JPH0454730B2 - - Google Patents

Info

Publication number
JPH0454730B2
JPH0454730B2 JP61236663A JP23666386A JPH0454730B2 JP H0454730 B2 JPH0454730 B2 JP H0454730B2 JP 61236663 A JP61236663 A JP 61236663A JP 23666386 A JP23666386 A JP 23666386A JP H0454730 B2 JPH0454730 B2 JP H0454730B2
Authority
JP
Japan
Prior art keywords
metal
powder
oxide
alloy
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61236663A
Other languages
Japanese (ja)
Other versions
JPS6393834A (en
Inventor
Hideo Tezuka
Takeshi Yanai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO PREFECTURE
Original Assignee
TOKYO PREFECTURE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO PREFECTURE filed Critical TOKYO PREFECTURE
Priority to JP23666386A priority Critical patent/JPS6393834A/en
Publication of JPS6393834A publication Critical patent/JPS6393834A/en
Publication of JPH0454730B2 publication Critical patent/JPH0454730B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は耐摩耗性に優れた高強度Al系複合材
料の製造方法に係り、特に粉末治金法による前記
Al系複合材料の製造方法に関する。 (従来の技術) Al粉末治金の製品としては、従来SAP
(Sintered Al Powder)、APM(Aluminum
Powder Metallurgy Products)および
Hiduminium100等が知られておりこれらはいず
れも基本的には同一の原理によつて製造される
(アルミニウムハンドブツク:軽金属協会編朝倉
書店昭和45年6月刊行)。 たとえば、前記SAP(ザツプ)の場合において
は、金属Al粉末を長時間加熱または混練して金
属Alの表面に多量のAl2O3を生成させ、これによ
つて微細なAl2O3を基地金属中に分散させて高温
強度および耐摩耗性に優れたAl系複合材料が得
られる。 しかし、SAPの方法ではAl2O3の生成をAl金属
の長時間の混練または加熱処理によつて行なうた
め、強力な混練機を用いて20〜40時間もの混練を
行なわなければならず、加工費が嵩むと共に高温
強度およびに耐摩耗性の点でも必ずしも満足すべ
きものではなかつた。 (問題点を解決するための手段) 前記従来技術の問題点はAlまたはAl合金と金
属または非金属の酸化物との混合粉末を加圧成形
後焼結し、この焼結過程において添加された酸化
物によりAl成分を酸化させることにより生じる
Al2O3を主成分とする微小酸化物を分散析出さ
せ、また酸化物の還元により生じた金属または非
金属とAlまたはAl合金との間に硬質なAl−金属
間化合物を形成させ、AlおよびAl合金基地中に
分散析出させることにより得られる高強度Al系
複合材料の製造方法によつて解決される。 (作用) 本発明の製造方法は基本的には従来の粉末治金
の技術に基いているが、一般の粉末治金法では金
属粉末同志の焼結を行わせることを目的としてい
るのに対し、本発明の製造方法ではAlまたはAl
合金の粉末に酸化物を添加し、これら両者の間に
化学反応を行なわせるために焼結が行なわれる。 すなわち添加された酸化物が焼結過程において
AlまたはAl合金基地中のAl成分を酸化して主と
してAl2O3からなる微小酸化物を分散析出させる
と共に、この反応で還元された酸化物の金属もし
くは非金属がAl(もしくは合金化元素たとえば
Mg等との間に硬質な金属間化合物を生成させそ
れによつて著しく耐摩耗性や高温強度に優れた高
強度Al系複合材料が得られる。 この場合前記Al2O3は従来のように主として混
練または加熱によるのではなく添加酸化物の化学
的反応によつて生成されるのでその処理は極めて
短時間に行なわれる。 さらにこの酸化の際に還元される酸化物の金属
もしくは非金属とAl成分等とで形成される金属
間化合物はそれ自体著しく大きな硬度を有する
が、これがAlまたはAl合金の基地中に分散析出
することによつていわゆる結晶のすべりが阻止さ
れ、材料の強度が一層増大される。 (焼結工程の説明) このように本発明の方法においてはAl粉末治
金に際して金属または非金属の酸化物を添加して
混合された粉末を焼結することが大きな特色であ
る。 この焼結の第一段階においては添加された酸化
物がAlまたはAl合金の粉末によつて下記(1)〜(4)
の化学反応式により示されるように還元され、一
方金属Alは酸化されて0.1μm以下の微細なAl2O3
を形成する。 3Fe3O4+8Al=9Fe+4Al2O3 (1) Cr2O3+2Al=2Cr+Al2O3 (2) 3NiO+2Al=3Ni+Al2O3 (3) B2O3+2Al=2B+Al2O3 (4) さらに前記の反応によつて還元された酸化物よ
り生じた金属または非金属は下記(5)〜(8)の反応式
に示されるようにAl−金属間化合物を形成する。 Fe+3Al=FeAl3 (5) Cr+3Al=CrAl3 (6) Ni+3Al=NiAl3 (7) 2B+Al=AlB2 (8) これらの金属化合物は著しく高い硬さを示す。
焼結のさいに形成される代表的なAl−金属間化
合物の二、三の例とこれらの硬さを表1に示す。
(Industrial Application Field) The present invention relates to a method for producing a high-strength Al-based composite material with excellent wear resistance, and particularly to
This invention relates to a method for producing Al-based composite materials. (Conventional technology) As a product of Al powder metallurgy, conventional SAP
(Sintered Al Powder), APM (Aluminum
Powder Metallurgy Products) and
