JPH0456353A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH0456353A
JPH0456353A JP2170906A JP17090690A JPH0456353A JP H0456353 A JPH0456353 A JP H0456353A JP 2170906 A JP2170906 A JP 2170906A JP 17090690 A JP17090690 A JP 17090690A JP H0456353 A JPH0456353 A JP H0456353A
Authority
JP
Japan
Prior art keywords
capacitor
grain size
oxidized
cell
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2170906A
Other languages
Japanese (ja)
Inventor
Kazutoshi Hirayama
平山 和俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2170906A priority Critical patent/JPH0456353A/en
Publication of JPH0456353A publication Critical patent/JPH0456353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent generation of ununiformity of grain size in a capacitor for memory cell by providing word lines arranged bypassing memory cell regions and not passing on the adjacent memory cells. CONSTITUTION:Since word lines 6 indicated by oblique lines are provided bypassing racket type field active regions 9 which are manufactured by diffusing impurity such as arsenic, etc., into a substrate, these are arranged as the gates of transistors 4 for selecting cells and thereaftrer these are bent and arranged in a constant angle. Accordingly, the capacitor electrode covering the active region in the substrate for cell is all oxidized and uniformity of grain size can be ensured, without allowing generation of an event that only the lower part of word line 6 is not oxidized during the heat processing in the post- processing and the grain size is kept unchanged, while the other part is oxidized and grains grow. Therefore, stress applied on an insulated oxide film for capacitor is perfectly equalized in anywhere on the capacitor and high reliability can be reserved.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、定期的な情報の再書き込みが必要なダイナ
ミック型半導体記憶装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dynamic semiconductor memory device that requires periodic rewriting of information.

従来の技術] 第2図はダイナミック型半導体記憶装置の中で、特ニフ
レーナ型メモリセルと呼ばれる構成を持ったランダムア
クセスメモリを示す平面図、第3図は第2図に示すA−
Aにおける断面図、第4図は第3図に示すB部の拡大図
である。図において(1)は基板、(2)は拡散領域、
(3)は酸化膜、(4)は選択用のトランジスタ、(5
)はセルプレート、(6)ハワード線、(7)ハビット
線、(8)はセルプレート(5)用のポリシリコン、(
9)はフィールド活性領域、(10)はグレインである
。P5半導体の基板(1)中にヒソ等の不純物を注入し
た拡散領域(2)を形成し、更にキャパシタ用絶縁膜で
ある酸化膜(3)を堆積した後、セル選択用のトランジ
スタ(4)となる領域以外の全面に、ポリシリコン(8
)等のセルプレート(5)を作成し、その後、トランジ
スタ(4)用のゲート酸化膜を堆積してセル選択用のト
ランジスタ(4)のゲートを、−直M!に配置していた
2. Description of the Related Art] FIG. 2 is a plan view showing a random access memory having a structure called a special Niflenar type memory cell in a dynamic semiconductor memory device, and FIG.
4 is an enlarged view of section B shown in FIG. 3. In the figure, (1) is the substrate, (2) is the diffusion region,
(3) is an oxide film, (4) is a selection transistor, (5
) is a cell plate, (6) Howard line, (7) habit line, (8) is polysilicon for cell plate (5), (
9) is a field active region, and (10) is a grain. After forming a diffusion region (2) in which an impurity such as hisso is implanted in the P5 semiconductor substrate (1), and further depositing an oxide film (3) which is an insulating film for a capacitor, a cell selection transistor (4) is formed. Polysilicon (8
), etc., and then deposit a gate oxide film for the transistor (4) to form the gate of the cell selection transistor (4). It was placed in

図に示す、しゃもじ型をした0部が半導体の基板(1)
中に形成した不純物の拡散領域(2)でありメモリ情報
を蓄積する、 拡散領域(2)を完全に覆う様に、酸化膜(3)や窒化
膜より成る絶縁膜を介し、化学的に堆積させたポリシリ
コン(8)によるセルプレート(5)用の電極とで1つ
のメモリセルは構成される。
As shown in the figure, a rice scoop-shaped substrate in which part 0 is a semiconductor (1)
It is chemically deposited through an insulating film made of oxide film (3) or nitride film so as to completely cover the diffusion region (2), which is the impurity diffusion region (2) formed inside and stores memory information. One memory cell is constituted by an electrode for a cell plate (5) made of polysilicon (8).

