JPH0453179Y2 - - Google Patents

Info

Publication number
JPH0453179Y2
JPH0453179Y2 JP1984081296U JP8129684U JPH0453179Y2 JP H0453179 Y2 JPH0453179 Y2 JP H0453179Y2 JP 1984081296 U JP1984081296 U JP 1984081296U JP 8129684 U JP8129684 U JP 8129684U JP H0453179 Y2 JPH0453179 Y2 JP H0453179Y2
Authority
JP
Japan
Prior art keywords
temperature
rotor bar
stator
rotor
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984081296U
Other languages
Japanese (ja)
Other versions
JPS60192665U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8129684U priority Critical patent/JPS60192665U/en
Publication of JPS60192665U publication Critical patent/JPS60192665U/en
Application granted granted Critical
Publication of JPH0453179Y2 publication Critical patent/JPH0453179Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Induction Machinery (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) この考案はかご形誘導電動機のベクトル制御に
あつて、重要なパラメータである2次抵抗の変化
する要因となるロータバー温度、の検出装置に関
する。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a detection device for the rotor bar temperature, which is a factor in changing the secondary resistance, which is an important parameter in vector control of a squirrel cage induction motor.

(従来の技術) 誘導電動機を、トルク制御、速度制御、位置
(サーボ)制御等に適用する有力な制御方法とし
て、ベクトル制御方式が提唱され、マイクロプロ
セツサの進展に伴い実用に供され現在既に多くの
使用実績がある。
(Prior art) A vector control method has been proposed as a powerful control method for applying induction motors to torque control, speed control, position (servo) control, etc., and with the advancement of microprocessors, it has been put into practical use and is currently in use. It has many uses.

ベクトル制御方式は、誘導電動機を直流機モデ
ル化し、電動機電流をトルク発生分と磁束発生分
の2つの直交関係にあるベクトル成分に分け、こ
れらをそれぞれ独立して制御するべく精密な制御
回路を構成し、指令のトルクに対し線形、かつ高
速応答の電動機トルクを得ようとするものであ
る。
The vector control method models an induction motor as a DC machine, divides the motor current into two orthogonal vector components, one for torque generation and one for magnetic flux generation, and configures a precise control circuit to control each of these components independently. However, the aim is to obtain a motor torque that is linear and has a fast response to the command torque.

ところで、実際にこの方式を適用するには多く
の技術的課題を解決しなければならず、そのうち
の一つに、ロータバー温度による電動機2次抵抗
の変化の問題がある。すなわち、電動機2次抵抗
の変化を補正せずそのまま放置すると、 a 電動機トルクの指令トルクに対するずれ、非
線形性の問題 b トルク成分、磁束成分の各ベクトルの直交関
係からのずれ、干渉による過渡特性の悪化 c 電源のインバータ出力電圧最大値と電動機電
圧のかい離による電動機の出力低下 等の問題を生じる。従つて、これらを軽減、解消
するにはロータバー温度を検出、その検出値に応
じて制御回路モデルの2次抵抗値を補正すればよ
く、この2次抵抗をロータバー温度の関数とする
ことは従来より広く行われている。
By the way, in order to actually apply this method, many technical problems must be solved, one of which is the problem of changes in motor secondary resistance due to rotor bar temperature. In other words, if the change in the motor secondary resistance is left as is without correction, a. Deviation of the motor torque from the command torque, non-linearity problem b. Deviation from the orthogonal relationship of each vector of the torque component and magnetic flux component, transient characteristics due to interference. Worsening c: Problems such as a decrease in motor output occur due to the difference between the maximum inverter output voltage of the power supply and the motor voltage. Therefore, in order to reduce or eliminate these problems, it is sufficient to detect the rotor bar temperature and correct the secondary resistance value of the control circuit model according to the detected value. It is more widely practiced.