Hiduminium 100 and the like are known, and all of these are basically manufactured using the same principle (Aluminum Handbook: Edited by the Light Metals Association, published by Asakura Shoten in June 1971). For example, in the case of SAP, metal Al powder is heated or kneaded for a long time to generate a large amount of Al 2 O 3 on the surface of the metal Al, thereby forming fine Al 2 O 3 as a base. By dispersing it in metal, an Al-based composite material with excellent high-temperature strength and wear resistance can be obtained. However, in the SAP method, Al 2 O 3 is generated by long-term kneading or heat treatment of Al metal, which requires kneading for 20 to 40 hours using a powerful kneader, and processing In addition to being expensive, the high-temperature strength and abrasion resistance are not necessarily satisfactory. (Means for solving the problem) The problem with the conventional technology is that a mixed powder of Al or Al alloy and metal or non-metal oxide is sintered after pressure molding, and during this sintering process, the Produced by oxidizing Al component with oxides
Fine oxides containing Al 2 O 3 as the main component are dispersed and precipitated, and a hard Al-intermetallic compound is formed between the metal or nonmetal produced by the reduction of the oxide and Al or Al alloy. The problem is solved by a method for manufacturing a high-strength Al-based composite material obtained by dispersing precipitation in an Al alloy matrix. (Function) The manufacturing method of the present invention is basically based on conventional powder metallurgy technology, but whereas in general powder metallurgy, the purpose is to sinter metal powders together. , in the production method of the present invention, Al or Al
Sintering is performed by adding oxides to the alloy powder and causing a chemical reaction between the two. In other words, the added oxide is
The Al component in the Al or Al alloy base is oxidized to disperse and precipitate fine oxides mainly consisting of Al 2 O 3 , and the metal or non-metal of the oxide reduced in this reaction becomes Al (or alloying element, e.g.
By forming a hard intermetallic compound with Mg, etc., a high-strength Al-based composite material with outstanding wear resistance and high-temperature strength can be obtained. In this case, the Al 2 O 3 is produced not primarily by kneading or heating as in the prior art, but by a chemical reaction of the added oxide, so the treatment can be carried out in an extremely short time. Furthermore, the intermetallic compound formed by the oxide metal or nonmetal that is reduced during this oxidation and the Al component, etc., has extremely high hardness, but this intermetallic compound is dispersed and precipitated in the base of Al or Al alloy. This prevents so-called crystal slippage and further increases the strength of the material. (Description of Sintering Step) As described above, the method of the present invention is characterized by sintering the mixed powder with the addition of a metal or nonmetal oxide during Al powder metallurgy. In this first stage of sintering, the added oxide is formed by Al or Al alloy powder as shown in (1) to (4) below.
As shown by the chemical reaction formula, metal Al is oxidized to form fine Al 2 O 3 of 0.1 μm or less.
form. 3Fe 3 O 4 +8Al=9Fe+4Al 2 O 3 (1) Cr 2 O 3 +2Al=2Cr+Al 2 O 3 (2) 3NiO+2Al=3Ni+Al 2 O 3 (3) B 2 O 3 +2Al=2B+Al 2 O 3 (4) Furthermore, the above The metal or nonmetal produced from the oxide reduced by the reaction forms an Al-intermetallic compound as shown in reaction formulas (5) to (8) below. Fe+3Al=FeAl 3 (5) Cr+3Al=CrAl 3 (6) Ni+3Al=NiAl 3 (7) 2B+Al=AlB 2 (8) These metal compounds exhibit extremely high hardness.
Table 1 shows a few examples of typical Al-intermetallic compounds formed during sintering and their hardness.

