, a steel wire is used as an iron-based material, a copper alloy body is used as a non-ferrous metal body, and the steel wire is overlay welded. By using laser welding (YAG laser welding) or laser welding and pulse welding as a heat source of energy density, it is possible to stack a nonferrous metal body and an iron material layer for the first time.
In other words, by depositing an iron-based material into a single layer or multiple layers on a thin part of a copper alloy body and finishing the surface of the iron-based overlay part to form an iron material layer, even a copper alloy body has a high-temperature melt. We can protect enough from.
Experiments are also being conducted on other heat sources with a high energy density, and experiments are being conducted on the formation of an iron material layer on a nonferrous metal body other than a copper alloy body, such as an aluminum alloy body.
The hybrid mold according to claim 11 is characterized in that, in addition to the feature of one of claims 1 to 10, laser welding, particularly YAG is used as a high energy density heat source for overlay welding a ferrous material to a non-ferrous metal body. By using laser welding, overlay welding of a ferrous material to a non-ferrous metal body has become possible for the first time.
Furthermore, after forming an iron-based built-up portion of one or two layers by YAG laser welding, if an iron-based built-up portion is formed thereon by pulse welding, build-up welding can be performed efficiently.
As a result, it is possible to manufacture a mold by high-performance composite.

本発明によるハイブリッド金型の第一実施形態を示す型締め状態の断面図(イ)と、型開き状態の断面図(ロ)である。They are sectional drawing (a) of the mold clamping state which shows 1st embodiment of the hybrid metal mold | die by this invention, and sectional drawing (b) of a mold open state. (イ)(ロ)は、第一実施形態における鉄材層の形成範囲例を示す断面図である。(A) and (B) are cross-sectional views showing examples of the formation range of the iron material layer in the first embodiment. 本発明の第ニ実施形態に用いる摺動体の要部断面図である。It is principal part sectional drawing of the sliding body used for 2nd embodiment of this invention. 本発明の第三実施形態に用いるコア型組込部の断面図である。It is sectional drawing of the core type | mold built-in part used for 3rd embodiment of this invention. 本発明の第四実施形態に用いる部分形成体(インサート体)と、その保持部の関係を示す要部断面図である。It is principal part sectional drawing which shows the relationship between the partial formation body (insert body) used for 4th embodiment of this invention, and its holding | maintenance part. 本発明の第五実施形態における鋼材型と入れ子型の関係を示す断面図である。It is sectional drawing which shows the relationship between the steel material type | mold and nested type in 5th embodiment of this invention. 本発明の第六実施形態におけるブロー成形金型の型開き状態の断面図(イ)と示す型締め状態における断面図(ロ)である。It is sectional drawing (b) in the mold clamping state shown with sectional drawing (a) of the mold opening state of the blow molding die in 6th embodiment of this invention. ゲート用鉄系肉盛部の形成例を示す要部断面図(イ)(ロ)と、ゲート路の形成を示す要部断面図(ハ)(ニ)である。It is principal part sectional drawing (I) (B) which shows the example of formation of the iron-type built-up part for gates, and principal part sectional drawing (C) (D) which shows formation of a gate path. (イ)(ロ)は、鉄系肉盛部の積層例を示す拡大断面図である。(A) and (B) are enlarged cross-sectional views showing a lamination example of an iron-based built-up portion. (イ)(ロ)(ハ)は、ゲート体の形成例を示す断面図である。(A), (b), and (c) are cross-sectional views showing examples of forming a gate body. 中子体を用いた本発明ハイブリッド金型の要部断面図である。It is principal part sectional drawing of this invention hybrid metal mold | die using a core body. テストピース(銅合金体)の左右側面図と正面図及び底面図と斜視図である。It is a left-right side view, a front view, a bottom view, and a perspective view of a test piece (copper alloy body). テストピース(銅合金体)の溶接面(薄肉部)に対する肉盛条件を示す正面図(イ)と要部拡大側面図(ロ)である。They are the front view (I) and the principal part enlarged side view (B) which show the build-up conditions with respect to the welding surface (thin wall part) of a test piece (copper alloy body). 鉄材層を備えたテストピースの正面写真(イ)と側面拡大写真(ロ)である。It is the front photograph (I) and the side enlarged photograph (B) of the test piece provided with the iron material layer. テストピース(イ)(ロ)における鉄材層の形成例を示す要部拡大写真である。It is a principal part enlarged photograph which shows the example of formation of the iron material layer in test piece (I) (B). テストピース(イ)(ロ)における鉄材層の形成例を示す要部拡大写真である。It is a principal part enlarged photograph which shows the example of formation of the iron material layer in test piece (I) (B). テストピース(イ)(ロ)における鉄材層の形成例を示す要部拡大写真である。It is a principal part enlarged photograph which shows the example of formation of the iron material layer in test piece (I) (B). テストピースにおける鉄材層の形成例を示す要部拡大写真である。It is a principal part enlarged photograph which shows the example of formation of the iron material layer in a test piece.

本発明によるハイブリッド金型の第一実施形態を合成樹脂用射出成形金型において説明すると、図1のごとく成形金型1は熱伝導の良好な非鉄金属体3にて形成され、非鉄金属体3から成る成形金型1にキャビティEと製品関連部7を備え、キャビティEと製品関連部7の少なくとも負荷集中範囲に、例えばキャビティEにあっては製品形成面e、製品関連部7にあってはパーテングライン(以下、PLとする)のキャビティ連続部3aを数mm以内の厚さで薄肉化し、薄肉部13に高エネルギ密度の熱源を用いて非鉄金属体3より耐久力の強い鉄系材Fを肉盛溶接し、鉄系肉盛部4を形成し、その肉盛部表面4aに仕上げ加工した鉄材層4Aを設け、鉄材層4Aで負荷集中範囲を保護した適正寸法のキャビティEと、鉄材層4Aで保護したPLのキャビティ連続部3aを形成している。   The first embodiment of the hybrid mold according to the present invention will be described with reference to an injection mold for synthetic resin. As shown in FIG. 1, the mold 1 is formed of a nonferrous metal body 3 having good heat conduction. The molding die 1 is provided with a cavity E and a product related part 7, and at least in the load concentration range of the cavity E and the product related part 7, for example, in the cavity E, on the product forming surface e and the product related part 7. Is a thin part of the continuous part 3a of the parting line (hereinafter referred to as PL) having a thickness of several millimeters or less, and a high energy density heat source is used for the thin part 13 and the iron system has higher durability than the nonferrous metal body 3. Overlay welding of the material F, forming the iron-based built-up portion 4, and providing a finished iron material layer 4A on the surface of the built-up portion 4a, the cavity E of the appropriate dimension that protects the load concentration range with the iron material layer 4A Protected with iron material layer 4A Forming a L cavity continuous portion 3a.

