JPH0454884B2 - - Google Patents

Info

Publication number
JPH0454884B2
JPH0454884B2 JP12329584A JP12329584A JPH0454884B2 JP H0454884 B2 JPH0454884 B2 JP H0454884B2 JP 12329584 A JP12329584 A JP 12329584A JP 12329584 A JP12329584 A JP 12329584A JP H0454884 B2 JPH0454884 B2 JP H0454884B2
Authority
JP
Japan
Prior art keywords
detection
angular velocity
parts
drive
velocity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12329584A
Other languages
Japanese (ja)
Other versions
JPS612013A (en
Inventor
Naoki Hara
Shuichi Kosuge
Kenji Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP59123295A priority Critical patent/JPS612013A/en
Publication of JPS612013A publication Critical patent/JPS612013A/en
Publication of JPH0454884B2 publication Critical patent/JPH0454884B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧電振動型の角速度センサに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a piezoelectric vibration type angular velocity sensor.

〔従来技術〕[Prior art]

従来、この種の装置として、第4図に示す圧電
振動型の角速度センサがあり、板状圧電体の駆動
部1,1′と、板状圧電体の検知部2,2′とを直
交するように結合配置するとともに、交流駆動電
圧の印加により駆動部1,1′を振動駆動させた
時にその振動方向と直交する方向の検知部2,
2′の屈曲状態を検出して角速度を得るようにし
ている。
Conventionally, as a device of this type, there is a piezoelectric vibration type angular velocity sensor shown in FIG. When the driving parts 1, 1' are vibrated by applying an AC driving voltage, the sensing parts 2,
The angular velocity is obtained by detecting the bending state of 2'.

第5図はその電気回路図である。駆動部1,
1′は交流電源3により交流電源3により交流電
源が印加されて振動する。検知部2,2′は角速
度の影響を受けて駆動部1,1′の振動方向と直
交する方向に屈曲し、その屈曲状態に応じた電気
信号を発生する。この電気信号は、角速度の影響
による信号の他に駆動部1,1′の振動による影
響の信号も含んでいる。検知部2,2′からの電
気信号はアンプ4で増幅され、バンドパスフイル
タ5を介して同期検知波回路6に入る。バンドパ
スフイルタ5は第6図に示す特性にて入力信号の
フイルタ作用を行なう。同期検知波回路3は、バ
ンドパスフイルタ5を介した電気信号の中から駆
動部1,1′の振動による影響の信号を除去する
ように同期検波を行なう。この同期検波回路6に
て同期検波した信号を平滑増幅回路7にて平滑増
幅し、角速度を示す直流の電気信号を出力する。
FIG. 5 is its electrical circuit diagram. Drive unit 1,
1' is vibrated by applying AC power from the AC power source 3. The detection parts 2, 2' bend in a direction perpendicular to the vibration direction of the drive parts 1, 1' under the influence of the angular velocity, and generate electric signals according to the bending state. This electric signal includes not only a signal due to the influence of the angular velocity but also a signal due to the vibration of the driving parts 1, 1'. Electrical signals from the detection units 2 and 2' are amplified by an amplifier 4 and enter a synchronous detection wave circuit 6 via a bandpass filter 5. The bandpass filter 5 performs a filtering action on the input signal with the characteristics shown in FIG. The synchronous detection wave circuit 3 performs synchronous detection so as to remove signals influenced by vibrations of the drive sections 1 and 1' from the electrical signals passed through the bandpass filter 5. The signal synchronously detected by the synchronous detection circuit 6 is smoothed and amplified by the smoothing amplifier circuit 7, and a DC electric signal indicating the angular velocity is output.

上記のような従来構成の角速度センサにおい
て、通常使用時には正確なる角速度検出を行なう
ことができるが、この角速度センサに外的な振動
を与えた時に正確なる角速度検出を行えないとい
う問題が発生した。その対策のためセンサ構造に
種々の検討を行つたが、いずれも上記問題を解決
することができなかつた。
The conventional angular velocity sensor described above can accurately detect angular velocity during normal use, but a problem has arisen in that accurate angular velocity cannot be detected when external vibrations are applied to the angular velocity sensor. Various studies have been conducted on the sensor structure to counter this problem, but none of them have been able to solve the above problem.

