JPH045514A - Optical fine displacement measuring instrument - Google Patents

Optical fine displacement measuring instrument

Info

Publication number
JPH045514A
JPH045514A JP10574390A JP10574390A JPH045514A JP H045514 A JPH045514 A JP H045514A JP 10574390 A JP10574390 A JP 10574390A JP 10574390 A JP10574390 A JP 10574390A JP H045514 A JPH045514 A JP H045514A
Authority
JP
Japan
Prior art keywords
measured
objective lens
detector
optical system
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10574390A
Other languages
Japanese (ja)
Inventor
Masaichi Mobara
政一 茂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10574390A priority Critical patent/JPH045514A/en
Publication of JPH045514A publication Critical patent/JPH045514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To prevent an optical system from not being aligned owing to a collision by detecting the state right before an objective lens collides against a body to be measured with reflected luminous flux from the body to be measured which is emitted originally by a lighting means which shares the objective of a lighting optical system. CONSTITUTION:When the body 4 to be measured is at a distance from the focal length of the objective lens 3, the reflected light from a light source 2 is photodetected by a detector 6. When the body 4 to be measured approaches to the focal length of the objective lens 3, on the other hand, the reflected light deviates from the photodetection surface of the detector 6 gradually and when the body 4 to be measured approaches to a constant distance, the reflected light deviates completely from the photodetection surface of the detector 6. For the purpose, the position of the detector 6 is adjusted to detect the state right before the objective 3 collides against the body to be measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は被測定物の微小変位や表面粗さ等を光学的手段
により測定する光学式微小変位測定装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical minute displacement measuring device for measuring minute displacements, surface roughness, etc. of an object to be measured by optical means.

(従来の技術) 従来より、焦点誤差を検出して被測定物の微小変位や表
面粗さを測定する装置としては、例えば臨界角法を用い
たもの(特開昭59−90007号公報参照)、非点収
差法を用いたもの(特開昭60−18[1705号公報
参照)、あるいはフーコー法を用いたもの(光波術]ン
タクトVOj2B、N[111゜1988、P773〜
784)等が知られている。
(Prior Art) Conventionally, as a device for detecting a focus error and measuring minute displacements and surface roughness of an object to be measured, for example, a device using the critical angle method (see Japanese Patent Laid-Open No. 59-90007) , those using the astigmatism method (see Japanese Patent Application Laid-open No. 1705), or those using the Foucault method (light wave technique) contact VOj2B, N [111°1988, P773~
784) etc. are known.

ここで、臨界角法は、プリズムの有する固有の臨界角近
傍に入射する光ビーム強度が微小な角度変化に対して急
激な変化を呈することを利用したものである。
Here, the critical angle method utilizes the fact that the intensity of a light beam incident near a specific critical angle of a prism exhibits a rapid change with respect to a minute change in angle.

第4図はかかる臨界角法による従来の光学式微小変位測
定装置の構成図である。図面において、(101)はレ
ーザー光源、(102)はコリメートレンズ、(103
)は偏光ビームスプリッタ、(104)は1八波長板、
(105)は対物Li2ズ、(IN)は被測定物、(1
07)はビームスプリッタ、(108a)(108b)
は臨界角プリズム、(109a)(109b)は2分割
受光素子である。
FIG. 4 is a block diagram of a conventional optical minute displacement measuring device using the critical angle method. In the drawing, (101) is a laser light source, (102) is a collimating lens, and (103) is a collimating lens.
) is a polarizing beam splitter, (104) is an 18-wave plate,
(105) is the objective Li2, (IN) is the object to be measured, (1
07) is a beam splitter, (108a) (108b)
is a critical angle prism, and (109a) and (109b) are two-split light receiving elements.