第一実施形態では、非鉄金属体3として銅合金体3Aを、鉄系材Fとして鋼材ワイヤWを用い、且つ高エネルギ密度の熱源としてレ−ザ溶接、特にYAGレ−ザ溶接を用い、銅合金体3Aにて成形金型1の固定金型1Aと可動金型1Bを構成し、成形金型1の内部にキャビティEを備え、そのキャビティEの摩耗しやすい負荷集中範囲に薄肉部13を設け、薄肉部13に鋼材ワイヤWをYAGレ−ザ溶接し、鉄系肉盛部4より成る鉄材層4Aを形成し、鉄材層4Aで銅合金体3Aの薄肉部13を覆い、平坦部や緩変化部は銅合金体3Aのままとし、銅合金体3Aと鉄材層4AとでキャビティEを形成する。
キャビティEの摩耗しやすい負荷集中範囲として、例えば成形材料の圧力が強く作用する図2の如く角部や形状の変化部、或はダイレクトゲートの相対向側製品形成面eが挙げられる。
鉄材層4Aは、鋼材ワイヤWによる肉盛高さtを平均2mm以内に単層又は多層に溶接し、仕上げ加工(切削加工、グラインダー又はやすり等による研磨等)して形成する。
In the first embodiment, a copper alloy body 3A is used as the non-ferrous metal body 3, a steel wire W is used as the iron-based material F, and laser welding, particularly YAG laser welding is used as a heat source with high energy density. The alloy body 3A constitutes a fixed mold 1A and a movable mold 1B of the molding die 1, and a cavity E is provided inside the molding die 1, and the thin portion 13 is provided in the load concentration range where the cavity E is easily worn. The steel wire W is YAG laser welded to the thin-walled portion 13 to form an iron material layer 4A composed of the iron-based built-up portion 4, and the thin-walled portion 13 of the copper alloy body 3A is covered with the iron material layer 4A. The slowly changing portion remains the copper alloy body 3A, and the cavity E is formed by the copper alloy body 3A and the iron material layer 4A.
As the load concentration range in which the cavity E is likely to be worn, for example, a corner portion or a shape-changing portion as shown in FIG.
The iron material layer 4 </ b> A is formed by welding a single layer or multiple layers with a built-up height t of the steel material wire W within an average of 2 mm and finishing (cutting, polishing with a grinder or file).

本発明によるハイブリッド金型の第二実施形態を図1と図3に基づき説明すれば、製品関連部7としてキャビティEに向けて往復動する摺動体5の突き出しピン51と、摺動体受部6の突き出しピン挿入孔61を備え、摺動体受部6の少なくとも入口側6a、即ち、突き出しピン挿入孔61の入口側61aを数mm以内の厚さで薄肉化し、薄肉部13にYAGレ−ザ溶接を用いて鋼材ワイヤWを単層又は多層に肉盛溶接し、平均厚さが2mm以内の鉄系肉盛部4を形成し、その肉盛部表面4aに仕上げ加工した鉄材層4Aを設け、鉄材層4Aで突き出しピン挿入孔61の入口側61aを保護している。   A second embodiment of a hybrid mold according to the present invention will be described with reference to FIGS. 1 and 3. As a product-related portion 7, a projecting pin 51 of a sliding body 5 that reciprocates toward a cavity E and a sliding body receiving portion 6. And at least the inlet side 6a of the sliding body receiving portion 6, that is, the inlet side 61a of the protruding pin insertion hole 61 is thinned to a thickness of several millimeters or less, and the YAG laser is formed in the thin portion 13. Welding steel wire W into a single layer or multiple layers using welding to form an iron-based built-up portion 4 having an average thickness of 2 mm or less, and providing an iron material layer 4A finished on the built-up surface 4a The iron layer 4A protects the inlet side 61a of the protruding pin insertion hole 61.

本発明によるハイブリッド金型の第三実施形態を、第二実施形態と相違する点について説明すれば、第三実施形態のハイブリッド金型は、図4の如くコア金型1Cを用いて成形金型1を構成するもので、コア金型1Cは、キャビティEに向けて往復動する摺動体5のスライドコア52と、摺動体5をスライド自在にガイドする摺動体受部6のコアガイド62から成り、このコア金型1Cを組み込むために、成形金型1を構成する非鉄金属体3の銅合金体3Aに製品関連部7としてキャビティEに向けて開口する保持部9、具体的にはコア金型保持部92を備える。
そのため、保持部9の少なくとも入口側9a、第三実施形態にあっては、コア金型保持部92の入口側92a(キャビティ側)を数mm以内の厚さで薄肉化し、薄肉部13にYAGレ−ザ溶接を用いて鋼材ワイヤWを肉盛溶接し、鉄系肉盛部4を形成し、その肉盛部表面4aに仕上げ加工した鉄材層4Aを設け、鉄材層4Aにて保持部入口側92aを保護する。
コア金型1Cのコアガイド62を非鉄金属体3の銅合金体3Aにて形成する場合、コアガイド62のガイド頭部62aを数mm以内の厚さで薄肉化し、薄肉部13にYAGレ−ザ溶接を用いて鋼材ワイヤWを肉盛溶接し、鉄系肉盛部4を形成し、その肉盛部表面4aに仕上げ加工した鉄材層4Aを設け、鉄材層4Aにてガイド頭部62aを保護する。
If the third embodiment of the hybrid mold according to the present invention is described in terms of differences from the second embodiment, the hybrid mold of the third embodiment is a molding mold using a core mold 1C as shown in FIG. The core mold 1C includes a slide core 52 of a sliding body 5 that reciprocates toward a cavity E, and a core guide 62 of a sliding body receiving portion 6 that guides the sliding body 5 in a slidable manner. In order to incorporate the core mold 1C, the holding part 9 that opens toward the cavity E as the product-related part 7 in the copper alloy body 3A of the non-ferrous metal body 3 constituting the molding mold 1, specifically, the core mold A mold holding unit 92 is provided.
Therefore, at least the inlet side 9a of the holding part 9, and in the third embodiment, the inlet side 92a (cavity side) of the core mold holding part 92 is thinned to a thickness of several mm or less, and the thin part 13 is The steel wire W is build-up welded using laser welding to form an iron-based build-up portion 4, and a finished iron material layer 4A is provided on the build-up portion surface 4a. Protect side 92a.
When the core guide 62 of the core mold 1C is formed of the copper alloy body 3A of the non-ferrous metal body 3, the guide head 62a of the core guide 62 is thinned to a thickness within a few millimeters, and the YAG label is formed on the thin portion 13. The steel wire W is build-up welded using the welding to form the iron-based build-up portion 4, and a finished iron material layer 4A is provided on the build-up surface 4a, and the guide head 62a is formed by the iron material layer 4A. Protect.