次に動作について説明する。Next, the operation will be explained.

上記のとうり、不純物の拡散領域(2)が電気的な情報
を蓄積するノードであり、ポリシリコン(8)ノミ極は
一定の電位に固定され、酸化膜(3)や窒化膜により両
者は絶縁され、キャパシタとして機能する。
As mentioned above, the impurity diffusion region (2) is the node that stores electrical information, the polysilicon (8) chisel electrode is fixed at a constant potential, and the oxide film (3) and nitride film keep the two together. It is insulated and acts as a capacitor.

1つのメモリセルは、ワードM(61と呼ばれるポリシ
リコン(8)等で形成されるトランジスタ(4)のゲー
トにより選択され、セルに蓄えられていた電荷が、ビッ
ト線(7)と呼ぶ高融点金属シリサイド等より成る配線
層に読み出される。
One memory cell is selected by the gate of a transistor (4) made of polysilicon (8) called word M (61), and the charge stored in the cell is transferred to a high melting point called bit line (7). The data is read out to a wiring layer made of metal silicide or the like.

図中に示す様に、ワード線(6)とビット線(7)とは
、直交するように配置されるのが一般的である。
As shown in the figure, word lines (6) and bit lines (7) are generally arranged so as to be perpendicular to each other.

ワード線(6)は図からも判る様に、隣のメモリセルキ
ャパシタ領域の真上を一直線に横切るような配置をする
As can be seen from the figure, the word line (6) is arranged so as to cross directly above the adjacent memory cell capacitor region in a straight line.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体記憶装置は以上のように構成されているの
で、第3図に示すB部のように、セルプレートの上には
隣のセルの選択用のワード線が走ることになる。
Since the conventional semiconductor memory device is constructed as described above, a word line for selecting an adjacent cell runs above the cell plate, as shown in section B shown in FIG.

この為、このワード線の下のセルプレートであるポリシ
リコンは ワード線であるポリシリコンのデボやトラン
ジスタのソース、ドレイン拡散層の不純物注入後の熱処
理で、ワード繰下以外の場所はさらに酸化されて、第4
図に示すごとくグレインが成長して大きくなるにもかか
わらず、もとの小さいグレインサイズのまま残ることに
なる、この時、セルプレートのポリシリコン膜で生じる
応力に、小さいグレインと大きいグレインとの境界で不
均衡が生l′、EJくなることが考えられる。
For this reason, the polysilicon that is the cell plate below this word line is further oxidized in areas other than the word line due to the heat treatment after the word line polysilicon debo and the impurity implantation of the transistor source and drain diffusion layers. 4th
As shown in the figure, even though the grains grow and become larger, they remain at their original small grain size.At this time, the stress generated in the polysilicon film of the cell plate is It is conceivable that an imbalance will occur at the boundary, resulting in l', EJ.

不均衡が生1つると、キャパシタ絶縁用の極めて薄い酸
化膜にかかるストレスにも同様に不均衡が生じる事は、
容易に考えられる。
If an imbalance occurs, the stress on the extremely thin oxide film used to insulate the capacitor will also become unbalanced.
It's easy to think of.

上記のような、酸化膜にかかるストレスに不均衡がある
と、絶縁用の酸化膜の信頼性に大きな影響を与えると思
われる。
If there is an imbalance in the stress applied to the oxide film as described above, it is thought that the reliability of the insulating oxide film will be greatly affected.

例えば、製品となってからの連続使用中に発生するビッ
ト不良を加速する要因となったり、さらにはその製品の
寿命を決定する要素にもなりうるという問題点があった
For example, there have been problems in that it can become a factor that accelerates bit defects that occur during continuous use of a product, and can even become a factor that determines the lifespan of the product.