レーザー光源(101)からのレーザー光はコリメート
レンズ(102)により平行光束に変換され、S偏光で
偏光ビームスプリッタ(+03)を介してl/4波長板
(104)へ導かれる。この1/4波長板(104)に
導かれたレーザー光は円偏光の光束に変換された後、対
物レンズ(105)を介して被測定物(IB)の表面に
集光される。被測定物(10B)で反射されたレーザー
光はl/4波長板(104)でP偏光された後、偏光ビ
ームスプリッタ(103)を透過してビームスプリッタ
(107)に導かれ、分光される。分光された光はそれ
ぞれ、反射面が臨界角に設定されている臨界角プリズム
(108a)(108b)で反射され、それぞれ2分割
受光素子(10sa)(tosb)に入射され、光量が
検出される。
Laser light from a laser light source (101) is converted into a parallel beam by a collimating lens (102), and guided as S-polarized light to a 1/4 wavelength plate (104) via a polarizing beam splitter (+03). The laser beam guided by the quarter-wave plate (104) is converted into a circularly polarized beam, and then focused on the surface of the object to be measured (IB) via the objective lens (105). The laser beam reflected by the object to be measured (10B) is P-polarized by the 1/4 wavelength plate (104), then transmitted through the polarizing beam splitter (103), guided to the beam splitter (107), and separated into spectra. . Each of the separated lights is reflected by a critical angle prism (108a) (108b) whose reflecting surface is set at a critical angle, and is incident on a two-split light receiving element (10sa) (tosb), where the amount of light is detected. .

このように、被測定物(+06)が対物レンズ(105
)の焦点に位置している場合には、反射光は平行となり
、臨界角プリズム(108a)(108b)における反
射率は全光束で一定となり、2分割受光素子(109a
)(+09b)に受光される光量は等しくなる。
In this way, the object to be measured (+06) is
), the reflected light becomes parallel, the reflectance at the critical angle prism (108a) (108b) is constant for the entire luminous flux, and the two-split light receiving element (109a)
)(+09b) will be the same amount of light.

しかし、被測定物(1011i)が対物レンズ(105
)の焦点より遠くに位置している場合には反射光は収束
光となるので臨界角プリズム(+08a)(108b)
に入る光束の入射角はその先軸に対して臨界角プリズム
(108a)で図中右側、臨界角プリズム(108a)
で図中下側は臨界角より小さくなり、反射率が低下して
2分割受光素子(109a)(109b)に受光される
光量に差が生じる。同様に、被測定物(10B)が対物
レンズ(105)の焦点より近くに位置している場合に
は反射光は発散光となり、上述した場合とは逆になり、
2分割受光素子(109a)(109b)に受光される
光量に差が生じる。このような光量の差から被測定物(
10[i)の、対物レンズ(105)の焦点位置からの
変位を検出し、被測定物(10[i)の微小変位や表面
粗さを測定することが出来る。
However, the object to be measured (1011i) is
), the reflected light becomes convergent light, so the critical angle prism (+08a) (108b)
The incident angle of the light flux entering the critical angle prism (108a) is the critical angle prism (108a) on the right side of the figure with respect to its tip axis.
The lower side in the figure becomes smaller than the critical angle, the reflectance decreases, and a difference occurs in the amount of light received by the two-split light receiving elements (109a) (109b). Similarly, when the object to be measured (10B) is located closer than the focal point of the objective lens (105), the reflected light becomes diverging light, which is the opposite of the case described above.
A difference occurs in the amount of light received by the two-split light receiving elements (109a) and (109b). Due to this difference in light intensity, the object to be measured (
10[i) from the focal position of the objective lens (105) can be detected to measure minute displacements and surface roughness of the object to be measured (10[i).

(解決しようとする課題) しかし、上述した従来の光学系では、検出範囲が数5厘
と狭いため、被測定物の厚みや形状に対応するためには
、光学系全体を焦点誤差検出方向に移動可能なステージ
に搭載し粗動を行なう必要がある。この場合、ステージ
が移動し、測定可能な範囲に入ったことを認識するため
には、例えば第4図の焦点誤差検出光学系の出力 ■(A + B )−(B 十D ) ■(A + B + c + D ) ■I(A + C)−(B + D )l/(A + 
B 十c 十D )をモニタすることになる。
(Problem to be solved) However, in the conventional optical system described above, the detection range is as narrow as several 5 cm, so in order to accommodate the thickness and shape of the object to be measured, the entire optical system must be moved in the focus error detection direction. It is necessary to mount it on a movable stage and make coarse movements. In this case, in order to recognize that the stage has moved and entered the measurable range, for example, the output of the focus error detection optical system shown in FIG. + B + c + D) ■I (A + C) - (B + D) l/(A +
B 1c 1D) will be monitored.