ところで、ロータバーの温度を検出するに、直
接ロータバーに測温素子を取付け検出するのが理
想であるが、回転体に素子を取付けるのは機構が
複雑になり、かご形誘導電動機のシンプルな構
造、堅ろうという特長を損うものであつて、実用
的でない。
By the way, to detect the temperature of the rotor bar, it is ideal to attach a temperature sensor directly to the rotor bar, but attaching the element to the rotating body requires a complicated mechanism, and the simple structure of the squirrel cage induction motor This impairs the strong feature and is not practical.

このため、従来は、ステータに測温素子を備
え、ステータ温度とロータバー温度は略均等であ
るとしてステータ温度をロータバー温度に代替せ
しめ2次抵抗値の温度補正を行つていた。
For this reason, conventionally, the stator is provided with a temperature measuring element, and the stator temperature is assumed to be substantially equal to the rotor bar temperature, and the stator temperature is substituted for the rotor bar temperature to perform temperature correction of the secondary resistance value.

(考案が解決しようとする問題点) 一般的のかご形誘導電動機特に外扇形の場合、
ステータとロータから発生する熱はケースの外皮
を介して放散する構造となつており、内奥に位置
するロータはステータに比して外気冷却風に対す
る熱抵抗が高く、熱的に平衡な定常運転状態にあ
れば、必らずロータの方がステータよりも高い温
度にあり、従来のステータ、ロータバー温度が略
等しいとしての2次抵抗温度補正は相当程度の誤
差を含むこととなる。なお、実験データを示せ
ば、5.5KW外扇形誘導電動機で100%出力時、ス
テータとロータバー温度差は20℃以上となり、従
来のステータ温度による2次抵抗温度補正では、
電動機トルクの指令トルクに対するずれは5%以
上となつた。
(Problem to be solved by the invention) In the case of a general squirrel cage induction motor, especially an external fan type,
The structure is such that the heat generated from the stator and rotor is dissipated through the outer skin of the case, and the rotor, which is located deep inside, has a higher thermal resistance to the outside cooling air than the stator, allowing steady, thermally balanced operation. If the rotor is in this state, the rotor is necessarily at a higher temperature than the stator, and the conventional secondary resistance temperature correction assuming that the stator and rotor bar temperatures are approximately equal includes a considerable error. In addition, experimental data shows that at 100% output with a 5.5KW external sector induction motor, the temperature difference between the stator and rotor bar is more than 20℃, and with the conventional secondary resistance temperature correction using the stator temperature,
The deviation of the motor torque from the command torque was 5% or more.

(問題点を解決するための手段) ステータとロータバー温度が異なるのは、外皮
に向かい熱流が生成されこれに基づき電動機内の
各部に生じる温度勾配のためであり、ステータに
2点以上の測温素子を配し、かつこれら測温素子
データを熱伝導法則に基づき演算処理しロータバ
ー温度を算出するようにしたことを特徴とする。
(Means for solving the problem) The stator and rotor bar temperatures differ because a heat flow is generated toward the outer skin, and this creates a temperature gradient in each part of the motor. The present invention is characterized in that the rotor bar temperature is calculated by arranging temperature measuring elements and calculating the data of these temperature measuring elements based on the law of heat conduction.

(作用) 熱流は熱伝導法則に基づき生成されるのであ
り、ステータの2点以上の測温素子データを熱伝
導法則により演算処理し熱流即ちロータバー温度
を推定するのであり、従来のステータ、ロータバ
ー温度を等しいとするものより格段に精度の高い
ロータバー温度を得ることができる。
(Function) Heat flow is generated based on the heat conduction law, and the heat flow, that is, the rotor bar temperature, is estimated by calculating the temperature measurement element data at two or more points on the stator using the heat conduction law. It is possible to obtain a rotor bar temperature that is much more accurate than when the values are equal.

(実施例) 実施例として全閉外扇形かご形誘導電動機に適
用した場合を示す。図面において、1はロータ、
2はステータ、3は軸、4は軸受、5は外皮、6
は速度検出器、7は外扇用フアン、8は整風カバ
ーである。
(Example) As an example, a case where the present invention is applied to a totally enclosed external sector squirrel cage induction motor will be shown. In the drawing, 1 is a rotor,
2 is a stator, 3 is a shaft, 4 is a bearing, 5 is an outer skin, 6
7 is a speed detector, 7 is an external fan, and 8 is a wind regulating cover.