【表】 これらの金属間化合物の寸法は焼結温度や焼結
時間または最終的に行う熱間押出条件によつても
異なるが、約5〜10μmの寸法に制御される。 本発明の方法においては、このようにして得ら
れたAl2O3およびAl−金属間化合物が基地となる
AlまたはAl合金中に均一に分散させられて高強
度のAl系複合材料を形成する。 尚、本発明の方法においてAl−Mg系合金粉末
を出発原料として用いた場合には、Mgの酸化物
生成自由エネルギーがAlよりも大であるため、
生成されるAl2O3の一部はMgOによつて代替され
る。 また本発明における硬質なAl−金属間化合物
と基地Al金属との界面における接合性はZn原子
の存在によつて著しく改善されるため、原料とし
て用いるAl粉末に予めZnを含有させておくこと
が好ましい。亜鉛は粉末酸化亜鉛の形態として添
加する酸化物に加えてもよい。 本発明のAl系複合材料中の亜鉛含有量は得ら
れる材料の最終形態の全重量を基準として15wt
%以下に限定する。これはZn含有量が15wt%以
上になると基地金属部分の硬さが急激に低下し、
ビツカース硬さで100程度となつてしまい本発明
のAl系複合材料の特徴である耐摩耗性が著しく
阻害されるためである。 すでに述べたように、本発明の製造方法におい
ては酸化物の構成要素としての酸素成分とAlま
たはl合金粉末との化学反応によつてAl2O3が形
成される。したがつて原料粉末の混練処理は添加
された酸化物粉末とAl合金粉末とを均質に混合
させるためのみに行なわれ、処理時間は約1時間
程度で充分である。したがつてAl粉末表面の酸
化を目的として行なわれるSAP(ザツプ)等の混
練処理の場合と比べて処理時間が極めて短縮され
る。 さらにまた焼結のさいに形成される微細かつ硬
質なAl−金属間化合物が著しく基地金属を強化
するため引張り強さが約40Kgf/mm2であるSAP
の約1.5〜2.0倍程度の引張り強さの大きなAl複合
材料が得られる。 以下本発明のAl系複合材料の製造工程の概略
を図面に示すフローシートによつて説明する。 AlまたはAl合金粉末に酸化物粉末を添加し、
これをボールミルにより混練し、(工程1)両者
が均一に混合された状態とする。このように混練
された混合粉末を3〜7トン/cm2の加圧力のもと
で金型中で成形して一定形状の圧粉体を得る(工
程2)。 次いで、この圧粉体を還元雰囲気または中性雰
囲気中で約500〜600℃の間の温度に加熱し、約10
〜60分間保持後室温まで冷却して焼結を完了する
(工程3)。この後焼結体を500〜600℃の温度範囲
で押出しまたは圧延を行う(工程4)。なお焼結
温度、焼結時間、雰囲気の種類は添加される酸化
物粉末の種類によつてもそれぞれ異なる。また焼
結過程においては酸化還元などの反応をともなう
ためこれにより焼結体中に空孔の生じる場合もあ
るためこのような場合には、生成される空孔の発
生を防止するため適当な荷重により加圧を行う場
合もある。 以下本発明による高強度Al系複合材料の製造
方法を具体的な実施例によつてさらに説明する。
実施例中、「%」は全て「重量%」である。 実施例 1 原料粉末として5%Znおよび5%Mgを含むAl
合金粉末を用い、これにFe3O4粉末を夫々2、5
および10%添加したものをボールミルにより1時
間混練し、その後4トン/cm2の加圧力の下で成形
し、このようにして得られた圧粉体をH2ガス雰
囲気中で590℃で4分間焼結し、室温まで冷却し、
次いで550℃で加工比90%で押出し加工を行つた。
得られたAl系複合材料の機械的性質を表2に示
す。
[Table] The dimensions of these intermetallic compounds vary depending on the sintering temperature, sintering time, and final hot extrusion conditions, but are controlled to about 5 to 10 μm. In the method of the present invention, Al 2 O 3 and the Al-intermetallic compound thus obtained serve as a base.
Uniformly dispersed in Al or Al alloys to form high-strength Al-based composite materials. In addition, when Al-Mg alloy powder is used as a starting material in the method of the present invention, since the free energy of oxide formation of Mg is larger than that of Al,
A part of the Al 2 O 3 produced is replaced by MgO. Furthermore, since the bonding property at the interface between the hard Al-intermetallic compound and the base Al metal in the present invention is significantly improved by the presence of Zn atoms, it is recommended that the Al powder used as the raw material contain Zn in advance. preferable. Zinc may be added to the added oxide in the form of powdered zinc oxide. The zinc content in the Al-based composite material of the present invention is 15wt based on the total weight of the final form of the material obtained.
% or less. This is because when the Zn content exceeds 15wt%, the hardness of the base metal part decreases rapidly.
