JP3668666B2 - Synchronous motor, electric vehicle using the same, and control method thereof - Google Patents

Synchronous motor, electric vehicle using the same, and control method thereof Download PDF

Info

Publication number
JP3668666B2
JP3668666B2 JP2000078755A JP2000078755A JP3668666B2 JP 3668666 B2 JP3668666 B2 JP 3668666B2 JP 2000078755 A JP2000078755 A JP 2000078755A JP 2000078755 A JP2000078755 A JP 2000078755A JP 3668666 B2 JP3668666 B2 JP 3668666B2
Authority
JP
Japan
Prior art keywords
temperature
synchronous motor
current
winding
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000078755A
Other languages
Japanese (ja)
Other versions
JP2001268989A (en
Inventor
利貞 三井
篤史 國見
重之 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2000078755A priority Critical patent/JP3668666B2/en
Publication of JP2001268989A publication Critical patent/JP2001268989A/en
Application granted granted Critical
Publication of JP3668666B2 publication Critical patent/JP3668666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

【0001】
【発明の属する技術分野】
本発明は、新規な同期電動機とそれを用いた電気車及びその制御方法に係り、好ましくは電気車に搭載される同期電動機を駆動する制御装置及び制御方法に関する。
【0002】
【従来の技術】
産業用を初め、広い分野に普及している電動機は温度センサが付設されているものが多く、温度が異常に上昇した際は、通電量を制限したり冷却器を動作させ、機器の破損を回避する構成をとるのが一般的である。
【0003】
【発明が解決しようとする課題】
同期電動機は、特定の回転数以下で通電すると各相毎に発熱量が大きく異なるため、巻線の各相間に温度差が生じる。このため、巻線温度を所定値以下となるように温度保護を掛ける場合、温度センサを各相毎に付設する必要がある。しかし、作業性の制約から温度センサを各相毎に付設すること、その位置も巻線の最過熱部に必ずしも設定できないという問題がある。
【0004】
本発明の目的は、1個所の温度測定によって巻線の最過熱部の温度を予測し、同期電動機の異常な温度上昇を抑制した同期電動機とそれを用いた電気車及びその制御方法を提供するにある。
【0005】
【課題を解決するための手段】
本発明は、同期電動機の3相交流電流の2相以上の交流電流を検出する電流センサと、前記同期電動機の温度を検出する温度センサと、前記同期電動機の温度上昇を抑制する温度保護手段とを備えた同期電動機において、前記温度センサは前記3相の交流電流を供給する巻線のうちの1つの巻線の温度を検出する位置に設けられ、前記温度センサによって検出された温度と前記電流センサによって検出された電流値との関係に基づいて前記温度センサを付設していない他の巻線の温度を該他の巻線の前記電流センサによって検出された電流値から算出する温度推定装置を有し、前記温度保護装置は前記予測された温度に基づいて前記同期電動機へのトルク指令を算出して出力することにより前記温度上昇を抑制するものであることを特徴とする。