この発明の目的は、上記のような問題点を解消する為に
なされたもので、セルプレートであるポリシリコンのグ
レインサイズを揃えて、酸化膜にかかるストレスを均一
にして信頼性の高い半導体記憶装置を得ることを目的と
する。
The purpose of this invention was to solve the above-mentioned problems.The purpose of this invention was to make the grain size of the polysilicon that is the cell plate uniform, and to uniformize the stress applied to the oxide film, thereby creating a highly reliable semiconductor memory. The purpose is to obtain equipment.

〔課題を解決するための手段〕[Means to solve the problem]

この発明による半導体記憶装置では、従来のワード線の
配置を変更し、メモリセル領域を迂回して隣のメモリセ
ル上を通過しないようなワード線配置として、メモリセ
ル用のキャパシタ部分にはグレインサイズの不均衡が生
じないようにする。
In the semiconductor memory device according to the present invention, the conventional word line arrangement is changed, and the word line arrangement is such that the word line bypasses the memory cell area and does not pass over the adjacent memory cell. Prevent imbalances from occurring.

[作用〕 この発明における半導体記憶装置は、メモリセル用のキ
ャパシタ電極の上をワード線が通過することがないよう
な配置としたため、従来のよpなワード線の下の部分だ
けが後工程の熱処理時に酸化されずにそのままのグレイ
ンサイズが維持され、他の部分は酸化されてグレインが
成長するという率が起きずに、セル用の基板中の活性化
領域を覆うキャパシタ電極は全て酸化され、同一のグレ
インサイズに揃う。
[Operation] The semiconductor memory device according to the present invention is arranged so that the word line does not pass over the capacitor electrode for the memory cell, so that only the portion under the conventional p word line is subjected to subsequent processing. During the heat treatment, all the capacitor electrodes covering the active area in the substrate for the cell are oxidized, without being oxidized and maintaining the same grain size, and without causing the rate of oxidation and grain growth in other parts. Align to the same grain size.

従って、キャパシタ用の絶縁酸化膜にかかるストレスは
、キャパシタ上のどこでも全く均一であり、高い信頼性
を確保する事が可能である。
Therefore, the stress applied to the insulating oxide film for the capacitor is completely uniform everywhere on the capacitor, and high reliability can be ensured.

[実施例] 以下、この発明の一実施例について説明する。[Example] An embodiment of the present invention will be described below.

第1図において、(4)、 (6)〜(9)は第2図の
従来例に示したものと同等であるので説明を省略する。
In FIG. 1, (4), (6) to (9) are the same as those shown in the conventional example of FIG. 2, and therefore their explanations will be omitted.

次に動作について説明する。斜線で示すワード線(6)
が基板中にヒン等の不純物を注入して作成したしゃもじ
型のフィールド活性領域(9)を迂回するために、セル
選択用のトランジスタ(4)のゲートとして配置された
後、一定の角度をもって曲げられ配置される。
Next, the operation will be explained. Word line (6) shown with diagonal lines
is placed as the gate of the cell selection transistor (4) in order to bypass the rice scoop-shaped field active region (9) created by implanting impurities such as Hin into the substrate, and then bent at a certain angle. and placed.

