JP2010124610A - Method of controlling pm motor - Google Patents

Method of controlling pm motor Download PDF

Info

Publication number
JP2010124610A
JP2010124610A JP2008296221A JP2008296221A JP2010124610A JP 2010124610 A JP2010124610 A JP 2010124610A JP 2008296221 A JP2008296221 A JP 2008296221A JP 2008296221 A JP2008296221 A JP 2008296221A JP 2010124610 A JP2010124610 A JP 2010124610A
Authority
JP
Japan
Prior art keywords
temperature
induced voltage
constant
rotational speed
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008296221A
Other languages
Japanese (ja)
Inventor
Keita Fukunaga
慶太 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2008296221A priority Critical patent/JP2010124610A/en
Publication of JP2010124610A publication Critical patent/JP2010124610A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the error in the estimation of a rotor temperature in the control of a PM motor and to alleviate a data processing burden of a computer. <P>SOLUTION: In the method of controlling the PM motor 12, the rotation speed, induced voltage and stator temperature of the PM motor 12 are measured, and the rotor temperature of the PM motor 12 is estimated with an arithmetic comparing unit 5 from the induced voltage, rotation speed and stator temperature to limit the current command value output to the current controlling block of the PM motor 12 with a limiter 4 based on the estimated rotor temperature. The induced voltage, rotation speed and stator temperature are measured at a preliminary operation, and the constant of the rotor temperature is calculated from the measured value for storage in a storage unit. The induced voltage, rotation speed and stator temperature are measured during the operation, and the rotor temperature is estimated from the two data of them and the constant of the rotor temperature to limit the current command value based on the rotor temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、PMモータの制御方法に関するものである。   The present invention relates to a PM motor control method.

一般に、PMモータ(永久磁石式同期電動機)は、ステータの巻線に電流が流れることによって熱が発生し、その熱がロータの磁石に伝わることによって、ロータ(磁石)の温度も上昇することが知られている。このように、巻線や磁石の温度が上昇すると、巻線の焼損や磁石の減磁現象による磁束の減少等が発生する。   Generally, in a PM motor (permanent magnet type synchronous motor), heat is generated when a current flows through a winding of a stator, and the temperature of the rotor (magnet) rises when the heat is transmitted to the magnet of the rotor. Are known. As described above, when the temperature of the winding or the magnet rises, the winding is burned or the magnetic flux is reduced due to the demagnetization phenomenon of the magnet.

ここで、一般的なPMモータにおいて、PMモータのトルク特性例に基づいて説明する。図3は、ロータ(磁石)が高温時および常温時におけるPMモータの動特性(回転速度とトルクとの関係)の一例を示すグラフである。例えば、図3の実線イは、ロータ(磁石)の常温時の動特性を示し、図3の点線ロはロータの高温時の動特性を示す。図示するように、ロータ温度の高温時には減磁作用により動特性が変化(同一の回転数でもトルクが低下)する。   Here, a general PM motor will be described based on a torque characteristic example of the PM motor. FIG. 3 is a graph showing an example of dynamic characteristics (relationship between rotational speed and torque) of the PM motor when the rotor (magnet) is at a high temperature and at a normal temperature. For example, the solid line A in FIG. 3 shows the dynamic characteristics of the rotor (magnet) at normal temperature, and the dotted line B in FIG. 3 shows the dynamic characteristics of the rotor at high temperature. As shown in the figure, when the rotor temperature is high, the dynamic characteristics change due to the demagnetizing action (the torque decreases even at the same rotational speed).

このため、ステータ(巻線)およびロータ(磁石)の温度を監視することが必要になるが、近年のモータ制御技術においては、PMモータ小型化の観点からステータ(巻線)の温度のみを検出(例えば、サーミスタ等により検出)することが一般的である。しかしながら、実際のロータ温度を正確に把握することができないため、ステータ温度が低くてもロータ温度が高い場合があり、その結果、減磁作用により動特性が変化(トルクが低下)することとなる。また、動特性測定時のロータ温度が製品ごとに異なると、製品間の動特性はばらつくことになる。   For this reason, it is necessary to monitor the temperature of the stator (winding) and rotor (magnet), but in recent motor control technology, only the temperature of the stator (winding) is detected from the viewpoint of miniaturization of the PM motor. (For example, detection is performed by a thermistor or the like). However, since the actual rotor temperature cannot be accurately grasped, the rotor temperature may be high even if the stator temperature is low, and as a result, the dynamic characteristics change (torque decreases) due to the demagnetization action. . Further, if the rotor temperature at the time of measuring the dynamic characteristics varies from product to product, the dynamic characteristics between products vary.

上記の問題を解消するため、温度センサを用いずにロータの温度を推定する方法がいくつか提案されている(例えば、特許文献1,2等)。   In order to solve the above problems, several methods for estimating the temperature of the rotor without using a temperature sensor have been proposed (for example, Patent Documents 1 and 2).