【0006】
前記温度センサの付設位置が前記巻線の最過熱部であることが好ましい。
【0007】
本発明は、バッテリから電力変換器を通して電力の供給受ける同期電動機を備えた電気車において、前記同期電動機は前述の同期電動機から成ることを特徴とする。
【0008】
本発明は、同期電動機の3相交流電流の2相以上の交流電流を検出すると共に、前記同期電動機の3相交流電流を供給する巻線の温度を検出し、該検出された温度に基づいて前記同期電動機の温度上昇を抑制する同期電動機の制御方法において、前記検出する温度は前記3相の交流電流を供給する巻線のうちの1つの巻線の温度を検出するものであり、前記検出された温度と電流値との関係に基づいて他の巻線の温度を該他の巻線で検出された電流値から算出し、該予測された温度に基づいて前記同期電動機の温度上昇を抑制することを特徴とする。
【0009】
即ち、モータ交流電流検出値Iu,Iv,Iwとモータ実温度検出値Tsより、特定の関係式に基づいてV相W相の巻線温度の最過熱部温度を計算により求めることにより、取り付ける温度センサを1つにすることができる。また、温度センサを巻線の最過熱部に付設しなくても、最過熱部と温度のセンシング位置の温度の相関が既知であれば、温度センサの取付け位置を作業の容易な位置にすることができ、高い生産性が得られる。
【0010】
【発明の実施の形態】
図1は、本発明の制御装置を備えた同期電動機を適用した電気車用駆動制御システムの構成図である。同期電動機1は永久磁石型同期電動機でありバッテリ7を電源とし、電力変換器2を逆変換器すなわちインバータをして電力の供給を受ける。永久磁石型同期電動機1には、電力変換器2の直流入力側には、入力電圧を平滑するコンデンサ5と、電力変換器2への直流入力電圧を測定する直流入力電圧センサ6が接続され、直流入力電圧値を制御装置8に伝達する。また、電力変換器2の交流電力出力側には、同期電動機1の交流電流を計測する電流センサ9がU相,V相,W相にそれぞれ設置され、各相の交流電流値をモータ温度推定装置11に伝達する。また、永久磁石型同期電動機1にはモータ温度センサ4が巻線のU相に付設され、モータ温度センサ4の信号はモータ温度推定装置11に入力する。制御装置8は、トルク指令Tref1を温度保護装置10より得て、トルク指令Tref通りのトルクを出力するため、6相PWM信号を電力変換器2に送り、電力変換器2を制御する。温度保護装置10では、図示されない回路より基準トルク指令Trefを受け、モータ温度推定装置11の出力するモータ温度最大値に基づいてモータ温度上昇を抑制するトルク指令Tref1を算出して出力する。
【0011】
図2はモータ巻線の温度モデルを示す図である。R,Cはそれぞれ熱抵抗と熱容量を現し、Wは発熱量、Twは冷却水温度を現す。ステータ層とコイル層の区別には、添え字“a”,“c”を付ける。簡略化のため、冷却水層は流路の有無による温度分布は無しとし冷却水の温度分布は均一とする。熱源は巻線のロスのみとし、鉄損及びシャフト等を介して伝わるエンジン系の熱の出入りは無視する。また、コイルはマスとして扱う。コイル層とステータ層間のスロットライナは、通常、熱容量が極めて小さいので時定数を無視し、抵抗分はコイル層とステータ層のどちらかに含めて扱う。温度センサは、U相巻線の最過熱部に付設することとする。
【0012】
このモータの巻線部の温度上昇は、特に低速回転域において、通電による発熱が主たるもので、UVW相の発熱量は、
発熱量Wu=r・Iu2, Wu=r・Iv2, Wu=r・Iw2 式(1)
Wx:UVW相巻線の発熱量,r:巻線抵抗,Ix:UVW相巻線の通電量
にて定式化できる。UVW相それぞれの巻線温度Tu,Tv,Twを図2の物理モデルに従い、数理モデルに展開すると、下記の式(2)〜(5)にて表現される。
【0013】
【数1】