This is because the Vickers hardness is about 100, and the wear resistance, which is a characteristic of the Al-based composite material of the present invention, is significantly impaired. As already mentioned, in the production method of the present invention, Al 2 O 3 is formed by the chemical reaction between the oxygen component as a component of the oxide and the Al or l alloy powder. Therefore, the kneading treatment of the raw material powder is carried out only to homogeneously mix the added oxide powder and the Al alloy powder, and a treatment time of about 1 hour is sufficient. Therefore, the processing time is extremely shortened compared to kneading processing such as SAP, which is performed for the purpose of oxidizing the surface of the Al powder. Furthermore, the fine and hard Al-intermetallic compound formed during sintering significantly strengthens the base metal, resulting in an SAP with a tensile strength of approximately 40 Kgf/ mm2.
An Al composite material with a high tensile strength of about 1.5 to 2.0 times that of the above can be obtained. The outline of the manufacturing process of the Al-based composite material of the present invention will be explained below with reference to the flow sheet shown in the drawings. Adding oxide powder to Al or Al alloy powder,
This is kneaded using a ball mill (Step 1), so that both are uniformly mixed. The mixed powder kneaded in this way is molded in a mold under a pressure of 3 to 7 tons/cm 2 to obtain a green compact of a certain shape (Step 2). The green compact is then heated to a temperature between about 500 and 600°C in a reducing or neutral atmosphere, and heated to about 10°C.
After holding for ~60 minutes, the sintering is completed by cooling to room temperature (Step 3). Thereafter, the sintered body is extruded or rolled at a temperature range of 500 to 600°C (Step 4). Note that the sintering temperature, sintering time, and type of atmosphere differ depending on the type of oxide powder added. In addition, the sintering process involves reactions such as oxidation-reduction, which may create pores in the sintered body. In such cases, apply an appropriate load to prevent the generation of pores. In some cases, pressure may be applied. The method for producing a high-strength Al-based composite material according to the present invention will be further explained below using specific examples.
In the Examples, all "%" means "% by weight". Example 1 Al containing 5% Zn and 5% Mg as raw material powder
Using alloy powder, add Fe 3 O 4 powder for 2 and 5 times, respectively.
and 10% of the powder was kneaded in a ball mill for 1 hour, and then molded under a pressure of 4 tons/ cm 2 . Sinter for minutes, cool to room temperature,
Next, extrusion processing was performed at 550°C and a processing ratio of 90%.
Table 2 shows the mechanical properties of the obtained Al-based composite material.