しかしながら、上記出力■及び■は検出範囲以外でも検
出範囲と同様な出力になる可能性があり、さらに、出力
■は被測定物の反射率に依存するため不安定である。そ
のため、対物レンズがその作動距離が短かいために被測
定物に衝突してしまう危険を伴なうという問題点がある
However, the above outputs (2) and (2) may be similar to those in the detection range outside the detection range, and furthermore, the output (2) is unstable because it depends on the reflectance of the object to be measured. Therefore, there is a problem in that the objective lens has a short working distance and is therefore at risk of colliding with the object to be measured.

(課題を解決するための手段) 本発明は上述の問題点を解消した光学式微小変位測定装
置を提供するもので、その特徴は、照明光学系の対物レ
ンズを共有し、被測定物体に照射する別の照明手段と、
該照明手段による被測定物体からの反射光束によって対
物レンズが被測定物体に衝突する直前の状態を検出する
近接状態検出光学系を備えていることにある。
(Means for Solving the Problems) The present invention provides an optical micro-displacement measuring device that solves the above-mentioned problems.The present invention is characterized by the fact that the objective lens of the illumination optical system is shared, and the object to be measured is irradiated. another lighting means to
The object of the present invention is to include a proximity state detection optical system that detects the state immediately before the objective lens collides with the object to be measured by the light beam reflected from the object by the illumination means.

(作用) 第1図は本発明の測定装置の基本構成図である。図面に
おいて、(1)は対物レンズ(3)に光軸を通って被測
定物(4)に入射する光源A1(2)は上記光源A(1
)と対物レンズ(3)を共有し、被−[定物(4)に照
射する別の光源Bで、光源B(2)からの光は対物レン
ズ(3)の光軸をはずれて入射する。(5)は反射鏡、
(6)は検出器で被測定物(4)からの反射光は再び対
物レンズ(3)を透過して反射鏡(5)で反射し、検出
器(6)で受光する。
(Function) FIG. 1 is a basic configuration diagram of the measuring device of the present invention. In the drawing, (1) is a light source A1 (2) that enters the object to be measured (4) through the optical axis of the objective lens (3).
) and another light source B that shares the objective lens (3) and irradiates the object (4), and the light from light source B (2) is incident off the optical axis of the objective lens (3). . (5) is a reflective mirror,
(6) is a detector, and the reflected light from the object to be measured (4) passes through the objective lens (3) again, is reflected by a reflecting mirror (5), and is received by a detector (6).

上記のように構成した装置において、被測定物(4)が
対物レンズ(3)の焦点距離より遠方に位置していると
きは、光源B(2)からの反射光は検出器(6)で受光
される。反対に、被測定物(4)が対物レンズ(3)の
焦点距離に近づいてくる(4゛)と、反射光は次第に検
出器(6)の受光面からはずれ、一定の距離に近づいた
時に完全に検出器(6)の受光面から外れることになる
。そのため、検出器(6)の位置を調整することによっ
て、対物レンズ(3)が被測定物に衝突する直前の状態
を検知することが可能となる。
In the apparatus configured as described above, when the object to be measured (4) is located farther than the focal length of the objective lens (3), the reflected light from the light source B (2) is reflected by the detector (6). Light is received. On the other hand, when the object to be measured (4) approaches the focal length of the objective lens (3) (4 degrees), the reflected light gradually deviates from the light-receiving surface of the detector (6), and when it approaches a certain distance, It will be completely removed from the light receiving surface of the detector (6). Therefore, by adjusting the position of the detector (6), it is possible to detect the state immediately before the objective lens (3) collides with the object to be measured.

(実施例) 第2図は臨界角法による本発明の測定装置の実施例の構
成図である。
(Embodiment) FIG. 2 is a block diagram of an embodiment of the measuring device of the present invention using the critical angle method.