Figure 0003668666
【0014】
【数2】
Figure 0003668666
【0015】
【数3】
Figure 0003668666
【0016】
【数4】
Figure 0003668666
【0017】
但し、ステータに流入する熱量は数理解
W={(Wu+Wv+Ww)−Cc・Ta・s}/{1+τc・s} 式(6)
を使う代わりに、簡略化のため、下記の式(7)とし、簡略する。
W=(Wu+Wv+Ww) 式(7)
【0018】
温度センサはU相に付設されているとしたのでU相巻線温度Tuは直接観測できる。また、U相電流Iuは電流センサから求まり巻線抵抗rと熱抵抗Rcと熱時定数τaは予め既知であることから、式(2)を変更した式(8)により、ステータ温度による巻線温度変化分Tfが求まる。
【0019】
【数5】
Figure 0003668666
【0020】
又、VW相電流IvIwも電流センサから求められるため、式(1)(3)(4)(8)に基づけばVW相巻線温度Tv,Twも計算により算出できる。
【0021】
ここで、モータ温度推定装置11は、メモリROMに記録されたプログラムと、このプログラムを読み出しプログラムの手順に沿って所定の処理を実行するCPUと、前記プログラムや、処理に必要な関数、定数、データ等を記録するメモリRAMを含むコンピュータによって構成する。
【0022】
図3は、図1のモータ温度推定装置用プログラムの処理フローをフローチャートにより示したものである。このCPUは所定のインターバルでこのプログラムを実行する。
【0023】
プログラムフローは、図中のステップ▲1▼で、温度センサの出力する実温度データTsを入力し、更に、交流電流センサ出力Iu,Iv,Iwを入力する。次に、図中のステップ▲2▼で、回転数の大きさを判定し、回転数の大きさが所定値以下の場合(図中のYES)、以下ステップ▲3▼以下を実行し、回転数の大きさが所定値より大きい場合(図中のNO)は図中のステップ(10)を実行する。ステップ▲3▼では、交流電流センサ出力Iu,Iv,Iwを使い前述の式(1)に基づき各巻線の発熱量Wu,Wv,Wwを算出する。次にステップ▲4▼にて、TsをU相巻線の最過熱部温度に換算する。例えば、実温度データTsとU相巻線の最過熱部温度Tuの差が通電量の自乗に比例している場合、Tu = Ts + K・Iu2 にて補正すればよい。次にステップ▲5▼では、式(8)により、ステータ温度影響分Tfを求める。次にステップ▲6▼で、IvとTfに基づき式(3)にてTvを求める。次にステップ▲7▼で、IvとTfに基づき式(4)にてTwを求める。ステップ▲8▼で、Tu,Tv,Twの内最大温度を選択し、メモリ上に配置したバッファBufに出力する。一方、ステップ(10)では、温度推定計算を停止し前述のバッファBufには実温度データTsをそのまま出力すると共に、ステップ▲4▼〜▲7▼で使用するフィルタ変数の初期化を行う。ステップ▲9▼では、最大温度の急激に変化させない様に時間当たりの変化を制限する。
【0024】
図4は温度センサ出力の時間応答補正方法を示す回路図である。ここまでは、温度センサ付設位置をU相巻線の最過熱部としたが、作業の関係で最過熱部に付設できない場合、別の位置に付設し、式(9)の様に補正してTuを換算しても良い。また、温度センサの応答がモータの温度の時定数より遅いときには、図4に示すトラッキングループで実温度を補正する。1例として、図4では温度センサの応答は1次遅れとした。
Tu=f(温度センサ検出値),f( ):温度センサの補正関数 式(9)
【0025】
従って、以上の実施例はモータ温度センサをU相付設としたが、V相及びW相のいずれかに付設しても同様の計算にて機能を提供できることは明らかである。
【0026】
【発明の効果】
本発明によれば、モータの巻線3相に各々1つの温度センサを付設する必要がなく、温度センサを1つとすることができるため操作が容易にできる。又、温度センサは必ずしも応答速度の早いものでなくても、高精度で所望のモータの温度データを得られるので、温度センサの付設位置は取り付け容易な位置で、又、最過熱部でなくても良いので、モータ製造における作業性が高い。
【図面の簡単な説明】
【図1】本発明の同期電動機制御装置を備えた電気車の駆動制御システム構成図。
【図2】モータ巻線の温度モデル。
【図3】図1のモータ温度推定装置の処理フロー図。
【図4】温度センサ出力の時間応答補正方法を示す回路図。
【符号の説明】
1…同期電動機、2…電力変換器、4…モータ温度センサ、5…平滑コンデンサ、7…バッテリ、8…電動機制御装置、9…交流電流センサ、10…モータ温度保護装置、11…モータ温度推定装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel synchronous motor, an electric vehicle using the same, and a control method thereof, and more preferably to a control device and a control method for driving a synchronous motor mounted on an electric vehicle.
[0002]
[Prior art]
Many electric motors that are widely used in industrial and other fields are equipped with temperature sensors. When the temperature rises abnormally, the amount of electricity can be limited or the cooler can be operated to damage the equipment. It is common to take a configuration to avoid.
[0003]
[Problems to be solved by the invention]
When the synchronous motor is energized at a specific rotation speed or lower, the amount of heat generated varies greatly from phase to phase, so that a temperature difference occurs between the phases of the winding. For this reason, when temperature protection is applied so that the winding temperature becomes a predetermined value or less, it is necessary to provide a temperature sensor for each phase. However, there is a problem that a temperature sensor is provided for each phase due to workability restrictions, and the position of the temperature sensor cannot always be set in the most superheated portion of the winding.
[0004]
An object of the present invention is to provide a synchronous motor in which the temperature of the most superheated portion of the winding is predicted by measuring the temperature at one location to suppress an abnormal temperature rise of the synchronous motor, an electric vehicle using the same, and a control method therefor. It is in.
[0005]
[Means for Solving the Problems]
The present invention includes a current sensor that detects an AC current of two or more phases of a three-phase AC current of a synchronous motor, a temperature sensor that detects a temperature of the synchronous motor, and a temperature protection means that suppresses a temperature rise of the synchronous motor. The temperature sensor is provided at a position for detecting the temperature of one of the windings supplying the three-phase alternating current, and the temperature detected by the temperature sensor and the current A temperature estimation device that calculates the temperature of another winding not provided with the temperature sensor from the current value detected by the current sensor of the other winding based on the relationship with the current value detected by the sensor. And the temperature protection device suppresses the temperature increase by calculating and outputting a torque command to the synchronous motor based on the predicted temperature. .
[0006]
It is preferable attached position of the temperature sensor is the most overheated portion of the winding.
[0007]
The present invention, in an electric vehicle equipped with a synchronous motor which receives power supply through the power converter from the battery, the synchronous motor is characterized by comprising, et al or the aforementioned synchronous motor.
[0008]