そこで、上記問題の原因を解決するため、第4
図に示すように、角速度センサの端子8に衝撃を
与えたところ、駆動部1,1′と検知部2,2′に
第7図に示すような異なる周波数での振動が発生
することが波高分析から判明した。この第7図
は、第4図において角速度センサの金属端子8に
衝撃を与えた時に、駆動部1,1′および検知部
2,2′に生じる振動振幅の波高分析結果を示す
ものであり、実線は駆動部11,1′での振動振
幅点線は検知部2,2′での振動振幅を示してい
る。このことから、検知部2,2′での振動が角
速度検出の誤差の要因であることが推察される。
Therefore, in order to solve the cause of the above problem, the fourth
As shown in the figure, when an impact is applied to the terminal 8 of the angular velocity sensor, vibrations at different frequencies are generated in the drive parts 1, 1' and the detection parts 2, 2' as shown in Fig. 7. It was revealed from the analysis. This FIG. 7 shows the result of wave height analysis of the vibration amplitude generated in the drive parts 1, 1' and the detection parts 2, 2' when an impact is applied to the metal terminal 8 of the angular velocity sensor in FIG. The solid line shows the vibration amplitude at the drive parts 11, 1', and the dotted line shows the vibration amplitude at the detection parts 2, 2'. From this, it can be inferred that vibrations in the detection units 2, 2' are a cause of errors in angular velocity detection.

そして、上記のことにより、さらに検知部2,
2′の出力信号についてどののような影響が発生
するかについて、上記のような衝撃に対する検知
部2,2′からの出力信号の波高分析を行つた。
その結果を第8図に示す。第8図は第4図におい
て角速度センサの金属端子8に衝撃を与えた時
に、検知部2,2′から発生する衝撃ノイズ信号
の波高分析結果を示すものである。
Then, due to the above, the detection unit 2,
A wave height analysis of the output signals from the detection sections 2 and 2' in response to the above-mentioned impact was conducted to determine what kind of influence occurs on the output signals of the detection sections 2 and 2'.
The results are shown in FIG. FIG. 8 shows a wave height analysis result of the impact noise signal generated from the detection parts 2, 2' when an impact is applied to the metal terminal 8 of the angular velocity sensor in FIG. 4.

ところで、第7図から理解されるごとく、第4
図において、角速度センサの金属端子8に加える
衝撃は広い周波数成分を持つているため、駆動部
1,1′および検知部2,2′に生じる振動振幅は
それぞれの共振点で最大となる。一方、第8図か
ら理解されるごとく、第4図において、角速度セ
ンサ金属端子8に衝撃を与えた時に検知部2,
2′より発生する衝撃によるノイズ信号は検知部
2,2′の振動振幅に比例する。
By the way, as understood from Figure 7, the fourth
In the figure, since the impact applied to the metal terminal 8 of the angular velocity sensor has a wide frequency component, the vibration amplitude generated in the drive parts 1, 1' and the detection parts 2, 2' becomes maximum at their respective resonance points. On the other hand, as can be understood from FIG. 8, when an impact is applied to the angular velocity sensor metal terminal 8 in FIG.
The noise signal due to the impact generated by the sensor 2' is proportional to the vibration amplitude of the detection parts 2, 2'.

従つて、駆動部1,1′の共振点では駆動部1,
1′の振動振幅は最大であるが、駆動部1,1′の
振動が検知部2,2の振動に伝達されるが、駆動
部1,1′と検知部2,2′が振動方向から90゜異
なるため、減衰する。
Therefore, at the resonance point of the driving parts 1, 1', the driving parts 1, 1'
1' has the maximum vibration amplitude, but the vibration of the drive parts 1, 1' is transmitted to the vibration of the detection parts 2, 2, but the vibration amplitude of the drive parts 1, 1' and the detection parts 2, 2' is different from the vibration direction. Because they differ by 90 degrees, they are attenuated.