本発明によるハイブリッド金型の第四実施形態を、第一乃至第三実施形態と相違する点について説明すれば、第四実施形態のハイブリッド金型は、製品関連部7としてキャビティEに向けて突出する部分成形体8と、キャビティEに向けて開口する保持部9とを備え、その保持部9を銅合金体3Aに形成する場合、概保持部9の少なくとも入口側9aを数mm以内の厚さで薄肉化し、薄肉部13にYAGレ−ザ溶接を用いて鋼材ワイヤWを肉盛溶接し、鉄系肉盛部4を形成し、その肉盛部表面4aに仕上げ加工した鉄材層4Aを設け、鉄材層4Aで保持部入口側9aを保護している。
部分成形体8が例えば図5の如くインサート材81或は微細成形体83である場合、銅合金体3Aにインサート材81或は微細成形体83の部分形成体保持部91を設け、概保持部91の少なくとも入口側91aに鉄材層4Aを設け、鉄材層4Aで保持部入口側91aを保護している。
The fourth embodiment of the hybrid mold according to the present invention will be described with respect to differences from the first to third embodiments. The hybrid mold according to the fourth embodiment projects toward the cavity E as the product-related portion 7. When the holding part 9 is formed in the copper alloy body 3A, the at least the inlet side 9a of the general holding part 9 has a thickness within several millimeters. Then, the steel material wire W is build-up welded to the thin-wall portion 13 by using YAG laser welding to form an iron-based build-up portion 4, and the iron material layer 4 </ b> A finished to the build-up portion surface 4 a is formed. The holding portion inlet side 9a is protected by the iron material layer 4A.
When the partial molded body 8 is, for example, an insert material 81 or a fine molded body 83 as shown in FIG. 5, a partial formed body holding portion 91 for the insert material 81 or the fine molded body 83 is provided on the copper alloy body 3A. The iron material layer 4A is provided at least on the inlet side 91a of 91, and the holding portion inlet side 91a is protected by the iron material layer 4A.

本発明によるハイブリッド金型の第五実施形態を、第一乃至第四実施形態と相違する点について説明すれば、第五実施形態のハイブリッド金型は、図6の如く成形金型1を鋼材型10と、鋼材型10に組み込む入れ子型20とから構成し、入れ子型20を非鉄金属体3の銅合金体3Aとし、この銅合金体3Aから成る入れ子型20にキャビティEを形成し、第一実施形態の如くキャビティEの負荷集中範囲とPLのキャビティ連続部3aに薄肉部13を設け、薄肉部13にYAGレ−ザ溶接を用いて鋼材ワイヤWを肉盛溶接し、鉄系肉盛部4より成る鉄材層4Aを設け、鉄材層4Aにて銅合金体3Aから成る入れ子型20を保護する。
また、銅合金体3Aから成る入れ子型20に第ニ実施形態の如く、摺動体5の突き出しピン51と、摺動体受部6が突き出しピン挿入孔61を設けることも可能である。
更に、第三実施形態の如く、コア金型1Cを用いて成形金型1を構成したり、第四実施形態の如く部分成形体8の保持部9を形成することも可能である。
The fifth embodiment of the hybrid mold according to the present invention will be described with respect to differences from the first to fourth embodiments. The hybrid mold according to the fifth embodiment is the same as the mold 1 shown in FIG. 10 and a nested mold 20 incorporated in the steel material mold 10, the nested mold 20 is a copper alloy body 3A of a non-ferrous metal body 3, and a cavity E is formed in the nested mold 20 composed of this copper alloy body 3A. As in the embodiment, the thin wall portion 13 is provided in the load concentration range of the cavity E and the cavity continuous portion 3a of the PL, and the steel wire W is overlay welded to the thin wall portion 13 using YAG laser welding. 4 is provided, and the nested mold 20 made of the copper alloy body 3A is protected by the iron material layer 4A.
Further, as shown in the second embodiment, the insert pin 51 of the slide body 5 and the slide body receiving portion 6 may be provided with the protruded pin insertion hole 61 in the insert mold 20 made of the copper alloy body 3A.
Furthermore, as in the third embodiment, the molding die 1 can be configured using the core die 1C, or the holding portion 9 of the partial molded body 8 can be formed as in the fourth embodiment.

本発明によるハイブリッド金型の第六実施形態を、第一乃至第五実施形態と相違する点について説明すれば、第六実施形態のハイブリッド金型は、図7の如く成形金型1が左金型11Aと右金型11Bから成るブロー成形金型11であり、左右金型11A,11Bの少なくとも熱交換範囲を非鉄金属体3,3にて各々形成し、非鉄金属体3,3の少なくとも突合せ部を数mm以内の厚さで薄肉化し、薄肉部13にYAGレ−ザ溶接を用いて鋼材ワイヤWを肉盛溶接し、鉄系肉盛部4を形成し、その肉盛部表面4aに仕上げ加工した鉄材層4Aを設け、鉄材層4Aでバリ食い切り部24,24を形成し、離型時に製品のバリを切断し得るようにしている。   The sixth embodiment of the hybrid mold according to the present invention will be described in terms of differences from the first to fifth embodiments. The hybrid mold of the sixth embodiment is such that the molding mold 1 is a left mold as shown in FIG. A blow mold 11 comprising a mold 11A and a right mold 11B, wherein at least the heat exchange ranges of the left and right molds 11A and 11B are formed by the non-ferrous metal bodies 3 and 3, respectively, and at least the non-ferrous metal bodies 3 and 3 are butted The part is thinned to a thickness of several millimeters or less, and the steel wire W is build-up welded to the thin-wall part 13 using YAG laser welding to form an iron-based build-up part 4, and the build-up part surface 4 a The finished iron material layer 4A is provided, and the burr cutting portions 24, 24 are formed by the iron material layer 4A so that the burr of the product can be cut at the time of release.

実験例1(非鉄金属体の溶接状態を検証する)
・実験条件
銅合金体3A: 図12の如く縦d=10mm、横w=10mm、高さh=10mm(一辺が10mmのサイコロ型)のHIT75をテストピースとする。
鋼材ワイヤW:0.3mmφと0.6mmφの商品名「スターバックス」のステンレス系鋼材ワイヤWを用いる。尚、0.3φの鋼材ワイヤWをレ−ザ溶接すると、一回の溶接で約0.2mmの肉盛ができるし、0.6φの鋼材ワイヤWをパルス溶接すると、一回の溶接で約0.4mmの肉盛ができる。
・肉盛条件
テストピースの一面の半巾分5mmに0.5mmの薄肉部13(溶接面)を設ける。
YAGレ−ザ溶接:ドイツ製100W、200Wのレ−ザ溶接機を用いる。
溶接面にYAGレ−ザを用いて図13の如く鋼材ワイヤWを一定のピッチで肉盛溶接し、溶接面より僅かに高く広い範囲で鉄系肉盛部4を設けた後、鉄系肉盛部4を設けたテストピースに仕上げ加工(研磨)し、肉盛高さtが0.5mmの鉄材層4Aを形成する。
Experimental Example 1 (Verifying the welding state of a non-ferrous metal body)
Experimental conditions Copper alloy body 3A: As shown in FIG. 12, a test piece is an HIT75 having a vertical d = 10 mm, a horizontal w = 10 mm, and a height h = 10 mm (a dice type having a side of 10 mm).
Steel wire W: Stainless steel wire W having a trade name “Starbucks” of 0.3 mmφ and 0.6 mmφ is used. In addition, when laser welding the 0.3φ steel wire W, it is possible to build up a thickness of about 0.2 mm by one welding, and when 0.6φ steel wire W is pulse-welded, Can build up to 0.4 mm.
-Build-up conditions A 0.5 mm thin portion 13 (welded surface) is provided on a half width of 5 mm on one side of the test piece.
YAG laser welding: 100W and 200W laser welding machines made in Germany are used.
After welding the steel wire W at a constant pitch using a YAG laser on the welding surface and providing the iron-based built-up portion 4 in a slightly higher range than the welding surface, The test piece provided with the raised portion 4 is finished (polished) to form an iron material layer 4A having a build-up height t of 0.5 mm.