The present invention detects the AC current of two or more phases of the three-phase AC current of the synchronous motor, detects the temperature of the winding that supplies the three-phase AC current of the synchronous motor, and based on the detected temperature In the synchronous motor control method for suppressing a temperature rise of the synchronous motor, the detected temperature is a temperature of one of the windings supplying the three-phase alternating current, and the detection Based on the relationship between the measured temperature and the current value, the temperature of the other winding is calculated from the current value detected by the other winding , and the temperature increase of the synchronous motor is suppressed based on the predicted temperature. It is characterized by doing.
[0009]
In other words, from the motor AC current detection values Iu, Iv, Iw and the motor actual temperature detection value Ts, based on a specific relational expression, the maximum superheated part temperature of the V-phase W-phase winding temperature is calculated to calculate the temperature to be attached There can be one sensor. Even if the temperature sensor is not attached to the most superheated part of the winding, if the correlation between the temperature of the most superheated part and the temperature sensing position is known, the temperature sensor mounting position should be an easy work position. And high productivity can be obtained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a configuration diagram of an electric vehicle drive control system to which a synchronous motor including a control device of the present invention is applied. The synchronous motor 1 is a permanent magnet type synchronous motor. The battery 7 is used as a power source, and the power converter 2 is used as an inverse converter, that is, an inverter to receive power. The permanent magnet synchronous motor 1 is connected to the DC input side of the power converter 2 with a capacitor 5 for smoothing the input voltage and a DC input voltage sensor 6 for measuring the DC input voltage to the power converter 2. The DC input voltage value is transmitted to the control device 8. Further, on the AC power output side of the power converter 2, current sensors 9 for measuring the AC current of the synchronous motor 1 are installed in the U phase, the V phase, and the W phase, respectively, and the AC current value of each phase is estimated for the motor temperature. To the device 11. The permanent magnet type synchronous motor 1 has a motor temperature sensor 4 attached to the U phase of the winding, and a signal from the motor temperature sensor 4 is input to the motor temperature estimation device 11. The control device 8 obtains the torque command Tref1 from the temperature protection device 10 and sends a 6-phase PWM signal to the power converter 2 to control the power converter 2 in order to output torque according to the torque command Tref. The temperature protection device 10 receives a reference torque command Tref from a circuit (not shown), and calculates and outputs a torque command Tref1 that suppresses the motor temperature rise based on the maximum motor temperature value output from the motor temperature estimation device 11.
[0011]
FIG. 2 is a diagram showing a temperature model of the motor winding. R and C represent heat resistance and heat capacity, W represents heat generation, and Tw represents cooling water temperature. Subscripts “a” and “c” are added to distinguish between the stator layer and the coil layer. For simplification, the cooling water layer has no temperature distribution due to the presence or absence of a flow path, and the cooling water temperature distribution is uniform. The heat source is only the loss of the windings, and the heat loss of the engine system transmitted through the iron loss and the shaft is ignored. The coil is handled as a mass. Since the slot liner between the coil layer and the stator layer usually has a very small heat capacity, the time constant is ignored and the resistance is included in either the coil layer or the stator layer. The temperature sensor is attached to the most superheated part of the U-phase winding.
[0012]
The temperature rise of the winding part of this motor is mainly caused by energization especially in the low speed rotation range.
Calorific value Wu = r · Iu 2 , Wu = r · Iv 2 , Wu = r · Iw 2 formula (1)
Wx: Heat generation amount of UVW phase winding, r: Winding resistance, Ix: Energization amount of UVW phase winding. When the winding temperatures Tu, Tv, and Tw of each UVW phase are developed into mathematical models according to the physical model of FIG. 2, they are expressed by the following equations (2) to (5).
[0013]
[Expression 1]
Figure 0003668666
[0014]
[Expression 2]
Figure 0003668666
[0015]
[Equation 3]
Figure 0003668666
[0016]
[Expression 4]
Figure 0003668666
[0017]
However, understand the number of heat flowing into the stator
W = {(Wu + Wv + Ww) −Cc · Ta · s} / {1 + τc · s} Equation (6)
For simplicity, the following equation (7) is used for simplification.
W = (Wu + Wv + Ww) Equation (7)
[0018]