これに対して、検知部2,2′の共振点では検
知部2,2′が直接振動するため、大きなノイズ
信号が生ずる。
On the other hand, since the sensing parts 2, 2' vibrate directly at the resonance points of the sensing parts 2, 2', a large noise signal is generated.

以上のことより、検知部2,2′に発生する信
号が検知部2,2′からの出力信号にノイズとし
て影響していることがわかる。なお、第7図,第
8図おける駆動部共振点の周波数は約150Hz、検
知部共振点の周波数は約480Hzである。検知部2,
2′の共振周波数は、 共振周波数∝ts/ls2で表され、 また、駆動部1,1′の共振周波数は、 共振周波数∝ktD/lD 2で表される。
From the above, it can be seen that the signals generated in the detection sections 2 and 2' affect the output signals from the detection sections 2 and 2' as noise. In addition, the frequency of the driving part resonance point in FIGS. 7 and 8 is about 150 Hz, and the frequency of the detecting part resonance point is about 480 Hz. Detection unit 2,
The resonant frequency of the driver 2' is expressed as the resonant frequency ∝ts/ls 2 , and the resonant frequency of the driving parts 1 and 1' is expressed as the resonant frequency ∝kt D /l D 2 .

なお、kは検知部2,2′の重量により周波数
が低減される項を示し、実際には式表現すること
はできない項であつて、厳密には計算機で算出す
るものである。
Note that k indicates a term in which the frequency is reduced due to the weight of the detection units 2, 2', and is a term that cannot actually be expressed by a formula, and is strictly calculated by a computer.

また、tsは検知部2,2′の厚さ、lsは検知部
の長さを示し、tDは駆動部1,1′の厚さ、lDは駆
動部の長さをそれぞれ示す。
Further, ts represents the thickness of the sensing portions 2 and 2', ls represents the length of the sensing portion, tD represents the thickness of the driving portions 1 and 1', and lD represents the length of the driving portion, respectively.

ところで、150Hz(駆動部1,1′の共振点)の
倍数周波数で検知部2,2′より発生するノイズ
は第8図の説明で述べたように問題にならないレ
ベルである。480Hz(検知部2,2′の共振点)の
倍数では理論上、検知部2,2′から480Hz成分よ
り小さくノイズ信号が発生するはずであるが、実
験上、発生したノイズ信号は問題とならないレベ
ルであつた。これは衝撃ノイズの高周波成分が小
さいためと推定される。
Incidentally, the noise generated by the detection sections 2, 2' at a multiple frequency of 150 Hz (the resonance point of the drive sections 1, 1') is at a level that does not pose a problem, as described in the explanation of FIG. Theoretically, at multiples of 480Hz (resonance point of detection units 2 and 2'), a noise signal smaller than the 480Hz component should be generated from detection units 2 and 2', but experimentally, the generated noise signal does not pose a problem. It was on the level. This is presumed to be because the high frequency component of the impact noise is small.

そして、角度信号は非常に小さいもの(例えば
10〓V/゜/sec〜50〓V/゜/sec)であるのに
対して、第8図における検知部2,1′の共振点
のノイズ信号成分は数10mVに達する(但し、衝
撃の与え方によりその値は当然変わる)。
And the angle signal is very small (e.g.
10〓V/゜/sec - 50〓V/゜/sec), whereas the noise signal component at the resonance point of the detection parts 2, 1' in Fig. 8 reaches several tens of mV (however, the noise signal component at the resonance point of the detection parts 2, 1' in Fig. (The value will of course change depending on how it is given.)

