JPH0455396A - Substrate for oxide superconducting film and its production - Google Patents

Substrate for oxide superconducting film and its production

Info

Publication number
JPH0455396A
JPH0455396A JP2166126A JP16612690A JPH0455396A JP H0455396 A JPH0455396 A JP H0455396A JP 2166126 A JP2166126 A JP 2166126A JP 16612690 A JP16612690 A JP 16612690A JP H0455396 A JPH0455396 A JP H0455396A
Authority
JP
Japan
Prior art keywords
substrate
oxide superconducting
superconducting film
single crystal
specified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2166126A
Other languages
Japanese (ja)
Other versions
JPH0710760B2 (en
Inventor
Yasuto Miyazawa
宮沢 靖人
Hiroaki Toshima
戸嶋 博昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP2166126A priority Critical patent/JPH0710760B2/en
Publication of JPH0455396A publication Critical patent/JPH0455396A/en
Publication of JPH0710760B2 publication Critical patent/JPH0710760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve quality by adjusting the raw material contg. at least Nd, Al and O to obtain a composition shown by a specified formula and growing a single crystal substrate by the melting and solidifying method. CONSTITUTION:Nd2O3 and Al2O3 are mixed in a specified atomic ratio. The mixture is heated and melted in a gaseous N2 atmosphere, and the melt is pulled up by the Czochralski method at specified orientation, turning rate and velocity to obtain a single crystal substrate for a high-quality oxide superconducting film having a composition shown by formula I (-0.5<=x<=+0.5). Meanwhile, Nd2O3, Y2O3, Al2O3 and Ga2O3 are mixed in a specified atomic ratio to partially replace the Nd site by a group IIIa element such as Y and the Al site by a group IIIb element such as Ga. The mixture is heated and melted in a gaseous N2-O2 mixture, and the melt is pulled up by the Czochralski method to obtain a single crystal having the composition shown by formula II.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超電導膜用基板及びその製造法に関する
ものであり、この基板は、高品質な酸化物超電導膜を気
相成長法、液相成長法等により育成し、ジョセフソン素
子等の超電導デバイスを作成するのに適している。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a substrate for an oxide superconducting film and a method for manufacturing the same. It is grown by a phase growth method and is suitable for creating superconducting devices such as Josephson elements.

(従来の技術及び解決しようとする課題)従来、酸化物
超電導膜用基板としては、MgO及び5rTi○、の単
結晶が用いられてきた。
(Prior Art and Problems to Be Solved) Conventionally, single crystals of MgO and 5rTi◯ have been used as substrates for oxide superconducting films.

しかしながら、Mg○基板は、その育成法として電融法
を用いるので結晶の品質を管理することができず、また
任意の大きさに育成できない等の問題点を有している。
However, since the Mg◯ substrate uses an electrofusion method as its growth method, it has problems such as the quality of the crystal cannot be controlled and the crystal cannot be grown to a desired size.

また、5rTiO,基板は、溶融固化法のうちの一つで
ある、−船釣にベルヌーイ法と呼ばれる育成法により育
成されているが、大口径化に際しては20〜30m−φ
程度が限界とされており、更には結晶の品質を管理でき
ない等が問題視されている。
In addition, 5rTiO and substrates are grown by a growth method called the Bernoulli method, which is one of the melt-solidification methods, but when increasing the diameter, 20 to 30 mφ
It is said that there is a limit to the degree of oxidation, and furthermore, the inability to control the quality of the crystals is seen as a problem.

ところで、結晶育成法としては、一般的にチョクラルス
キー法と呼ばれる溶融固化法が良く知られており、結晶
品質の管理及び大口径化に関して最も良い方法であると
されている。
Incidentally, as a crystal growth method, a melt-solidification method generally called the Czochralski method is well known, and is said to be the best method for controlling crystal quality and increasing the diameter.

近年、チョクラルスキー法を用いて、酸化物超電導膜用
基板として、LaGa0.、LaAQO3及びN d 
G a Oa等が育成され、基板としての評価を得てい
る。しかしながら、LaGa0.基板及びLaAQO,
基板に関しては、室温から1000℃の間に相転位点を
有しており、液相若しくは気相から薄膜を育成する場合
に基板温度が数百℃に達するため、この相転位点の存在
が問題視されている。
In recent years, using the Czochralski method, LaGa0. , LaAQO3 and N d
G a Oa etc. have been cultivated and are being evaluated as substrates. However, LaGa0. substrate and LaAQO,
Regarding the substrate, it has a phase transition point between room temperature and 1000℃, and when growing a thin film from the liquid phase or gas phase, the substrate temperature reaches several hundred degrees Celsius, so the existence of this phase transition point is a problem. being watched.

また、NdGa0.基板に関しては、結晶自体が非常に
割れ易く、育成が非常に難しいことが問題視されている
In addition, NdGa0. Regarding the substrate, the problem is that the crystal itself is very easy to break and is very difficult to grow.