測温素子はステータ1に少なくとも2点以上即
ち実施例では、熱流がモータ内奥より外皮に向か
うことにより、外皮5に近いステータ2外周部
と、内奥のステータ2内周部とにそれぞれ備え、
このステータ外周部、内周部の温度差より熱流を
推測、ロータバー温度を算出するものである。
Temperature measuring elements are provided at at least two points on the stator 1, that is, in the embodiment, the heat flow is directed toward the outer skin from the inner part of the motor, so that the temperature measuring elements are provided at the outer periphery of the stator 2 near the outer skin 5 and the inner periphery of the stator 2 deep inside. ,
The heat flow is estimated from the temperature difference between the outer and inner circumferential parts of the stator, and the rotor bar temperature is calculated.

すなわち、ステータ外周部の測温点P3、内周
部の測温点P2の測温データTP3,TP2より、両者
の温度差“TP2−TP3”を求め、これに熱伝導法
則に基づく予めの定数Kを乗じ、K(TP2−TP3
を算出、更にロータバーに近いステータ内周部温
度TP2を加えて、ロータバー温度TP1を TP1≒TP2+K(TP2−TP3) として得る。なお、定数Kは電動機構造、素材、
測温素子の取付箇所等をもとに熱伝導法則に基づ
き決定される。また、図面中、10がステータの
測温素子データを熱伝導法則に基づき演算処理し
てロータバー温度を算出する演算処理回路であ
る。
That is, from the temperature measurement data T P3 and T P2 of the temperature measurement point P 3 on the outer periphery of the stator and the temperature measurement point P 2 on the inner periphery , the temperature difference “T P2 − T P3 ” between the two is determined, and this Multiply by a predetermined constant K based on the law, K (T P2 − T P3 )
is calculated, and the stator inner peripheral temperature T P2 near the rotor bar is added to obtain the rotor bar temperature T P1 as T P1 ≒ T P2 + K (T P2T P3 ). In addition, the constant K depends on the motor structure, material,
It is determined based on the heat conduction law based on the mounting location of the temperature measuring element, etc. Further, in the drawing, reference numeral 10 denotes an arithmetic processing circuit that calculates the rotor bar temperature by processing the temperature measurement element data of the stator based on the heat conduction law.

(発明の効果) かご形誘導電動機のベクトル制御にあつて、ロ
ータバー温度の正確な算出は、制御回路モデルの
2次抵抗値の温度補正を精密に行うことができ、
トルク特性、過渡特性への悪影響、電動機出力の
低下等のことを防止し得、負荷の大小如何に拘わ
らず常に最適の運転状態に維持することが可能と
なる。
(Effect of the invention) In vector control of a squirrel-cage induction motor, accurate calculation of the rotor bar temperature allows precise temperature correction of the secondary resistance value of the control circuit model.
It is possible to prevent adverse effects on torque characteristics and transient characteristics, decrease in motor output, etc., and it is possible to always maintain an optimal operating state regardless of the magnitude of the load.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は実施例の全閉外扇形かご形誘導電動機に
おけるロータバー温度検出装置のブロツク線図で
ある。 1……ロータ、2……ステータ、10……演算
処理回路、P2,P3……ステータ測温点、P3……
P2,P3測温点データにより演算のロータバー温
度点。
The drawing is a block diagram of a rotor bar temperature detection device in a totally enclosed external sector squirrel cage induction motor according to an embodiment. 1...Rotor, 2...Stator, 10...Arithmetic processing circuit, P2 , P3 ...Stator temperature measurement point, P3 ...
Rotor bar temperature point calculated from P 2 and P 3 temperature measurement point data.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 誘導電動機ステータ上の少なくともロータバー
近くの内周部と外周部の2点に測温素子を配し、
モータ内奥から外皮へ向かう熱流を推測するとと
もに、この推測値を上記ロータバー近くの内周部
測温素子データに加えてロータバー温度としたこ
とを特徴とするロータバー温度検出装置。
Temperature measuring elements are arranged at at least two points on the induction motor stator, one on the inner circumference near the rotor bar and the other on the outer circumference,
A rotor bar temperature detection device characterized by estimating the heat flow from the inner part of the motor toward the outer skin, and adding this estimated value to the data of the inner circumferential temperature measuring element near the rotor bar to obtain the rotor bar temperature.
JP8129684U 1984-05-31 1984-05-31 Rotor bar temperature detection device Granted JPS60192665U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8129684U JPS60192665U (en) 1984-05-31 1984-05-31 Rotor bar temperature detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8129684U JPS60192665U (en) 1984-05-31 1984-05-31 Rotor bar temperature detection device