従つて、ノイズ信号を50dB〜60dB以上、減衰
する必要があり、帯番フイルタでは不十分であ
る。なお、仮に、駆動部1,1′の共振点と検知
部2,2′の共振点が数オーダーも離れていれば、
帯域フイルタでもノイズ除去が可能であるが、現
実には駆動部1,1′の共振点と検知部2,2′の
共振点を数オーダ離すことは困難である。従つ
て、このような検知部共振点に発生するノイズに
対しては、第6図の特性を有するバンドパスフイ
ルタ5では十分除去することができず、そのノイ
ズにより角速度検出を正確に行なうことができな
いことになる。
Therefore, it is necessary to attenuate the noise signal by 50 dB to 60 dB or more, and a band filter is insufficient. Furthermore, if the resonance points of the drive parts 1, 1' and the resonance points of the detection parts 2, 2' are separated by several orders of magnitude,
Although it is possible to remove noise using a bandpass filter, in reality it is difficult to separate the resonance points of the drive sections 1, 1' and the resonance points of the detection sections 2, 2' by several orders of magnitude. Therefore, the bandpass filter 5 having the characteristics shown in FIG. 6 cannot sufficiently remove such noise generated at the resonance point of the detection section, and the noise makes it difficult to accurately detect the angular velocity. It turns out you can't do it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、角速度センサに外的な振動を与えた
時に発生する、検知部の振動によるノイズを除去
した正確なる角速度検出を行なうようにしたもの
である。
The present invention is designed to perform accurate angular velocity detection by removing noise caused by vibration of a detection section that occurs when external vibration is applied to an angular velocity sensor.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は上記問題点を解決するため、検知部の
動きを電気的に検出する検知手段に、検知部の共
振周波数に伝送数に伝送零点を有するフイルタを
設けた。
In order to solve the above-mentioned problems, the present invention provides a filter that has a transmission zero point in the number of transmissions at the resonance frequency of the detection section in the detection means that electrically detects the movement of the detection section.

〔作用〕[Effect]

上記検知部の共振周波数に伝送零点を有するフ
イルタにより、角速度センサに外的な振動が加わ
つて検知部からノイズが発生しても有効にそれを
除去する。
The filter having a transmission zero point at the resonant frequency of the detection section effectively removes noise generated from the detection section due to external vibrations applied to the angular velocity sensor.

〔実施例〕 本実施例で用いた角速度センサの構成を第2図
に示す。この第2図において、1,1′は検知部、
2,2′は駆動部であり、9,9′は、上下が互い
に直角になる様に一体化して構成された金属板
(厚さ0.5mmのFe−Co−Ni合金を用いたもの)で、
その上に検知用圧電体10,10′、駆動用圧電
体11,11′(それぞれ厚さ0.2mmのPZTセラミ
ツクスを用いたもの)が接着されている。12は
金属端子で、金属9,9′とが溶接、半田付等で
固定されている。13,13′はそれぞれ検知用
圧電体10,10′、駆動用圧電体11,11′か
らのリード線の引き出し用端子である。
[Example] FIG. 2 shows the configuration of the angular velocity sensor used in this example. In this Fig. 2, 1 and 1' are the detection parts;
2 and 2' are drive parts, and 9 and 9' are metal plates (made of Fe-Co-Ni alloy with a thickness of 0.5 mm) that are integrated so that the top and bottom are at right angles to each other. ,
Detection piezoelectric bodies 10, 10' and drive piezoelectric bodies 11, 11' (each made of PZT ceramics with a thickness of 0.2 mm) are bonded thereon. Reference numeral 12 denotes a metal terminal, which is fixed to metal terminals 9 and 9' by welding, soldering, or the like. 13 and 13' are terminals for drawing out lead wires from the detection piezoelectric bodies 10 and 10' and the driving piezoelectric bodies 11 and 11', respectively.

第1図はその電気回路図である。第5図に示す
従来のものに対し、バンドパスフイルタ5の代わ
りに、検知部2,2′の共振周波数2,2′の共振
周波数に伝送零点を有するフイルタ14を設けた
点で異なつている。このフイルタ14の特性を第
3図に示す。
FIG. 1 is its electrical circuit diagram. The difference from the conventional one shown in FIG. 5 is that a filter 14 having a transmission zero point at the resonance frequency of the resonance frequencies 2 and 2' of the detection sections 2 and 2' is provided in place of the bandpass filter 5. . The characteristics of this filter 14 are shown in FIG.