Since the temperature sensor is attached to the U phase, the U phase winding temperature Tu can be observed directly. The U-phase current Iu is obtained from the current sensor, and the winding resistance r, thermal resistance Rc, and thermal time constant τa are known in advance. A temperature change Tf is obtained.
[0019]
[Equation 5]
Figure 0003668666
[0020]
Since the VW phase current IvIw is also obtained from the current sensor, the VW phase winding temperatures Tv and Tw can also be calculated by calculation based on the equations (1), (3), (4), and (8).
[0021]
Here, the motor temperature estimation device 11 includes a program recorded in the memory ROM, a CPU that reads out this program and executes predetermined processing according to the procedure of the program, the program, functions necessary for processing, constants, A computer including a memory RAM for recording data and the like is used.
[0022]
FIG. 3 is a flowchart showing the processing flow of the motor temperature estimation apparatus program of FIG. This CPU executes this program at predetermined intervals.
[0023]
In the program flow, in step (1) in the figure, actual temperature data Ts output from the temperature sensor is input, and further AC current sensor outputs Iu, Iv, and Iw are input. Next, in step (2) in the figure, the rotational speed is determined. If the rotational speed is below a predetermined value (YES in the figure), the following step (3) and subsequent steps are executed to rotate the rotational speed. When the magnitude of the number is larger than the predetermined value (NO in the figure), step (10) in the figure is executed. In step {circle around (3)}, the heating values Wu, Wv, Ww of the respective windings are calculated based on the aforementioned equation (1) using the alternating current sensor outputs Iu, Iv, Iw. Next, in step (4), Ts is converted into the most superheated part temperature of the U-phase winding. For example, when the difference between the actual temperature data Ts and the most superheated portion temperature Tu of the U-phase winding is proportional to the square of the energization amount, it may be corrected by Tu = Ts + K · Iu 2 . Next, in step (5), the stator temperature influence Tf is obtained by the equation (8). Next, in step (6), Tv is obtained by equation (3) based on Iv and Tf. Next, in step (7), Tw is obtained by equation (4) based on Iv and Tf. In step (8), the maximum temperature among Tu, Tv, and Tw is selected and output to the buffer Buf arranged in the memory. On the other hand, in step (10), the temperature estimation calculation is stopped, the actual temperature data Ts is output as it is to the aforementioned buffer Buf, and the filter variables used in steps (4) to (7) are initialized. In step {circle around (9)}, the change per hour is limited so that the maximum temperature is not changed rapidly.
[0024]
FIG. 4 is a circuit diagram showing a method for correcting the time response of the temperature sensor output. Up to this point, the position where the temperature sensor is installed is the most superheated part of the U-phase winding. However, if it cannot be installed on the most superheated part due to work, attach it to another position and correct it as shown in equation (9). Tu may be converted. When the response of the temperature sensor is slower than the time constant of the motor temperature, the actual temperature is corrected by the tracking loop shown in FIG. As an example, in FIG. 4, the response of the temperature sensor is a first-order lag.
Tu = f (temperature sensor detection value), f (): temperature sensor correction function Equation (9)
[0025]
Therefore, although the motor temperature sensor is attached to the U phase in the above embodiment, it is clear that the function can be provided by the same calculation even if it is attached to either the V phase or the W phase.
[0026]
【The invention's effect】
According to the present invention, it is not necessary to attach one temperature sensor to each of the three winding phases of the motor, and the operation can be facilitated because one temperature sensor can be provided. Also, even if the temperature sensor does not necessarily have a fast response speed, the desired motor temperature data can be obtained with high accuracy. Therefore, the temperature sensor should be installed at a position where it can be easily installed, and not the most superheated part. Therefore, workability in motor manufacturing is high.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a drive control system for an electric vehicle equipped with a synchronous motor control device of the present invention.
FIG. 2 is a temperature model of a motor winding.
FIG. 3 is a process flow diagram of the motor temperature estimation device of FIG. 1;
FIG. 4 is a circuit diagram showing a time response correction method for temperature sensor output.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Synchronous motor, 2 ... Power converter, 4 ... Motor temperature sensor, 5 ... Smoothing capacitor, 7 ... Battery, 8 ... Electric motor control apparatus, 9 ... AC current sensor, 10 ... Motor temperature protection apparatus, 11 ... Motor temperature estimation apparatus