鉄材層4Aの形成状態、特に鉄材層4Aの接合状態を検証するためにYAGレーザ溶接の条件等を変えて実験を行なった。
・観察結果
目視観察では、図14の如く鉄材層4Aと銅合金体3Aとが積層状態にあり、鉄材層4Aと銅合金体3Aの間に境界線が見える。
顕微鏡による300倍拡大写真では、YAGレーザ溶接の条件によっては図15〜図18の如く鉄材層4Aに亀裂を生じたり、気穴を生じるし、銅合金体3Aとの境界線に乱れ生じた。YAGレーザ溶接の条件と試料の詳しい関係は追って追加する。
図15の線状跡は、磨きによって生じたものである。
YAGレーザーのエネルギーにより銅合金体3Aの極く表面が溶融され、該溶融部にYAGレーザーのエネルギーによって溶融された鋼材ワイヤWが流れ込み、凝固して銅合金体3Aの表面に鉄系肉盛部4が形成されると思われるが、顕微鏡では銅合金体3Aの表面が溶融された形跡は発見できなかった。
しかし、鉄材層4Aと銅合金体3Aは、恰も糊や接着剤で着接しているように強力に着接している。
In order to verify the formation state of the iron material layer 4A, particularly the bonding state of the iron material layer 4A, an experiment was performed by changing the YAG laser welding conditions and the like.
Observation result In visual observation, the iron material layer 4A and the copper alloy body 3A are in a laminated state as shown in FIG. 14, and a boundary line is visible between the iron material layer 4A and the copper alloy body 3A.
In the 300 times magnified photograph taken with a microscope, depending on the conditions of YAG laser welding, cracks or pores were formed in the iron material layer 4A as shown in FIGS. 15 to 18, and the boundary line with the copper alloy body 3A was disturbed. The detailed relationship between the YAG laser welding conditions and the sample will be added later.
The linear trace in FIG. 15 is generated by polishing.
The very surface of the copper alloy body 3A is melted by the energy of the YAG laser, and the steel wire W melted by the energy of the YAG laser flows into the melted part, solidifies and solidifies on the surface of the copper alloy body 3A. 4 appears to be formed, but a trace of the melting of the surface of the copper alloy body 3A could not be found by a microscope.
However, the iron material layer 4 </ b> A and the copper alloy body 3 </ b> A are strongly attached so that the heel is also attached with glue or an adhesive.

実験例2(肉盛高さtに対する考察)
・実験条件
非鉄金属体3:実験例1と同じ銅合金体3Aを用いる。
鋼材ワイヤW:0.3mmφのステンレス系鋼材ワイヤWを用いる。
試料1=肉盛高さt=0・1mm
試料2=肉盛高さt=0・3mm
試料3=肉盛高さt=0・5mm
試料4=肉盛高さt=1・0mm
各試料の薄肉部13は、肉盛高さtに応じて薄肉化し、薄肉部13にYAGレーザーを用いて鋼材ワイヤWを肉盛溶接した後、鉄系肉盛部4の表面を適正寸法になるまで仕上げ加工を施した。
Experimental example 2 (consideration on build-up height t)
Experimental conditions Non-ferrous metal body 3: The same copper alloy body 3A as in Experimental Example 1 is used.
Steel wire W: 0.3 mmφ stainless steel wire W is used.
Sample 1 = overlay height t = 0 · 0.1 mm
Sample 2 = overlay height t = 0.3 mm
Sample 3 = overlay height t = 0.5 mm
Sample 4 = overlay height t = 1.0 mm
The thin-walled portion 13 of each sample is thinned according to the build-up height t, and after welding the steel wire W to the thin-walled portion 13 using a YAG laser, the surface of the iron-based built-up portion 4 is adjusted to an appropriate dimension. Finished until it was.

実験例3(溶接手段による考察)
・実験条件:実験例1と同じ。
試料5=YAGレ−ザ溶接のみにて鉄系肉盛部4を形成する。
試料6=YAGレ−ザ溶接にて一層目を形成し、残りをパルス溶接にて肉盛する。
試料7=パルス溶接のみにて鉄系肉盛部4を形成する。
試料5〜7の比較
肉盛溶接に要した時間は、試料7<試料6<試料5の関係にある。
鉄系肉盛部4の接着状況:顕微鏡による観察では、試料5と試料6は略同様であった。
試料7では、やや乱れが見えた。
Experimental example 3 (consideration by welding means)
Experimental conditions: Same as Experimental Example 1.
Sample 5 = The iron-based built-up portion 4 is formed only by YAG laser welding.
Sample 6 = The first layer is formed by YAG laser welding, and the rest is built up by pulse welding.
Sample 7 = The iron-based built-up portion 4 is formed only by pulse welding.
Comparison of Samples 5 to 7 The time required for overlay welding is in the relationship of Sample 7 <Sample 6 <Sample 5.
Adhesion status of the iron-based built-up portion 4: In the observation with a microscope, the sample 5 and the sample 6 were substantially the same.
Sample 7 was somewhat disturbed.

・検査対象
各試料の品質の検討と、適正厚さを確定する。
同上に関する溶接技術と接合面の強度および信頼性評価。
肉盛溶接した鉄材層4Aの接合面の物性評価。
表面硬さを調査する。(マイクロビッカース硬さ測定)
溶接条件の変化に伴う接合界面の健全性(ピンホール及び界面相の形成の有無、溶接割れ等)の調査、(断面組織の光顕観察、EPMA分析)
鉄材層4Aの熱処理効果の確認(マイクロビッカース硬さ測定)
熱影響部の材質調査(相変態の有無、結晶粒径の変化と物性変化)
当該技術を使用した金型製作、修理、改造のシステム考察。
-Inspection target Review the quality of each sample and determine the appropriate thickness.
Welding technology and joint strength and reliability evaluation related to the above.
Evaluation of physical properties of the joint surface of the steel layer 4A that has undergone overlay welding.
Investigate surface hardness. (Micro Vickers hardness measurement)
Investigation of the soundness of the joint interface (whether pinholes and interface phases are formed, weld cracks, etc.) due to changes in welding conditions, (light microscope observation of cross-sectional structure, EPMA analysis)
Confirmation of heat treatment effect of iron material layer 4A (micro Vickers hardness measurement)
Investigation of material in heat affected zone (presence of phase transformation, change in crystal grain size and change in physical properties)
Consideration of system for mold production, repair and modification using this technology.

・実験結果
銅合金体3Aとそれに肉盛溶接した鉄材層4Aの界面の定性分析と状況観察
顕微鏡下の観察及び分析(SEM)では、溶接による欠陥は殆ど認められず、実用レベルの品質を得られる可能性が極めて高い。
・ Experimental results Qualitative analysis and situation observation of the copper alloy body 3A and the steel layer 4A overlay welded to it In the observation and analysis (SEM) under the microscope, almost no defects due to welding were observed, and a quality of practical level was obtained. Is very likely.