本発明は、上記従来技術の問題点を解決し、大口径で任
意の形状に製造可能であり、高品質の酸化物超電導膜を
育成可能な高品質基板を提供し、またその製造法を提供
することを目的とするものである。
The present invention solves the above-mentioned problems of the prior art, provides a high-quality substrate that can be manufactured into any shape with a large diameter, and can grow a high-quality oxide superconducting film, and also provides a method for manufacturing the same. The purpose is to

(課題を解決するための手段) 本発明者等は、前記目的を達成すべく鋭意研究を重ねた
結果、酸化物超電導膜用基板としてNdAQO,が最も
良い基板材料であることを見出した。この基板材料の場
合、酸化物超電導膜の格子定数との関係より、一般式N
d、xA Q 、+xO,においてX値を変えることに
より、或いはネオジウムサイトを3a族の元素で一部置
換したり、アルミニウムサイトを3b族の元素で一部置
換することにより、それぞれ格子定数が変化することを
利用して、酸化物超電導膜の種類を変えてもその格子定
数に整合できる基板が提供できることを見出した。更に
また、基板の育成法として大口径化が可能なチョクラル
スキー法が適用できることを見出した。
(Means for Solving the Problems) As a result of intensive research to achieve the above object, the present inventors found that NdAQO is the best substrate material for a substrate for an oxide superconducting film. In the case of this substrate material, from the relationship with the lattice constant of the oxide superconducting film, the general formula N
By changing the value of We have discovered that by taking advantage of this fact, it is possible to provide a substrate whose lattice constant can be matched even if the type of oxide superconducting film is changed. Furthermore, we have found that the Czochralski method, which allows for larger diameters, can be applied as a method for growing substrates.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) 前述の如く、本発明に係る酸化物超電導膜用基板は、少
なくとも、ネオジウム、アルミニウム及び酸素の3元素
を含む単結晶からなるものである。
(Function) As described above, the oxide superconducting film substrate according to the present invention is made of a single crystal containing at least three elements: neodymium, aluminum, and oxygen.

好ましくは、一般式Nd、、A Q 14x03 (但
し。
Preferably, the general formula Nd, A Q 14x03 (However.

−〇、5≦X≦+0.5)を有するものである。X値を
この範囲で変えることにより、格子定数を制御できる。
−〇, 5≦X≦+0.5). By changing the X value within this range, the lattice constant can be controlled.

なお、Xの値が下限以下及び上限以上では他の相が析出
してくるので好ましくない。
Note that if the value of X is below the lower limit or above the upper limit, other phases will precipitate, which is not preferable.

また、上記一般式において、ネオジウムサイトの一部を
38族の元素で置換可能であり、またアルミニウムサイ
トの一部を3b族の元素で置換可能であり、これにより
基板の格子定数を制御することができる。
Furthermore, in the above general formula, a part of the neodymium site can be replaced with a group 38 element, and a part of the aluminum site can be replaced with a group 3b element, thereby controlling the lattice constant of the substrate. I can do it.

この単結晶基板の製造方法としては、溶融固化法を利用
することができる。すなわち、一般的に言われるチョク
ラルスキー法のほか、FZ法、ベルヌーイ法及びEFG
等の全ての育成法により基板を製造可能である。これら
のうち、最も品質の良い基板の製造法としてはチョクラ
ルスキー法であり、大口径の基板を製造可能である。
As a method for manufacturing this single crystal substrate, a melt solidification method can be used. In other words, in addition to the commonly referred to Czochralski method, the FZ method, Bernoulli method, and EFG
It is possible to manufacture substrates using all growth methods such as . Among these, the Czochralski method is the method for manufacturing substrates with the highest quality, and is capable of manufacturing large-diameter substrates.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

失五粁上 酸化ネオジウムと酸化アルミニウムを原子比でNd: 
AQ=1.OO: 1.00になるように調整した混合
物を、イリジウム坩堝を用い、窒素雰囲気で溶融し、チ
ョクラルスキー法により育成を行った。育成条件として
は、引き上げ方位<001>、回転数2Orpm、引き
上げ速度4.0mm/hrで、仕込み重量の約50%を
引き上げて単結晶を得た。
The atomic ratio of neodymium oxide and aluminum oxide is Nd:
AQ=1. A mixture adjusted to have OO: 1.00 was melted in an iridium crucible in a nitrogen atmosphere and grown using the Czochralski method. The growth conditions were a pulling direction <001>, a rotational speed of 2 Orpm, and a pulling speed of 4.0 mm/hr, and about 50% of the charged weight was pulled to obtain a single crystal.