Claims (4)

同期電動機の3相交流電流の2相以上の交流電流を検出する電流センサと、前記同期電動機の温度を検出する温度センサと、前記同期電動機の温度上昇を抑制する温度保護装置とを備えた同期電動機において、前記温度センサは前記3相の交流電流を供給する巻線のうちの1つの巻線の温度を検出する位置に設けられ、前記温度センサによって検出された温度と前記電流センサによって検出された電流値との関係に基づいて前記温度センサを付設していない他の巻線の温度を該他の巻線の前記電流センサによって検出された電流値から算出する温度推定装置を有し、前記温度保護装置は前記予測された温度に基づいて前記同期電動機へのトルク指令を算出して出力することにより前記温度上昇を抑制するものであることを特徴とする同期電動機。A synchronization comprising: a current sensor that detects an AC current of two or more phases of a three-phase AC current of a synchronous motor; a temperature sensor that detects a temperature of the synchronous motor; and a temperature protection device that suppresses a temperature rise of the synchronous motor. In the electric motor, the temperature sensor is provided at a position for detecting the temperature of one of the windings for supplying the three-phase alternating current, and is detected by the temperature detected by the temperature sensor and the current sensor. A temperature estimation device for calculating a temperature of another winding not provided with the temperature sensor based on a relationship with a current value from a current value detected by the current sensor of the other winding , The temperature protection device suppresses the temperature rise by calculating and outputting a torque command to the synchronous motor based on the predicted temperature. . 請求項1において、前記温度センサの付設位置が前記巻線の最過熱部であることを特徴とする同期電動機。In claim 1, the synchronous motor, wherein the attached position of the temperature sensor is the most overheated portion of the winding. バッテリから電力変換器を通して電力の供給受ける同期電動機を備えた電気車において、前記同期電動機は請求項1又は2から成ることを特徴とする電気車。  An electric vehicle comprising a synchronous motor that receives supply of electric power from a battery through a power converter, wherein the synchronous motor is composed of claim 1 or 2. 同期電動機の3相交流電流の2相以上の交流電流を検出すると共に、前記同期電動機の3相交流電流を供給する巻線の温度を検出し、該検出された温度に基づいて前記同期電動機の温度上昇を抑制する同期電動機の制御方法において、前記検出する温度は前記3相の交流電流を供給する巻線のうちの1つの巻線の温度を検出するものであり、前記検出された温度と電流値との関係に基づいて他の巻線の温度を該他の巻線で検出された電流値から算出し、該予測された温度に基づいて前記同期電動機の温度上昇を抑制することを特徴とする同期電動機の制御方法。  An AC current of two or more phases of the three-phase AC current of the synchronous motor is detected, a temperature of a winding that supplies the three-phase AC current of the synchronous motor is detected, and the synchronous motor is detected based on the detected temperature. In the synchronous motor control method for suppressing temperature rise, the detected temperature is a temperature of one of the windings supplying the three-phase alternating current, and the detected temperature and The temperature of the other winding is calculated from the current value detected by the other winding based on the relationship with the current value, and the temperature increase of the synchronous motor is suppressed based on the predicted temperature. A method for controlling the synchronous motor.
JP2000078755A 2000-03-21 2000-03-21 Synchronous motor, electric vehicle using the same, and control method thereof Expired - Lifetime JP3668666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000078755A JP3668666B2 (en) 2000-03-21 2000-03-21 Synchronous motor, electric vehicle using the same, and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000078755A JP3668666B2 (en) 2000-03-21 2000-03-21 Synchronous motor, electric vehicle using the same, and control method thereof