・YAGレーザー以外の溶接法による試み
TIG及び精密スポット溶接では、「ピンホール」「割れ」等の欠陥が多く認められ、且つ肉盛部が脱落するものもあり、実用的ではない。
前記の実験は極めて限定的な予察に過ぎず、本格的な技術開発に向けて鋭意研究開発を行う。特に、YAGレーザー以外の高エネルギ密度の熱源について、現在実験中である。
-Attempts by welding methods other than YAG laser In TIG and precision spot welding, many defects such as "pinholes" and "cracks" are observed, and some of the build-up parts fall off, which is not practical.
The above-mentioned experiment is only a very limited preliminary observation, and intensive research and development will be conducted for full-scale technological development. In particular, a high energy density heat source other than a YAG laser is currently being tested.

摺動体5を非鉄金属体3の銅合金体3Aにて形成した場合、図9の如く少なくとも頭部5aを数mm以内の厚さで薄肉化し、薄肉部13にYAGレ−ザ溶接を用いて鋼材ワイヤWを肉盛溶接し、鉄系肉盛部4を形成し、その肉盛部表面4aに仕上げ加工した鉄材層4Aを設け、鉄材層4Aにて摺動体頭部5aを保護する。
例えば、摺動体5のスライドコア52を銅合金体3Aにて形成する場合、スライドコア52少なくとも摩耗しやすい範囲のコア頭部52a(キャビティ内に露出する露出部と、それに続く適宜範囲)を数mm以内の厚さで薄肉化し、薄肉部13にYAGレ−ザ溶接を用いて鋼材ワイヤWを肉盛溶接し、鉄系肉盛部4を形成し、その肉盛部表面4aに仕上げ加工した鉄材層4Aを設け、鉄材層4Aでコア頭部52aを保護する。
摺動体5の突き出しピン51を銅合金体3Aにて形成する場合、銅合金体3Aから成るスライドコア52と同様に、そのピン頭部51aに鉄材層4Aを設け、鉄材層4Aでピン頭部51aを保護する。
When the sliding body 5 is formed of the copper alloy body 3A of the non-ferrous metal body 3, at least the head portion 5a is thinned to a thickness within several millimeters as shown in FIG. 9, and the thin-walled portion 13 is subjected to YAG laser welding. The steel material wire W is build-up welded to form the iron-based built-up portion 4, and the finished iron material layer 4A is provided on the build-up surface 4a, and the sliding body head 5a is protected by the iron material layer 4A.
For example, when the slide core 52 of the sliding body 5 is formed of the copper alloy body 3A, the core core 52a (exposed portion exposed in the cavity and an appropriate range following the core) 52a at least in the range where the slide core 52 is likely to be worn is several. The steel wire W was overlay welded to the thin portion 13 using YAG laser welding to form an iron-based overlay portion 4, and the overlay portion surface 4a was finished. The iron material layer 4A is provided, and the core head portion 52a is protected by the iron material layer 4A.
When the protruding pin 51 of the sliding body 5 is formed of the copper alloy body 3A, an iron material layer 4A is provided on the pin head 51a in the same manner as the slide core 52 made of the copper alloy body 3A. Protect 51a.

非鉄金属体3に、図8の如くキャビティEに連続する切欠部19を設け、切欠部19にYAGレ−ザ溶接を用いて鋼材ワイヤWを肉盛溶接し、ゲート用鉄系肉盛部14を形成し、概肉盛部14にゲート路2を加工すると共に、肉盛部表面4aに仕上げ加工したゲート用鉄材層14Aを設け、概鉄材層14Aで切欠部19を塞ぐことも可能である。
ゲート路2として、サイドゲート2a、トンネルゲート2b、ダイレクトゲート2cを設けることができる。
As shown in FIG. 8, the nonferrous metal body 3 is provided with a notch 19 continuous to the cavity E, and the steel wire W is overlay welded to the notch 19 using YAG laser welding. It is also possible to process the gate path 2 in the roughly built-up portion 14 and provide the gate iron material layer 14A finished on the built-up portion surface 4a so as to close the notch 19 with the roughly iron material layer 14A. .
As the gate path 2, a side gate 2a, a tunnel gate 2b, and a direct gate 2c can be provided.

非鉄金属体3の摩耗しやすい負荷集中範囲に鉄材層4Aを備えている成形金型1、摺動体5、部品形成体8等を加熱炉に入れ、銅合金の融点より低い温度で一定時間にわたり加熱すれば、加熱により鉄材層4Aの肉盛時に生じた歪み(溶接によって生じた内部応力等)が取除かれる。その結果、歪みによる損傷や破損が著しく減少する。   The molding die 1, the sliding body 5, the component forming body 8, etc. having the iron material layer 4 </ b> A in the load concentration range where the nonferrous metal body 3 is likely to be worn are placed in a heating furnace and kept for a certain time at a temperature lower than the melting point of the copper alloy If heated, distortion (such as internal stress generated by welding) generated when the iron material layer 4A is built up by heating is removed. As a result, damage and breakage due to distortion are significantly reduced.

実施形態では、鋼材ワイヤWによる肉盛溶接にYAGレ−ザとパルス溶接を用いたが、YAGレ−ザ溶接以外のレ−ザ溶接、電子ビーム溶接、超音波溶接等も使用できると思われる。また、YAGレ−ザ溶接にて一層目を形成し、二層目以後をパルス溶接にて鉄系肉盛部4を形成した後、肉盛部表面4aに仕上げ加工し、鉄材層4Aを形成することが好ましい。
実施形態は合成樹脂用射出成形金型とブロー成形金型を例としたが、両金型に限定されるものではなく、例えば圧縮成形金型、押出し成形金型にも応用し得るし、合成樹脂用金型以外の例えばダイカスト金型、ゴム成形用金型、ガラス金型にも応用し得る。
また、部分成形体8が銅合金体3Aから成る図11の如く中子体84で、中子体保持部94も銅合金体3Aに設ける場合、中子体84の全表面に鉄材層4Aを形成し、中子体保持部94も鉄材層4Aで覆うことが好ましい。
部分成形体8が図10の如く鋼材から成るゲート体82である場合、銅合金体3Aにゲート体保持部93を設け、概保持部93にゲート体82を組み込むことも可能である。
尚、成形金型1、又は成形金型1を構成する非鉄金属体3が熱伝導の良好な銅合金体3Aであっても、従来の鋼製金型と同様に冷却水路を設けることが好ましい。
In the embodiment, YAG laser and pulse welding are used for overlay welding with the steel wire W, but laser welding other than YAG laser welding, electron beam welding, ultrasonic welding, etc. may be used. . In addition, the first layer is formed by YAG laser welding, and the second and subsequent layers are formed by pulse welding to form the iron-based built-up portion 4, and then finished to the built-up portion surface 4 a to form the iron material layer 4 </ b> A. It is preferable to do.
The embodiment has exemplified the injection mold for synthetic resin and the blow mold, but is not limited to both molds. For example, the present invention can be applied to a compression mold and an extrusion mold. For example, it can be applied to die casting molds, rubber molding molds, and glass molds other than resin molds.
Further, when the partially molded body 8 is a core body 84 made of the copper alloy body 3A as shown in FIG. 11 and the core body holding portion 94 is also provided on the copper alloy body 3A, the iron material layer 4A is provided on the entire surface of the core body 84. Preferably, the core body holding portion 94 is also covered with the iron material layer 4A.
When the partial molded body 8 is a gate body 82 made of steel as shown in FIG. 10, it is possible to provide the copper body 3 </ b> A with the gate body holding portion 93 and incorporate the gate body 82 into the general holding portion 93.
Even if the molding die 1 or the non-ferrous metal body 3 constituting the molding die 1 is a copper alloy body 3A having good heat conduction, it is preferable to provide a cooling water channel as in the case of a conventional steel mold. .