【表】 実施例 2 原料粉末として10%Znおよび、4%Cuを含む
Al合金粉末を用いこれにCr2O3粉末を夫々2、5
および10%添加したものをボールミルにより、2
時間混練し、その後5トン/cm2の加圧力の下で成
形した。このようにして得られた圧粉体をH2
ス雰囲気中において580℃で5分間焼結し、室温
まで冷却し、次いで560℃で加工比90%で押出し
加工を行つた。得られたCr−Al系複合材料の機
械的性質を表3に示す。
[Table] Example 2 Contains 10% Zn and 4% Cu as raw material powder
Using Al alloy powder, add 2 and 5 Cr 2 O 3 powder to it, respectively.
and 10% added with a ball mill, 2
The mixture was kneaded for an hour and then molded under a pressure of 5 tons/cm 2 . The green compact thus obtained was sintered at 580° C. for 5 minutes in an H 2 gas atmosphere, cooled to room temperature, and then extruded at 560° C. at a working ratio of 90%. Table 3 shows the mechanical properties of the obtained Cr-Al composite material.

【表】 実施例 3 原料粉末として5%Znおよび4%Mg、を含む
Al合金粉末を用い、これにNiO粉末を夫々2、
5および10%添加したものをボールミルにより2
時間混練し、その後4トン/cm2の加圧下のもとで
成形した。このようにして得られた圧粉体をN2
ガス雰囲気中で580℃で5分間焼結し、室温まで
冷却し、次いでこの焼結体を550℃で90%の加工
率で押出し加工を行つた。得られた機械的性質を
表4に示す。
[Table] Example 3 Contains 5% Zn and 4% Mg as raw material powder
Al alloy powder was used, and NiO powder was added to it by 2,
5 and 10% added by ball milling.
The mixture was kneaded for an hour and then molded under a pressure of 4 tons/cm 2 . The green compact obtained in this way was heated with N 2
Sintering was carried out at 580°C for 5 minutes in a gas atmosphere, cooled to room temperature, and then the sintered body was extruded at 550°C at a processing rate of 90%. The mechanical properties obtained are shown in Table 4.

【表】 (発明の効果) 本発明によれば高温強度および耐摩耗性にすぐ
れた高強度Al系複合材料を容易に得ることがで
きる。
[Table] (Effects of the Invention) According to the present invention, a high-strength Al-based composite material with excellent high-temperature strength and wear resistance can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の方法を実施するための製造工程
を示すフロー図である。 1……混合工程、2……加圧成形工程、3……
焼結工程、4……押出または圧延工程。
The drawings are flow diagrams showing manufacturing steps for carrying out the method of the invention. 1...Mixing process, 2...Pressure molding process, 3...
Sintering step, 4...Extrusion or rolling step.

Claims (1)