図面において、(11)は対物レンズ(17)の光軸を
通る光の光源Aで、(12)はそのコリメートレンズ、
(13)は対物レンズ(17)の光軸からずれて入射す
る別の光源Bで、(14)はそのコリメートレンズであ
る。(15)は偏光ビームスプリッタ、(16)は1/
4波長板、(17)は対物レンズ、(18)は被測定物
、(19)は反射鏡、(20)は検出器である。又(2
1)はビームスプリッタ、(22aH22b)は臨界角
プリズム、(23aH23b)は2分割受光素子である
In the drawing, (11) is a light source A of light passing through the optical axis of the objective lens (17), (12) is its collimating lens,
(13) is another light source B that enters the objective lens (17) with a deviation from the optical axis, and (14) is its collimating lens. (15) is a polarizing beam splitter, (16) is 1/
A four-wave plate, (17) an objective lens, (18) an object to be measured, (19) a reflecting mirror, and (20) a detector. Also (2
1) is a beam splitter, (22aH22b) is a critical angle prism, and (23aH23b) is a two-split light receiving element.

第3図は非点収差法による本発明の測定装置の実施例の
構成図である。
FIG. 3 is a block diagram of an embodiment of the measuring device of the present invention using the astigmatism method.

図面において、(31)は対物レンズ(37)の光軸ヲ
通る光の光源Aで、(32)はそのコリメートレンズ、
(33)は対物レンズ(37)の光軸からずれて入射す
る別の光源Bで、(34)はそのコリメートレンズであ
る。(35)は偏光ビームスプリッタ、(3B)はlハ
波長板、(37)は対物レンズ、(38)は被測定物、
(3S)は反射鏡、(40)は検出器である。又(41
)はビームスプリッタ、(42a)(42b)はシリン
ドリカルレンズ、(43a)(43b)は2分割受光素
子である。
In the drawing, (31) is the light source A of the light passing through the optical axis of the objective lens (37), (32) is its collimating lens,
(33) is another light source B that enters the objective lens (37) with a deviation from the optical axis, and (34) is its collimating lens. (35) is a polarizing beam splitter, (3B) is a wavelength plate, (37) is an objective lens, (38) is an object to be measured,
(3S) is a reflecting mirror, and (40) is a detector. Also (41
) is a beam splitter, (42a) and (42b) are cylindrical lenses, and (43a and 43b) are two-split light receiving elements.

これらの実施例において、第1図の光学系が同じように
組込まれることになるため、焦点誤差検出方法はどのよ
うなものであっても同様に動作する。
In these embodiments, the optical system of FIG. 1 will be incorporated in the same way, so whatever focus error detection method is used will operate in the same way.

なお、この光学系では、被測定物が傾いた時に反射光が
検出器の受光面からはずれるときの対物レンズと被測定
物の間隔が変化するので、このことを考慮して傾きの許
容範囲に対して余裕をもった設定を行なう必要がある。
In addition, in this optical system, when the object to be measured is tilted, the distance between the objective lens and the object changes when the reflected light leaves the light-receiving surface of the detector, so take this into consideration when adjusting the allowable range of inclination. It is necessary to make settings with a margin for this.

(発明の効果) 以上説明したように、本発明の光学式微小変位測定装置
によれば、測定範囲を超えて被測定物が対物レンズに近
づいた場合に衝突を防止することができるため、衝突に
よる光学系のアライメントのずれを防止することが出来
る。従って被測定物が非常に傷つき昌い場合に使用する
と極めて効果的である。
(Effects of the Invention) As explained above, according to the optical minute displacement measuring device of the present invention, collision can be prevented when the object to be measured approaches the objective lens beyond the measurement range. It is possible to prevent misalignment of the optical system due to Therefore, it is extremely effective when used when the object to be measured is extremely damaged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測定装置の基本構成図である。 第2図は臨界角法による本発明の測定装置の実施例の構
成図である。 第3図は非点収差法による本発明の測定装置の実施例の
構成図である。 第4図は臨界角法による従来の光学式微小変位測定装置
の構成図である。 1・・・光源A、2・・・光源B13・・・対物レンズ
、4・・・被測定物、5・・・反射鏡、6・・・検出器
。 序 2!!I
FIG. 1 is a basic configuration diagram of the measuring device of the present invention. FIG. 2 is a block diagram of an embodiment of the measuring device of the present invention using the critical angle method. FIG. 3 is a block diagram of an embodiment of the measuring device of the present invention using the astigmatism method. FIG. 4 is a block diagram of a conventional optical minute displacement measuring device using the critical angle method. DESCRIPTION OF SYMBOLS 1... Light source A, 2... Light source B13... Objective lens, 4... Measured object, 5... Reflector, 6... Detector. Introduction 2! ! I