得られた単結晶は、直径約25m@φで、長さが直胴部
で約100usであった。結晶の色は、透明で赤紫色し
ていた。これを化学分析した結果、原子比でNd: A
M=1.0:1.0となッテイタ。
The obtained single crystal had a diameter of about 25 m@φ and a length of about 100 us at the straight body part. The color of the crystal was transparent and reddish-purple. As a result of chemical analysis of this, the atomic ratio of Nd:A
M=1.0:1.0.

太蒼孤ス 原料として酸化ネオジウム、酸化イツトリウム、酸化ア
ルミニウム及び酸化ガリウムを用い、引き上げ組成が(
Ndo 、s Y D−1)(A Q0a9 a a−
,1)03になるように調整した混合物を、イリジウム
坩堝を用い、窒素−酸素混合雰囲気(N、−5vo1%
08)で溶融し、チョクラルスキー法により育成を行っ
た。育成条件としては、引き上げ方位<ooi>、回転
数2Orpm、引き上げ速度4.Qmm/hrで、仕込
み重量の約50%を引き上げて単結晶を得た。
Neodymium oxide, yttrium oxide, aluminum oxide, and gallium oxide were used as raw materials for Taisang Gas, and the pulling composition was (
Ndo, s Y D-1) (A Q0a9 a a-
, 1) The mixture adjusted to 03 was heated in an iridium crucible in a nitrogen-oxygen mixed atmosphere (N, -5vol%
08) and grown using the Czochralski method. The growth conditions are: pulling direction <ooi>, rotation speed 2 Orpm, pulling speed 4. About 50% of the charged weight was pulled up at Qmm/hr to obtain a single crystal.

得られた単結晶は、直径的25鳳凰φで、長さが直胴部
で約100m+であった。結晶の色は、透明で赤紫色を
していた。これを化学分析した結果。
The obtained single crystal had a diameter of 25 mm and a length of about 100 m+ in the straight body. The color of the crystal was transparent and reddish-purple. This is the result of chemical analysis.

引き上げ結晶の化学式は(N d、 、t y o−1
) (A Qo −5Ga、、、)Olであった。
The chemical formula of the pulled crystal is (N d, , t yo-1
) (A Qo -5Ga,,,)Ol.

失襄截主 酸化ネオジウムと酸化アルミニウムを原子比でNd: 
A12=1.OO:1.00になるように調整した混合
物を、モリブデン坩堝を用い、還元雰囲気で溶融し、E
FG法により育成を行った。育成条件としては、引き上
げ方位(001)、回転数2゜rpm、引き上げ速度4
.0mm/hr、育成雰囲気としてはAr−10VOI
%H2である。
Atomic ratio of neodymium oxide and aluminum oxide: Nd:
A12=1. A mixture adjusted to OO:1.00 was melted in a reducing atmosphere using a molybdenum crucible, and E
Cultivation was carried out using the FG method. The growth conditions are: pulling direction (001), rotation speed 2° rpm, pulling speed 4.
.. 0mm/hr, Ar-10VOI as the growth atmosphere
%H2.

得られた結晶は、厚さ2an、長さ80■鵬であり、こ
れを化学分析した結果、原子比でNd:AQ=l:1と
なっていた。しかし、モリブデン坩堝に起因すると思わ
れるMO不純物も数ppmJ!呂された。
The obtained crystal had a thickness of 2 Å and a length of 80 Å, and chemical analysis of the crystal revealed that the atomic ratio was Nd:AQ=1:1. However, the amount of MO impurities thought to be caused by the molybdenum crucible was several ppmJ! It was ruined.

(発明の効果) 以上説明したように1本発明による基板は、少なくとも
ネオジウム、アルミニウム及び酸素の3元素を含む単結
晶からなる基板であるので、相転移がなく、液相育成法
若しくは気相育成法による酸化物超電導膜の育成に適し
、しかも格子定数を制御可能であるので、酸化物超電導
膜の種類を変えてもその格子定数に整合させることがで
きる。
(Effects of the Invention) As explained above, the substrate according to the present invention is a single crystal substrate containing at least the three elements of neodymium, aluminum, and oxygen, so there is no phase transition, and it can be grown by liquid phase growth method or vapor phase growth method. It is suitable for growing oxide superconducting films by the method, and the lattice constant can be controlled, so even if the type of oxide superconducting film is changed, the lattice constant can be matched.

また、基板育成法として溶融固化法(すなわち、チョク
ラルスキー法、FZ法、ベルヌーイ法及びEFG法等)
を適用できるが、特にチョクラルスキー法を適用できる
ので、大口径化でかつ任意の形状の高品質な基板を安価
に供給可能であり、基板加工も容易である。
In addition, melt-solidification methods (i.e., Czochralski method, FZ method, Bernoulli method, EFG method, etc.) are used as a substrate growing method.
However, since the Czochralski method can be applied in particular, high-quality substrates with large diameters and arbitrary shapes can be supplied at low cost, and substrate processing is also easy.