製造方法は第2図の従来例に示した本のと変わりはなく
、全く同様の工程でかまわない。
The manufacturing method is the same as that shown in the conventional example shown in FIG. 2, and the same steps may be used.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、従来の半導体記憶装置
に比べ、なんら工程を追加することなく信頼性が格段に
向上する、半導体記憶装置を得る事ができる効果がある
As described above, according to the present invention, it is possible to obtain a semiconductor memory device whose reliability is significantly improved compared to conventional semiconductor memory devices without adding any process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例である半導体記憶装置のメ
モリセル部のlSl!置を示す平面図、第2図は従来の
半導体記憶装置のメモリセル部の配置を示す平面図、第
3図は第2図に示すA−Aにおける断面図、第4図は第
3図に示すB部の拡大図である。 図において、(4)はトフンジヌタ、(6)はワード線
、(7)はビット線、(8)はポリシリコン、(9)は
フィールド活性領域である。 なお、図中、同一符号は同一、又は相当部分を示す。 代 理 人  大  岩   増  雄箪2図 第1図 フィールドj古P虹41!土メに 第3図 第4図 グレイン
FIG. 1 shows lSl! of a memory cell portion of a semiconductor memory device which is an embodiment of the present invention. 2 is a plan view showing the arrangement of the memory cell portion of a conventional semiconductor memory device, FIG. 3 is a cross-sectional view taken along line A-A shown in FIG. 2, and FIG. It is an enlarged view of part B shown. In the figure, (4) is a function block, (6) is a word line, (7) is a bit line, (8) is polysilicon, and (9) is a field active region. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent Dai Iwa Masu Yutan 2 Figure 1 Field j Ancient P Rainbow 41! Figure 3 and Figure 4 grains on the soil

Claims (1)

【特許請求の範囲】[Claims] 定期的な情報の再書き込みが必要なダイナミック型半導
体記憶装置において、セル選択用のトランジスタゲート
である導電性の配線層がセルとなる基板中に作成したキ
ャパシタ領域を、迂回する様に配置した事を特徴とする
半導体記憶装置。
In a dynamic semiconductor memory device that requires periodic rewriting of information, a conductive wiring layer, which is the transistor gate for cell selection, is arranged so as to bypass the capacitor region created in the substrate that becomes the cell. A semiconductor memory device characterized by:
JP2170906A 1990-06-26 1990-06-26 Semiconductor memory device Pending JPH0456353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2170906A JPH0456353A (en) 1990-06-26 1990-06-26 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2170906A JPH0456353A (en) 1990-06-26 1990-06-26 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH0456353A true JPH0456353A (en) 1992-02-24

Family

ID=15913529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2170906A Pending JPH0456353A (en) 1990-06-26 1990-06-26 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0456353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465523A (en) * 2010-11-19 2012-05-23 葛辉 Dry and dense resonance method for reinforcing soft soil foundation of new hydraulic-fill sand

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465523A (en) * 2010-11-19 2012-05-23 葛辉 Dry and dense resonance method for reinforcing soft soil foundation of new hydraulic-fill sand

Similar Documents

Publication Publication Date Title
US5716863A (en) Method of manufacturing semiconductor device having elements different in gate oxide thickness and resistive elements
US5302541A (en) Manufacturing method of a semiconductor device with a trench capacitor
JPS5830154A (en) Fixed memory semiconductor device and manufacture thereof
JPS62245661A (en) Semiconductor memory
US4385432A (en) Closely-spaced double level conductors for MOS read only
US4326329A (en) Method of making a contact programmable double level polysilicon MOS read only memory
US5200356A (en) Method of forming a static random access memory device
JPH0456353A (en) Semiconductor memory device
US6096600A (en) Method of forming a capacitative section of a semiconductor device and method of forming a capacitative section and gate section of a semiconductor device
JPS6021553A (en) Three-dimensional integrated circuit device
JP3405603B2 (en) Semiconductor storage device
JP2531345B2 (en) Semiconductor memory device
JPH04332163A (en) Semiconductor memory
JP3109090B2 (en) Method for manufacturing semiconductor memory device
JPS5951146B2 (en) Method for manufacturing insulated gate semiconductor integrated circuit
JPH02241032A (en) Wiring formation method
JP2665972B2 (en) Method for manufacturing semiconductor device
JPH0487370A (en) Manufacture of semiconductor
JPS6236852A (en) Semiconductor device
JPH06151779A (en) Manufacture of semiconductor device
JPH0691195B2 (en) Semiconductor integrated circuit device
JP2637236B2 (en) Design method of semiconductor integrated circuit
JPH06268178A (en) Manufacture of semiconductor device
JP2815106B2 (en) Method for manufacturing semiconductor device
JPH0430466A (en) Semiconductor electrode