Claims (2)

【特許請求の範囲】[Claims] (1)光源からの光束を被測定物体に照射する照明光学
系と、被測定物体からの反射光束から焦点誤差を検出す
る焦点誤差検出光学系を有する光学式微小変位測定装置
において、前記照明光学系の対物レンズを共有し被測定
物体に照射する別の照明手段と、該照明手段による被測
定物体からの反射光束によって対物レンズが被測定物体
に衝突する直前の状態を検出する近接状態検出光学系を
備えていることを特徴とする光学式微小変位測定装置。
(1) In an optical micro-displacement measuring device having an illumination optical system that irradiates a measured object with a light beam from a light source, and a focus error detection optical system that detects a focus error from a reflected light beam from the measured object, the illumination optical system Another illumination means that shares the objective lens of the system and irradiates the object to be measured, and proximity state detection optics that detects the state immediately before the objective lens collides with the object to be measured by the light beam reflected from the object by the illumination means. An optical micro-displacement measuring device characterized by comprising a system.
(2)近接状態検出光学系に入射する反射光束に用いる
照明手段は、対物レンズの光軸からずれて入射すること
を特徴とする請求項(1)記載の光学式微小変位測定装
置。
(2) The optical micro-displacement measuring device according to claim (1), wherein the illumination means used for the reflected light flux that enters the proximity state detection optical system is deviated from the optical axis of the objective lens.
JP10574390A 1990-04-20 1990-04-20 Optical fine displacement measuring instrument Pending JPH045514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10574390A JPH045514A (en) 1990-04-20 1990-04-20 Optical fine displacement measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10574390A JPH045514A (en) 1990-04-20 1990-04-20 Optical fine displacement measuring instrument

Publications (1)

Publication Number Publication Date
JPH045514A true JPH045514A (en) 1992-01-09

Family

ID=14415744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10574390A Pending JPH045514A (en) 1990-04-20 1990-04-20 Optical fine displacement measuring instrument

Country Status (1)

Country Link
JP (1) JPH045514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021108696A1 (en) 2020-05-11 2021-11-11 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for controlling the fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021108696A1 (en) 2020-05-11 2021-11-11 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for controlling the fuel cell system

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
US5424834A (en) Optical displacement sensor for measurement of shape and coarseness of a target workpiece surface
JPH08505951A (en) Device for analyzing substances on the surface of optical sensor
US7123345B2 (en) Automatic focusing apparatus
KR100207682B1 (en) Laser astigmatism compensating method of optical pickup device
US7099001B2 (en) Auto-collimator
JPH083576B2 (en) Optical imaging device and mask pattern imaging device
KR980004513A (en) Optical pickup device
JPS5979104A (en) Optical device
WO2003060589A1 (en) Auto focussing device and method
JPH045514A (en) Optical fine displacement measuring instrument
US6486942B1 (en) Method and system for measurement of a characteristic of lens
WO2011004692A1 (en) Displacement measurement device using optical interferometer
JPH07294231A (en) Optical surface roughness sensor
JPS6370110A (en) Distance measuring apparatus
JP2808713B2 (en) Optical micro displacement measuring device
JP3004631B1 (en) Laser interferometer
KR100845712B1 (en) Beam magnifying instrument used axicon lens
JPH02191314A (en) Pattern detector
JPH0298618A (en) Positioning detector
JPS60211304A (en) Measuring instrument for parallelism
JP2625209B2 (en) Optical micro displacement measuring device
JPH07174552A (en) Apparatus for detecting focal point
SU1589059A1 (en) Apparatus for adjusting the axis of radiator of optical unit relative to surfaces of the base
JPH07104131B2 (en) Method and device for separating diffracted light