【特許請求の範囲】 1 AlまたはAl合金と金属または非金属の酸化
物との混合粉末を加圧成形後焼結し、この焼結過
程において添加された酸化物によりAl成分を酸
化させることにより生じるAl2O3を主成分とする
微小酸化物を分散析出させ、また酸化物の還元に
より生じた金属または非金属とAlまたはAl合金
との間に硬質なAl−金属間化合物を形成させ、
AlおよびAl合金基地中に分散析出させることに
より得られる高強度Al系複合材料の製造方法。 2 前記製造方法中において最終複合材料の重量
を基準として15%以下のZnを含有させることを
特徴とする前記特許請求の範囲第1項記載の製造
方法。
[Claims] 1. By press-molding a mixed powder of Al or an Al alloy and a metal or non-metal oxide, and then sintering it, and oxidizing the Al component with the oxide added during this sintering process. Dispersing and precipitating fine oxides mainly composed of Al 2 O 3 produced, and forming a hard Al-intermetallic compound between the metal or nonmetal produced by reduction of the oxide and Al or Al alloy,
A method for manufacturing high-strength Al-based composite materials obtained by dispersing precipitation in Al and Al alloy matrix. 2. The manufacturing method according to claim 1, wherein Zn is contained in an amount of 15% or less based on the weight of the final composite material.
JP23666386A 1986-10-04 1986-10-04 Manufacture of high-strength al composite material Granted JPS6393834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23666386A JPS6393834A (en) 1986-10-04 1986-10-04 Manufacture of high-strength al composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23666386A JPS6393834A (en) 1986-10-04 1986-10-04 Manufacture of high-strength al composite material

Publications (2)

Publication Number Publication Date
JPS6393834A JPS6393834A (en) 1988-04-25
JPH0454730B2 true JPH0454730B2 (en) 1992-09-01

Family

ID=17003943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23666386A Granted JPS6393834A (en) 1986-10-04 1986-10-04 Manufacture of high-strength al composite material

Country Status (1)

Country Link
JP (1) JPS6393834A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551665A (en) * 1991-08-20 1993-03-02 Hidekazu Toyama Manufacture of dispersion-strengthened aluminum alloy by addition of oxide
JP2009041087A (en) * 2007-08-10 2009-02-26 Univ Nihon Aluminum sintered compact, and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551331A (en) * 1978-06-16 1980-01-08 Honshu Paper Co Ltd Pulp production
JPS5757544A (en) * 1980-07-18 1982-04-06 Alza Corp Fluid dispenser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551331A (en) * 1978-06-16 1980-01-08 Honshu Paper Co Ltd Pulp production
JPS5757544A (en) * 1980-07-18 1982-04-06 Alza Corp Fluid dispenser

Also Published As

Publication number Publication date
JPS6393834A (en) 1988-04-25

Similar Documents

Publication Publication Date Title
US6264719B1 (en) Titanium alloy based dispersion-strengthened composites
US4315777A (en) Metal mass adapted for internal oxidation to generate dispersion strengthening
US3950166A (en) Process for producing a sintered article of a titanium alloy
EP0079755B1 (en) Copper base spinodal alloy strip and process for its preparation
AU2009101361A4 (en) Preparation method for silver metal oxide made electric contact material
US5384087A (en) Aluminum-silicon carbide composite and process for making the same
US3533760A (en) Dispersion strengthened nickel-chromium alloy composition
JP2014019945A (en) Titanium alloy and method for producing the same
US3184306A (en) Friction material
JPH04325648A (en) Production of sintered aluminum alloy
JPH0454730B2 (en)
JPS5931838A (en) Production of dispersion reinforced copper alloy material having heat resistance and electrical conductivity
WO2017077922A1 (en) Oxygen-solid-soluted titanium sintered compact and method for producing same
GB2082205A (en) Dispersion-hardened platinum- group metal articles
JPH02259029A (en) Manufacture of aluminide
JPH0751721B2 (en) Low alloy iron powder for sintering
JPS6386831A (en) Manufacture of working stock of aluminum-base sintered alloy
JP2564527B2 (en) Method for manufacturing heat-resistant, high-strength, high-ductility aluminum alloy member
JPH03166329A (en) Oxide dispersion reinforced cu-zr alloy and its manufacture
JPS6026621A (en) Manufacture of heat resistant molybdenum material
JPH04224601A (en) Manufacture of titanium-based composite material
JP2584488B2 (en) Processing method of wear resistant aluminum alloy
JPS5980745A (en) Molybdenum alloy
EP0170651B1 (en) Metal modified dispersion strengthened copper
RU2116370C1 (en) Method for production of copper-base dispersion-hardened materials