1 成形金型、1A 固定金型、1B 可動金型、1C コア金型
11 ブロー成形金型、11A 左金型、11B 右金型
10 鋼材型、20 入れ子型
2 ゲート路
2a サイドゲート、2b トンネルゲート、2c ダイレクトゲート
3 非鉄金属体、3A 銅合金体(テストピース)、13 薄肉部(溶接面)
3a パーテングライン(PL)のキャビティ連続部
4 鉄系肉盛部、4A 鉄材層、4a 肉盛部表面
14 ゲート用鉄系肉盛部、14A ゲート用鉄材層、24 バリ食い切り部
5 摺動体、5a 頭部(露出部+α)
51 突き出しピン、52 スライドコア
51a ピン頭部、52a コア頭部
6 摺動体受部、6a 受部入口側
61 ピン挿入孔、62 コアガイド
61a 挿入孔入口側、62a ガイド頭部
7 製品関連部
8 部分成形体、81 インサート体(インモールド)、82 ゲート体
83 微細成形体、84 中子体
9 保持部、19 切欠部
91 部分成形体保持部、92 コア金型保持部、93 ゲート体保持部
94 中子体保持部、9a,91a,92a 保持部入口側
F 鉄系材、W 鋼材ワイヤ
E 製品形成部(キャビティ)、e 製品形成面
R レーザー、R1 YAGレーザー(精密マイクロYAGレーザー)
t 肉盛高さ
DESCRIPTION OF SYMBOLS 1 Molding die, 1A Fixed die, 1B Movable die, 1C Core die 11 Blow molding die, 11A Left die, 11B Right die 10 Steel material type, 20 Nesting die 2 Gate path 2a Side gate, 2b Tunnel Gate, 2c Direct gate 3 Non-ferrous metal body, 3A Copper alloy body (test piece), 13 Thin part (welded surface)
3a Parting line (PL) cavity continuous part 4 Iron-based built-up part, 4A Iron material layer, 4a Overlaid part surface 14 Iron-based built-up part for gate, 14A Gate iron-made part, 24 Burr cut-off part 5 Sliding body, 5a Head (exposed part + α)
51 Extruding Pin, 52 Slide Core 51a Pin Head, 52a Core Head 6 Sliding Body Receiving Part, 6a Receiving Port Entrance Side 61 Pin Inserting Hole, 62 Core Guide 61a Inserting Hole Inlet Side, 62a Guide Head 7 Product Related Parts 8 Partial molded body, 81 Insert body (in-mold), 82 Gate body 83 Fine molded body, 84 Core body 9 Holding part, 19 Notch part 91 Partial molded body holding part, 92 Core mold holding part, 93 Gate body holding part 94 Core body holding part, 9a, 91a, 92a Holding part inlet side F Iron-based material, W Steel wire E Product forming part (cavity), e Product forming surface R laser, R1 YAG laser (precision micro YAG laser)
t Overlay height

Claims (11)