Publications (2)

Publication Number Publication Date
JPS60192665U JPS60192665U (en) 1985-12-21
JPH0453179Y2 true JPH0453179Y2 (en) 1992-12-14

Family

ID=30627949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8129684U Granted JPS60192665U (en) 1984-05-31 1984-05-31 Rotor bar temperature detection device

Country Status (1)

Country Link
JP (1) JPS60192665U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244911A (en) * 2002-02-19 2003-08-29 Mitsubishi Electric Corp Rotating electric machine and machine tool
JP2005274353A (en) * 2004-03-25 2005-10-06 Meidensha Corp Natural air cooling type electronic equipment unit and temperature determination method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577352A (en) * 1978-12-04 1980-06-11 Toshiba Corp Inspecting method for cage rotor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54168890U (en) * 1978-05-19 1979-11-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577352A (en) * 1978-12-04 1980-06-11 Toshiba Corp Inspecting method for cage rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244911A (en) * 2002-02-19 2003-08-29 Mitsubishi Electric Corp Rotating electric machine and machine tool
JP2005274353A (en) * 2004-03-25 2005-10-06 Meidensha Corp Natural air cooling type electronic equipment unit and temperature determination method
JP4710239B2 (en) * 2004-03-25 2011-06-29 株式会社明電舎 Natural air-cooled electronic device unit and temperature judgment method

Also Published As

Publication number Publication date
JPS60192665U (en) 1985-12-21

Similar Documents

Publication Publication Date Title
Kubota et al. DSP-based speed adaptive flux observer of induction motor
JP3467961B2 (en) Control device for rotating electric machine
JP4879649B2 (en) Electric motor control device
JP2014515244A (en) Method and system for controlling an electric motor with temperature compensation
JPH08322279A (en) Controller for brushless dc motor
CN110323994B (en) Method, system, vehicle and storage medium for estimating temperature of motor rotor on line in real time
JP3668666B2 (en) Synchronous motor, electric vehicle using the same, and control method thereof
JPS6141001B2 (en)
JP5727532B2 (en) Current vector controller for stepping motor
JPH0453179Y2 (en)
JP6410001B2 (en) Electric power steering device
JP2000166278A (en) Control device of synchronous motor
JPH0250718B2 (en)
JP3402597B2 (en) Actuator device
JP5471156B2 (en) Control device for permanent magnet type synchronous motor
JPS5996891A (en) Control system for ac motor
Dhamo et al. Simulation based analysis of two different control strategies for PMSM
JP2022182768A (en) Rotor temperature estimation system and rotor temperature estimation method
JP2002078390A (en) Motor controller
Savitha et al. Performance comparison of Rotor Flux based and Back EMF Based Model Reference Adaptive System Speed Estimator for 3 Phase Induction Motor
JP4687104B2 (en) Control device and method for permanent magnet type rotary motor
JP3164574B2 (en) Servo motor controller
JP5387899B2 (en) Control device for permanent magnet type synchronous motor
CN111049457A (en) Current mode control using motor inverse decoupling in electric power steering system
JP3711634B2 (en) Induction machine control method