上記構成において、駆動用電体11,11′は
交流電源3からの交流電圧を受けて駆動部1,
1′を振動させる。この振動に際し、角速度があ
るとコリオリの力により検知部2,2′を駆動部
1,1′の振動方向に直交する方向に屈曲させる。
この屈曲状態により検知用圧電体10,10′に
電気信号が発生し、その電気信号はアンプ4を介
してフイルタ14に入力される。そして、このフ
イルタ14により、第8図に示すノイズが発生し
ていてもそれを除去する。このフイルタ14を介
した信号は同期検波回路6、平滑増幅回路7によ
り直流の角速度信号として出力される。
In the above configuration, the driving electric bodies 11, 11' receive AC voltage from the AC power supply 3, and the driving parts 1, 11'
1' is vibrated. During this vibration, if there is an angular velocity, the Coriolis force causes the detection parts 2, 2' to bend in a direction perpendicular to the vibration direction of the drive parts 1, 1'.
This bent state generates an electric signal in the detection piezoelectric bodies 10, 10', and the electric signal is input to the filter 14 via the amplifier 4. This filter 14 removes the noise shown in FIG. 8 even if it occurs. The signal passed through this filter 14 is output by the synchronous detection circuit 6 and the smoothing amplifier circuit 7 as a DC angular velocity signal.

なお、フイルタ14をアンプ4と同期検波回路
6の間に設けるものを示したが、同期検波回路6
の前段ならばどこに設けてもよい。
Although the filter 14 is shown as being provided between the amplifier 4 and the synchronous detection circuit 6, the filter 14 is provided between the amplifier 4 and the synchronous detection circuit 6.
It may be placed anywhere in front of the .

また、角速度センサの構成として第2図に示す
ものを用いたが、他の構成の角速度センサ、例え
ば駆動部と検知部を一体型のものでなく別体のも
のとして構成し、それを接着剤で接着固定するも
のであつてもよい。
Although the configuration of the angular velocity sensor shown in Fig. 2 was used, it is also possible to use an angular velocity sensor with a different configuration, for example, by configuring the drive part and the detection part as separate parts instead of an integrated one, and attach them with adhesive. It may be fixed by adhesive.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、角速度セン
サに外的な振動が加わつてもそれによるノイズを
除去して正確なる角度検出を行なうことができる
という優れた効果がある。
As described above, the present invention has the excellent effect that even if external vibrations are applied to the angular velocity sensor, noise caused by the vibrations can be removed and accurate angle detection can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電気回路図、
第2図は本発明の一実施例における角速度センサ
の構成図、第3図は検知部の共振周波数に伝送零
点を有するフイルタの特性図、第4図は従来の角
速度センサを示す模式構成図、第5図は従来の角
速度センサにおける電気回路図、第6図はバンド
パスフイルタの特性図、第7図,第8図は作動説
明に供する特性図である。 1,1′……駆動部、2,2′……検知部、14
……フイルタ。
FIG. 1 is an electric circuit diagram showing an embodiment of the present invention;
FIG. 2 is a configuration diagram of an angular velocity sensor according to an embodiment of the present invention, FIG. 3 is a characteristic diagram of a filter having a transmission zero point at the resonance frequency of the detection section, and FIG. 4 is a schematic configuration diagram showing a conventional angular velocity sensor. FIG. 5 is an electric circuit diagram of a conventional angular velocity sensor, FIG. 6 is a characteristic diagram of a bandpass filter, and FIGS. 7 and 8 are characteristic diagrams for explaining the operation. 1, 1'...drive section, 2, 2'...detection section, 14
...Filter.