成形金型(1)の少なくとも熱交換範囲を非鉄金属体(3)にて形成し、
非鉄金属体(3)にキャビティ(E)と製品関連部(7)を備え、
少なくともキャビティ(E)の製品形成面(e)の損傷しやすい負荷集中範囲を所定の仕上げ厚みよりも薄肉化した薄肉部(13)を形成し、
薄肉部(13)に高エネルギ密度の熱源を用いて非鉄金属体(3)より溶融温度の高い鉄系材(F)を肉盛溶接し、鉄系肉盛部(4)を形成し、その肉盛部表面(4a)に仕上げ加工した鉄材層(4A)を設け、
鉄材層(4A)で製品形成面(e)の損傷しやすい負荷集中範囲を保護していることを特徴とするハイブリッド金型。
Forming at least the heat exchange range of the molding die (1) with a non-ferrous metal body (3);
A non-ferrous metal body (3) is provided with a cavity (E) and a product-related part (7),
Forming a thin-walled portion (13) in which at least the product concentration surface (e) of the cavity (E) that is easily damaged is made thinner than a predetermined finish thickness;
Using a heat source with a high energy density for the thin-walled portion (13), the iron-based material (F) having a melting temperature higher than that of the non-ferrous metal body (3) is welded to form an iron-based built-up portion (4), Provide the finished iron layer (4A) on the surface of the overlay (4a)
A hybrid mold characterized in that an iron material layer (4A) protects a load concentration range where product formation surface (e) is easily damaged.
製品関連部(7)が非鉄金属体(3)のパーテイングライン(PL)のキャビティ連続部(3a)であり、概連続部(3a)に前記薄肉部(13)を形成し、薄肉部(13)に高エネルギ密度の熱源を用いて鉄系材(F)を肉盛溶接し、鉄系肉盛部(4)を形成し、その肉盛部表面(4a)に仕上げ加工した鉄材層(4A)を設け、鉄材層(4A)にPLのキャビティ連続部(3a)を形成していることを特徴とする請求項1記載のハイブリッド金型。   The product related part (7) is the cavity continuous part (3a) of the parting line (PL) of the non-ferrous metal body (3), and the thin part (13) is formed in the substantially continuous part (3a). 13) Using a heat source with a high energy density, the iron-based material (F) is build-up welded to form an iron-based built-up portion (4), and the surface of the built-up portion (4a) is finished with an iron material layer ( The hybrid mold according to claim 1, wherein 4A) is provided and a PL cavity continuous part (3a) is formed in the iron material layer (4A). 製品関連部(7)がキャビティ(E)に向けて往復動する摺動体(5)と、その摺動体(5)をスライド自在にガイドする摺動体受部(6)であり、
摺動体受部(6)は少なくとも入口側(6a)に前記薄肉部(13)を形成し、薄肉部(13)に高エネルギ密度の熱源を用いて鉄系材(F)を肉盛溶接し、鉄系肉盛部(4)を形成し、その肉盛部表面(4a)に仕上げ加工した鉄材層(4A)を設け、鉄材層(4A)で摺動体受部(6)の入口側(6a)を保護していることを特徴とする請求項1または2記載のハイブリッド金型。
The product-related part (7) is a sliding body (5) that reciprocates toward the cavity (E), and a sliding body receiving part (6) that guides the sliding body (5) slidably,
The sliding body receiving portion (6) has the thin portion (13) formed at least on the inlet side (6a), and the iron-based material (F) is welded to the thin portion (13) using a high energy density heat source. Then, an iron-based built-up part (4) is formed, and the surface of the built-up part (4a) is provided with a finished iron material layer (4A), and the iron material layer (4A) is provided at the inlet side of the sliding body receiving part (6) ( The hybrid mold according to claim 1 or 2, wherein 6a) is protected.
摺動体(5)は非鉄金属体(3)にて形成され、
その少なくとも頭部(5a)に前記薄肉部(13)を形成し、
薄肉部(13)に高エネルギ密度の熱源を用いて鉄系材(F)を肉盛溶接し、鉄系肉盛部(4)を形成し、その肉盛部表面(4a)に仕上げ加工した鉄材層(4A)を設け、鉄材層(4A)にて摺動体頭部(5a)を保護していることを特徴とする請求項3記載のハイブリッド金型。
The sliding body (5) is formed of a non-ferrous metal body (3),
Forming the thin-walled portion (13) on at least the head (5a);
The steel-based material (F) was build-up welded to the thin-walled portion (13) using a heat source with a high energy density to form the iron-based built-up portion (4), and the surface of the built-up portion (4a) was finished. The hybrid mold according to claim 3, wherein an iron material layer (4A) is provided, and the sliding body head (5a) is protected by the iron material layer (4A).
製品関連部(7)がキャビティ(E)の一部を形成する部分成形体(8)の保持部(9)であり、保持部(9)はキャビティ(E)に向けて開口し、その少なくとも入口側(9a)に前記薄肉部(13)を形成し、薄肉部(13)に高エネルギ密度の熱源を用いて鉄系材(F)を肉盛溶接し、鉄系肉盛部(4)を形成し、その肉盛部表面(4a)に仕上げ加工した鉄材層(4A)を設け、鉄材層(4A)で保持部入口側(9a)を保護していることを特徴とする請求項1〜4のいずれか一項に記載のハイブリッド金型。   The product-related part (7) is a holding part (9) of the partially molded body (8) forming a part of the cavity (E), and the holding part (9) opens toward the cavity (E), at least of which The thin-walled portion (13) is formed on the inlet side (9a), and the iron-based material (F) is build-up welded to the thin-walled portion (13) using a heat source having a high energy density, and the iron-based built-up portion (4) And an iron material layer (4A) finished on the surface of the built-up portion (4a) is provided, and the holding portion inlet side (9a) is protected by the iron material layer (4A). The hybrid metal mold | die as described in any one of -4. 成形金型(1)は鋼材型(10)と、鋼材型(10)に組み込む入れ子型(20)とから成り、
入れ子型(20)が非鉄金属体(3)で形成されていることを特徴とする請求項1〜5のいずれか一項に記載のハイブリッド金型。
The molding die (1) consists of a steel material die (10) and a nested die (20) incorporated in the steel material die (10).
The hybrid mold according to any one of claims 1 to 5, wherein the nesting mold (20) is formed of a non-ferrous metal body (3).
成形金型(1)が左金型(11A)と右金型(11B)から成るブロー成形金型(11)であり、左右金型(11A,11B)の少なくとも熱交換範囲を非鉄金属体(3,3)にて各々形成し、
非鉄金属体(3,3)の突合せ部に前記薄肉部(13)を形成し、
薄肉部(13)に高エネルギ密度の熱源を用いて鉄系材(F)を肉盛溶接し、鉄系肉盛部(4)を形成し、その肉盛部表面(4a)に仕上げ加工した鉄材層(4A)を設け、鉄材層(4A)にてバリ食い切り部(24,24)を形成していることを特徴とする請求項1記載のハイブリッド金型。
The molding die (1) is a blow molding die (11) comprising a left die (11A) and a right die (11B), and at least the heat exchange range of the left and right dies (11A, 11B) is a non-ferrous metal body ( 3, 3)
Forming the thin-walled portion (13) at the butted portion of the non-ferrous metal body (3, 3);
The steel-based material (F) was build-up welded to the thin-walled portion (13) using a heat source with a high energy density to form the iron-based built-up portion (4), and the surface of the built-up portion (4a) was finished. The hybrid metal mold according to claim 1, wherein an iron material layer (4A) is provided, and the burr cut-off portions (24, 24) are formed by the iron material layer (4A).
鉄材層(4A)は、高エネルギ密度の熱源を用いて鉄系材(F)を単層又は多層に肉盛溶接し、鉄系肉盛部(4)を形成した後、その表面(4a)に仕上げ加工し、肉盛高さ(t)が平均2mm以内であることを特徴とする請求項1〜7のいずれか一項に記載のハイブリッド金型。   The iron material layer (4A) is formed by depositing the iron-based material (F) into a single layer or multiple layers using a heat source with a high energy density to form the iron-based cladding portion (4), and then the surface (4a). The hybrid mold according to any one of claims 1 to 7, wherein the hybrid mold is finished to have an average height (t) of 2 mm or less. 非鉄金属体(3)はキャビティ(E)に連続する切欠部(19)を備え、概切欠部(19)に高エネルギ密度の熱源を用いて鉄系材(F)を肉盛溶接し、ゲート用鉄系肉盛部(14)を設け、概肉盛部(14)にゲート路(2)を、肉盛部表面(4a)に仕上げ加工したゲート用鉄材層(14A)を設け、概鉄材層(14A)で切欠部(19)を塞いでいることを特徴とする請求項1〜8のいずれか一項に記載のハイブリッド金型。   The non-ferrous metal body (3) is provided with a notch (19) continuous to the cavity (E), and an iron-based material (F) is welded to the notch (19) using a high energy density heat source, and the gate An iron-based built-up part (14) is provided, a gate path (2) is provided on the approximate built-up part (14), and an iron material layer (14A) for finishing the built-up part surface (4a) is provided. The hybrid mold according to any one of claims 1 to 8, wherein the notch (19) is closed with a layer (14A). 鉄系材(F)は溶接用の鋼材ワイヤ(W)であり、非鉄金属体(3)は鉄系材(F)より溶融温度が低く、熱伝道の良好な銅合金体(3A)やアルミニウム合金体等であることを特徴とする請求項1〜9のいずれか一項に記載のハイブリッド金型。   The iron-based material (F) is a steel wire (W) for welding, and the non-ferrous metal body (3) has a lower melting temperature than the iron-based material (F), and has good heat conduction, such as a copper alloy body (3A) or aluminum. It is an alloy body etc., The hybrid metal mold | die as described in any one of Claims 1-9 characterized by the above-mentioned. 鉄系材(F)の肉盛溶接に用いる高エネルギ密度の熱源は、レ−ザ溶接(YAGレ−ザ溶接)、パルス溶接、電子ビーム溶接、超音波溶接中の少なくも1手段以上を用いて肉盛溶接することを特徴とする請求項1〜10のいずれか一項に記載のハイブリッド金型。   The high energy density heat source used for overlay welding of iron-based material (F) uses at least one means during laser welding (YAG laser welding), pulse welding, electron beam welding, and ultrasonic welding. The hybrid mold according to claim 1, wherein overlay welding is performed.
JP2010078792A 2010-03-30 2010-03-30 Manufacturing method of mold Active JP5501823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010078792A JP5501823B2 (en) 2010-03-30 2010-03-30 Manufacturing method of mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078792A JP5501823B2 (en) 2010-03-30 2010-03-30 Manufacturing method of mold

Publications (2)