Claims (5)

【特許請求の範囲】[Claims] (1)少なくとも、ネオジウム、アルミニウム及び酸素
の3元素を含む単結晶からなることを特徴とする酸化物
超電導膜用基板。
(1) A substrate for an oxide superconducting film, characterized in that it is made of a single crystal containing at least three elements: neodymium, aluminum, and oxygen.
(2)一般式Nd_1_−_xAl_1_+_xO_3
(但し、−0.5≦x≦+0.5)を有する請求項1に
記載の酸化物超電導膜用基板。
(2) General formula Nd_1_-_xAl_1_+_xO_3
The substrate for an oxide superconducting film according to claim 1, wherein -0.5≦x≦+0.5.
(3)ネオジウムサイトを3a族の元素で一部置換する
ことにより、酸化物超電導膜との格子定数の整合を可能
にした請求項1又は2に記載の酸化物超電導膜用基板。
(3) The substrate for an oxide superconducting film according to claim 1 or 2, wherein lattice constant matching with the oxide superconducting film is made possible by partially substituting neodymium sites with elements of Group 3a.
(4)アルミニウムサイトを3b族の元素で一部置換す
ることにより、酸化物超電導膜との格子定数の整合を可
能にした請求項1又は2に記載の酸化物超電導膜用基板
(4) The substrate for an oxide superconducting film according to claim 1 or 2, wherein lattice constant matching with the oxide superconducting film is made possible by partially substituting aluminum sites with elements of group 3b.
(5)請求項1、2、3又は4に記載の組成となるよう
に原料を調整し、溶融固化法により単結晶基板を育成す
ることを特徴とする酸化物超電導膜用基板の製造法。
(5) A method for producing a substrate for an oxide superconducting film, which comprises adjusting raw materials to have the composition according to claim 1, 2, 3, or 4, and growing a single crystal substrate by a melt-solidification method.
JP2166126A 1990-06-25 1990-06-25 Substrate for oxide superconducting film and manufacturing method thereof Expired - Lifetime JPH0710760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2166126A JPH0710760B2 (en) 1990-06-25 1990-06-25 Substrate for oxide superconducting film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2166126A JPH0710760B2 (en) 1990-06-25 1990-06-25 Substrate for oxide superconducting film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0455396A true JPH0455396A (en) 1992-02-24
JPH0710760B2 JPH0710760B2 (en) 1995-02-08

Family

ID=15825518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2166126A Expired - Lifetime JPH0710760B2 (en) 1990-06-25 1990-06-25 Substrate for oxide superconducting film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0710760B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782088A (en) * 1993-09-17 1995-03-28 Shinkosha:Kk Method for growing single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782088A (en) * 1993-09-17 1995-03-28 Shinkosha:Kk Method for growing single crystal

Also Published As

Publication number Publication date
JPH0710760B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
KR101451995B1 (en) Process for producing ZnO single crystal according to method of liquid phase growth
Giannini et al. Growth and characterization of Bi2Sr2Ca2Cu3O10 and (Bi, Pb) 2Sr2Ca2Cu3O10− δ single crystals
KR101830524B1 (en) Two-dimensional large-area metal chalcogenide single crystals and method for manufactruing the same
JPH0455396A (en) Substrate for oxide superconducting film and its production
US4202930A (en) Lanthanum indium gallium garnets
Houlton et al. A study of growth defects in lead germanate crystals
JP4147573B2 (en) Garnet single crystal substrate and manufacturing method thereof
Treser et al. Crystal growth of AgGaS2 by the Bridgman-Stockbarger technique using shaped crucibles
JP2507910B2 (en) Method for producing oxide single crystal
JPH05238892A (en) Substrate for oxide superconducting thin film and its production
JPH085752B2 (en) Terbium aluminate single crystal and method for producing the same
JP4292565B2 (en) Garnet single crystal substrate and manufacturing method thereof
JPH05238893A (en) Substrate for oxide superconducting thin film and its production
JP7380948B2 (en) Method for manufacturing β-Ga2O3/β-Ga2O3 laminate
CN110036143A (en) Monocrystalline silicon manufacturing method and silicon single crystal wafer
JP3548910B2 (en) Method for producing ZnO single crystal
US4784717A (en) Method of manufacturing BaPb1
JPH05310494A (en) Growth of single crystal
Hársy et al. The growth and texture study of GaSb ingots
JPH04243998A (en) Production of barium beta-metaborate single crystal
JP3613424B2 (en) Manufacturing method of oxide superconductor
JP3912959B2 (en) Method and apparatus for producing β-FeSi2 crystal
JPS63274695A (en) Production of cupric acid-lanthanum single crystal
JPS61101495A (en) Preparation of rutile single crystal
JP3412767B2 (en) Method for producing NdGaO3 single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term