Claims (1)

【特許請求の範囲】 1 圧電体の駆動部と、該圧電体の検知部とを結
合配置するとともに、交流駆動電圧の印加により
前記駆動部を振動駆動させた時に前記検知部の動
きを電気的に検出する検出手段を設けて、角速度
を検出するようになした角速度センサにおいて、 前記検出手段に、前記検知部の共振周波数に対
して伝送零点を有するフイルタを設けた ことを特徴とする角速度センサ。
[Scope of Claims] 1. A drive section of a piezoelectric body and a detection section of the piezoelectric body are coupled and arranged, and the movement of the detection section is electrically controlled when the drive section is driven to vibrate by application of an AC drive voltage. An angular velocity sensor configured to detect angular velocity by providing a detection means for detecting angular velocity, characterized in that the detection means is provided with a filter having a transmission zero point with respect to a resonance frequency of the detection section. .
JP59123295A 1984-06-14 1984-06-14 Angular velocity sensor Granted JPS612013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123295A JPS612013A (en) 1984-06-14 1984-06-14 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123295A JPS612013A (en) 1984-06-14 1984-06-14 Angular velocity sensor

Publications (2)

Publication Number Publication Date
JPS612013A JPS612013A (en) 1986-01-08
JPH0454884B2 true JPH0454884B2 (en) 1992-09-01

Family

ID=14857005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123295A Granted JPS612013A (en) 1984-06-14 1984-06-14 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JPS612013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157714A1 (en) 2013-03-26 2014-10-02 株式会社志成データム Vascular viscoelasticity evaluation device, vascular viscoelasticity evaluation method, and program

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460581B1 (en) * 1990-06-04 1995-04-26 Nippondenso Co., Ltd. Signal processing circuit for yaw-rate sensor
JP2591530B2 (en) * 1990-10-19 1997-03-19 日本電装株式会社 Method for manufacturing vibration member of angular velocity sensor
JP2003021516A (en) * 2001-07-06 2003-01-24 Ngk Insulators Ltd Physical quantity measuring device
JP2005055255A (en) * 2003-08-01 2005-03-03 Sony Corp Gyroscope output detection method and gyroscope output detection device
JP2015184157A (en) * 2014-03-25 2015-10-22 セイコーエプソン株式会社 Physical quantity detection circuit, physical quantity detection device, electronic apparatus, and mobile entity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AUTOMATIC CONTROL IN SPACE DIRECT DIGITAL CONTROL OF DRY-TUNED ROTOR GYROS=1979 *
SAE TECHNICAL PAPER SERIES SOLID-STATE RATE SENSOR TECHNOLOGY AND APPLICATIONS=1983 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157714A1 (en) 2013-03-26 2014-10-02 株式会社志成データム Vascular viscoelasticity evaluation device, vascular viscoelasticity evaluation method, and program

Also Published As

Publication number Publication date
JPS612013A (en) 1986-01-08

Similar Documents

Publication Publication Date Title
US3794236A (en) Monitoring and control means for evaluating the performance of vibratory-type devices
JP3536497B2 (en) Vibration type angular velocity detector
JP3430711B2 (en) Angular velocity sensor
WO1998007005A1 (en) Angular velocity detector
JP4696996B2 (en) Inertial force sensor
JP2007256233A5 (en)
JP2007108053A (en) Oscillator and measuring element for oscillation gyroscope
JPH0454884B2 (en)
JPH09126783A (en) Piezoelectric vibration gyroscope
JP2001124563A (en) Self-diagnosis circuit for vibration gyro
JPH09269227A (en) Vibration gyroscope
JP3082663B2 (en) Vibrating gyro
JPH07167883A (en) Vibration type angular velocity detector
JP3593197B2 (en) Piezoelectric vibration gyro
JPS6067815A (en) Angular velocity sensor
JPS60216210A (en) Angular velocity sensor
JP3360510B2 (en) Angular velocity sensor
JPH05264279A (en) Vibrating gyro with diagnostic function
JPH0718705B2 (en) Angular velocity sensor
JP3136544B2 (en) Gyro device
JP3136955B2 (en) Angular velocity detector
JPS60213813A (en) Angular speed sensor
JP2555956B2 (en) Potential sensor
JP4631154B2 (en) Vibrating gyro and electronic device using the same
JPH07301533A (en) Vibrating type rate gyro-sensor