Publication Number Publication Date
JP2011207143A true JP2011207143A (en) 2011-10-20
JP5501823B2 JP5501823B2 (en) 2014-05-28

Family

ID=44938753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078792A Active JP5501823B2 (en) 2010-03-30 2010-03-30 Manufacturing method of mold

Country Status (1)

Country Link
JP (1) JP5501823B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056447A (en) * 2011-09-07 2013-03-28 Castem:Kk Hybrid mold
KR20200042816A (en) * 2018-10-16 2020-04-24 주식회사 비티원 Faucet Using Internal Riser and Manufacturing Method of the Same
CN113652688A (en) * 2021-08-18 2021-11-16 江苏智远激光装备科技有限公司 Laser cladding nickel-based tungsten carbide process for copper alloy core glass mold

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148505A (en) * 1984-08-10 1986-03-10 Kuroki Kogyosho:Kk Manufacture of metallic mold for extrusion
JPH04111980A (en) * 1990-08-31 1992-04-13 Kobe Steel Ltd Joined body of electrocasting copper and stainless steel
JPH06134549A (en) * 1992-10-26 1994-05-17 Honda Motor Co Ltd Casting die
JPH072277A (en) * 1993-03-26 1995-01-06 Musashino Eng:Kk Vacuum part and vacuum container
JPH08118049A (en) * 1994-08-31 1996-05-14 Ishikawajima Harima Heavy Ind Co Ltd Laser cladding method
JPH09195069A (en) * 1995-11-17 1997-07-29 Ngk Insulators Ltd Metal mold made of copper alloy for casting aluminium or aluminium alloy
JPH09272963A (en) * 1996-04-09 1997-10-21 Toyota Motor Corp Method for build-up welding to die
JPH10156548A (en) * 1996-11-22 1998-06-16 Origin Electric Co Ltd Resistance welding device
JPH11508324A (en) * 1995-06-23 1999-07-21 トマ,ジャック Injection nozzle with welded lance head for bath agitation
JP2000005889A (en) * 1998-06-23 2000-01-11 Suzuki Motor Corp Laser welding
JP2000301542A (en) * 1999-04-22 2000-10-31 Hitachi Metals Ltd Heat conductive composite mold and its manufacture
JP2002338266A (en) * 2001-05-15 2002-11-27 Hitachi Metals Ltd Glass forming die
JP2009262198A (en) * 2008-04-25 2009-11-12 Sumitomo Light Metal Ind Ltd Manufacturing method of mig weld joint of steel material and aluminum material and mig weld joint of steel material and aluminum material
JP2009299140A (en) * 2008-06-13 2009-12-24 Kobe Steel Ltd Steel material to be joined to dissimilar material, joined body of dissimilar materials, and method for joining dissimilar materials

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148505A (en) * 1984-08-10 1986-03-10 Kuroki Kogyosho:Kk Manufacture of metallic mold for extrusion
JPH04111980A (en) * 1990-08-31 1992-04-13 Kobe Steel Ltd Joined body of electrocasting copper and stainless steel
JPH06134549A (en) * 1992-10-26 1994-05-17 Honda Motor Co Ltd Casting die
JPH072277A (en) * 1993-03-26 1995-01-06 Musashino Eng:Kk Vacuum part and vacuum container
JPH08118049A (en) * 1994-08-31 1996-05-14 Ishikawajima Harima Heavy Ind Co Ltd Laser cladding method
JPH11508324A (en) * 1995-06-23 1999-07-21 トマ,ジャック Injection nozzle with welded lance head for bath agitation
JPH09195069A (en) * 1995-11-17 1997-07-29 Ngk Insulators Ltd Metal mold made of copper alloy for casting aluminium or aluminium alloy
JPH09272963A (en) * 1996-04-09 1997-10-21 Toyota Motor Corp Method for build-up welding to die
JPH10156548A (en) * 1996-11-22 1998-06-16 Origin Electric Co Ltd Resistance welding device
JP2000005889A (en) * 1998-06-23 2000-01-11 Suzuki Motor Corp Laser welding
JP2000301542A (en) * 1999-04-22 2000-10-31 Hitachi Metals Ltd Heat conductive composite mold and its manufacture
JP2002338266A (en) * 2001-05-15 2002-11-27 Hitachi Metals Ltd Glass forming die
JP2009262198A (en) * 2008-04-25 2009-11-12 Sumitomo Light Metal Ind Ltd Manufacturing method of mig weld joint of steel material and aluminum material and mig weld joint of steel material and aluminum material
JP2009299140A (en) * 2008-06-13 2009-12-24 Kobe Steel Ltd Steel material to be joined to dissimilar material, joined body of dissimilar materials, and method for joining dissimilar materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056447A (en) * 2011-09-07 2013-03-28 Castem:Kk Hybrid mold
KR20200042816A (en) * 2018-10-16 2020-04-24 주식회사 비티원 Faucet Using Internal Riser and Manufacturing Method of the Same
KR102214233B1 (en) 2018-10-16 2021-02-10 주식회사 비티원 Faucet Using Internal Riser and Manufacturing Method of the Same
CN113652688A (en) * 2021-08-18 2021-11-16 江苏智远激光装备科技有限公司 Laser cladding nickel-based tungsten carbide process for copper alloy core glass mold
CN113652688B (en) * 2021-08-18 2023-09-29 江苏智远激光装备科技有限公司 Laser cladding nickel-based tungsten carbide technology for copper alloy core glass mold

Also Published As

Publication number Publication date
JP5501823B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
CN105018851B (en) Die steel and mold
US20190210148A1 (en) Method for the Production of a Cast Engine Block for a Combustion Engine and Engine Block
JP4558818B2 (en) Semi-molten or semi-solid molding method and molding equipment
JP5501823B2 (en) Manufacturing method of mold
JP2015224363A (en) Steel for metallic mold and metallic mold
JP2015221933A (en) Steel for metal mold and metal mold
CN105312866A (en) Method for producing conformal cooling type die
JP5616864B2 (en) Hybrid mold manufacturing method
US8845321B2 (en) Split thread insert
KR20120007993A (en) Sprue bush and its production method
KR20150001008A (en) Mathod Of Mass Production Mold By Press For Hot Stamping Cold Trim And Mass Production Mold By Press For Hot Stamping Cold Trim Using Thereof
CN104894557B (en) A kind of metal die composite forming method
CN103009023B (en) Manufacturing method for plastic molding mould
JP6138863B2 (en) Injection molding method and injection molding apparatus
US10408160B2 (en) Cylinder block and manufacturing method thereof
JP2013056447A5 (en)
JP2008105180A (en) Mold
KR20220080268A (en) Die or mould made of metal plate
JP5195328B2 (en) Mold, molding method using mold, and mold manufacturing method
KR101626114B1 (en) Manufacturing method of cylinder block
JP5294618B2 (en) Injection mold
JP2008212981A (en) Magnesium/magnesium alloy structure, and method for producing the same
JP6366648B2 (en) Manufacturing method and manufacturing apparatus of composite molded body
WO2011033868A1 (en) Die casting mold
CN109080055A (en) The manufacturing method of forming tool member for die quenching tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140312

R150 Certificate of patent or registration of utility model

Ref document number: 5501823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250