Publications (2)

Publication Number Publication Date
JP2001268989A JP2001268989A (en) 2001-09-28
JP3668666B2 true JP3668666B2 (en) 2005-07-06

Family

ID=18596123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000078755A Expired - Lifetime JP3668666B2 (en) 2000-03-21 2000-03-21 Synchronous motor, electric vehicle using the same, and control method thereof

Country Status (1)

Country Link
JP (1) JP3668666B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899489B2 (en) * 2002-02-28 2007-03-28 株式会社日立製作所 Electric disc brake device
US7911167B2 (en) 2003-09-16 2011-03-22 Aisin Aw Co., Ltd. Control device for a vehicle motor
JP5250965B2 (en) * 2006-11-20 2013-07-31 トヨタ自動車株式会社 Vehicle control apparatus, vehicle control method, program for causing computer to execute the control method, and computer-readable recording medium recording the program
JP2009136061A (en) * 2007-11-29 2009-06-18 Mitsuba Corp Control device of switched reluctance motor
JP5607698B2 (en) * 2012-10-18 2014-10-15 ファナック株式会社 Temperature estimation device for estimating the temperature of an electric motor
JP5900434B2 (en) * 2013-08-09 2016-04-06 トヨタ自動車株式会社 Rotating electrical machine temperature estimation system for vehicles
EP3110000B1 (en) 2014-02-17 2020-03-25 Mitsubishi Electric Corporation Control device
JP6361541B2 (en) * 2015-03-20 2018-07-25 株式会社デンソー Control device for rotating electrical machine
JP6361540B2 (en) * 2015-03-20 2018-07-25 株式会社デンソー Control device for rotating electrical machine
KR101856431B1 (en) * 2015-03-30 2018-05-09 미쓰비시덴키 가부시키가이샤 Protective Devices and Servo Motors
JP6500566B2 (en) * 2015-04-01 2019-04-17 アイシン精機株式会社 Control system for vehicle drive motor
JP6080894B2 (en) * 2015-05-14 2017-02-15 Ntn株式会社 Electric motor device and electric linear actuator
JP6629017B2 (en) * 2015-09-14 2020-01-15 Ntn株式会社 Electric motor device and electric linear actuator
JP6929191B2 (en) * 2017-10-19 2021-09-01 日産自動車株式会社 Winding temperature estimation system and winding temperature estimation method
DE102020213932A1 (en) * 2020-11-05 2022-05-05 Robert Bosch Gesellschaft mit beschränkter Haftung Method and device for operating an electrical system
CN112697195A (en) * 2020-11-12 2021-04-23 珠海一多智能科技有限公司 High-voltage bushing load air pressure temperature on-line monitoring and diagnosis method
MX2022001398A (en) * 2021-05-17 2023-01-24 Nissan Motor Method for controlling motor and device for controlling motor.

Also Published As

Publication number Publication date
JP2001268989A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
JP3668666B2 (en) Synchronous motor, electric vehicle using the same, and control method thereof
US9091600B2 (en) Temperature estimation apparatus for estimating temperature of motor
JP4572907B2 (en) Motor control device, control method, and control program
JP3399156B2 (en) Control device for brushless DC motor
KR101664643B1 (en) Motor drive device
JP3963175B2 (en) Temperature detection apparatus and temperature detection program
EP3537601B1 (en) Motor control method
BR112013021505B1 (en) METHOD AND SYSTEM FOR CONTROLLING AN ELECTRIC MOTOR
JP5877860B2 (en) Temperature detector for motor mover and overheat protection device for motor
JP5858058B2 (en) Motor control device
JP2005218215A (en) Driving method and temperature-estimating method of pm motor
JP2010124610A (en) Method of controlling pm motor
WO2021106430A1 (en) Processing device, and determination method for winding temperature calculation model
JP2020010432A (en) Processing device
JP2010200515A (en) Device for estimating magnet temperature of motor
JP5193012B2 (en) Motor temperature estimation device
JP2011188568A (en) Inverter controller
JP4924066B2 (en) Motor control device and motor control method
JPH0759399A (en) Method for correcting secondary resistance of induction motor
JP7385628B2 (en) Electric motor control device
JP2011125161A (en) Electric motor drive controller
JP2021158868A (en) Estimation device of temperature of rotor magnet in permanent magnet synchronous motor
JP2007151290A (en) Torque control apparatus for induction motor
CN116897507A (en) Motor control method and motor control device
JP2020167779A (en) Rotor temperature estimator for induction motor and rotor temperature estimation system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Ref document number: 3668666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

EXPY Cancellation because of completion of term