特許文献1においては、モータの誘起電圧、モータ回転数及び永久磁石の磁束密度の関係から、特性式によって磁石温度を推定することが提案されている。又、特許文献2においては、モータの誘起電圧、モータ回転数及び磁石温度係数の関係を予め実験等で求めてマップとして備え、ロータ温度や磁石温度を推定することが提案されている。
特開2007−6613号公報(請求項2,請求項6,[0036]) 特開2007−104855号公報(段落[0051]〜[0053],第3図,第4図)
In Patent Document 1, it is proposed to estimate the magnet temperature by a characteristic equation from the relationship between the induced voltage of the motor, the motor rotation speed, and the magnetic flux density of the permanent magnet. Japanese Patent Application Laid-Open No. 2004-228561 proposes that the relationship between the induced voltage of the motor, the motor rotation speed, and the magnet temperature coefficient is obtained in advance by experiments and provided as a map to estimate the rotor temperature and the magnet temperature.
JP 2007-6613 (Claim 2, Claim 6, [0036]) JP 2007-104855 A (paragraphs [0051] to [0053], FIGS. 3 and 4)

しかしながら、特許文献1の場合、特性式において、誘起電圧、モータ回転数及び永久磁石の磁束密度から磁石温度を推定しているが、磁束密度にはカタログ値の温度係数を用いているため、実機の温度変化に対する磁束密度変化との間に誤差が含まれ、正確な温度推定が困難であった。   However, in the case of Patent Document 1, the magnet temperature is estimated from the induced voltage, the motor rotational speed, and the magnetic flux density of the permanent magnet in the characteristic formula. However, since the temperature coefficient of the catalog value is used for the magnetic flux density, An error is included in the magnetic flux density change with respect to the temperature change, and accurate temperature estimation is difficult.

また、特許文献2においては、予備運転(試運転)により誘起電圧、モータ回転数及び磁石温度係数を求めているので、特許文献1に比べて正確な温度推定ができる。しかしながら、誘起電圧、モータ回転数および磁石温度係数の3つのパラメータが存在するデータをマップ化しているので、モータ制御を行うためのコンピュータ(CPU等の演算比較できるもの)によるデータ処理負担が大きくなり、高速処理には不向きであるとともに、高速処理のためには高価なコンピュータを使用する必要があり、使い勝手の良いものではなかった。   In Patent Document 2, since the induced voltage, motor rotation speed, and magnet temperature coefficient are obtained by preliminary operation (trial operation), accurate temperature estimation can be performed as compared with Patent Document 1. However, since data having three parameters, that is, induced voltage, motor rotation speed, and magnet temperature coefficient, is mapped, the data processing burden on a computer (a CPU or the like that can compare operations) for motor control increases. In addition to being unsuitable for high-speed processing, it is necessary to use an expensive computer for high-speed processing, which is not easy to use.

以上示したようなことから、PMモータの制御においては、ロータ温度推定の誤差を抑制するとともに、CPUのデータ処理負担を軽減させることが要求される。   As described above, in controlling the PM motor, it is required to suppress the error in estimating the rotor temperature and reduce the data processing burden on the CPU.

この発明の請求項1に係るPMモータの制御方法は、インバータ部から出力される三相交流電流によりPMモータを駆動して、前記PMモータの誘起電圧,回転速度,ステータ温度をそれぞれ電圧センサ,磁極位置センサ,温度センサにより測定するとともに、前記誘起電圧,回転速度,ステータ温度からPMモータのロータ温度を演算比較部において推定し、その推定されたロータ温度に基づいてPMモータの電流制御ブロックに出力される電流指令値をリミッタにおいて制限するPMモータの制御方法であって、予備運転時に、前記誘起電圧,回転速度,ステータ温度の測定を行い、その測定された値から、演算比較部において、誘起電圧差およびステータ温度差によって定まる定数αを下記特性式(1)により算出して記憶部に記憶するとともに、測定値からステータ温度をパラメータにした誘起電圧‐回転速度特性のテーブルシートを作成して記憶部に記憶し、前記演算比較部においてロータ温度の閾値を設定し、運転時において、誘起電圧,回転速度,ステータ温度の測定を行うとともに、誘起電圧またはステータ温度のどちらか一方が測定できなかった場合は前記テーブルシートにより測定できなかった値を求め、前記誘起電圧,ステータ温度,記憶部に記憶された定数αから、ロータ温度を下記特性式(2)により算出し、運転時のロータ温度が前記閾値よりも高い場合には、演算比較部からリミッタに温度補償指令を出力し、リミッタにおいて電流指令値に制限を掛けることを特徴とする。   According to a first aspect of the present invention, there is provided a PM motor control method in which a PM motor is driven by a three-phase alternating current output from an inverter unit, and an induced voltage, a rotational speed, and a stator temperature of the PM motor are respectively measured by voltage sensors, A magnetic pole position sensor and a temperature sensor are used to measure the PM motor rotor temperature from the induced voltage, rotational speed, and stator temperature, and the PM motor current control block is estimated based on the estimated rotor temperature. A control method for a PM motor that limits an output current command value in a limiter, and measures the induced voltage, rotation speed, and stator temperature during preliminary operation, and from the measured values, A constant α determined by the induced voltage difference and the stator temperature difference is calculated by the following characteristic equation (1) and stored in the storage unit. In addition, a table sheet of induced voltage-rotational speed characteristics using the stator temperature as a parameter from the measured value is created and stored in the storage unit, and a threshold value of the rotor temperature is set in the calculation comparison unit. Rotation speed and stator temperature are measured, and if either the induced voltage or the stator temperature cannot be measured, a value that cannot be measured by the table sheet is obtained and stored in the induced voltage, the stator temperature, and the storage unit From the calculated constant α, the rotor temperature is calculated by the following characteristic equation (2). When the rotor temperature during operation is higher than the threshold, a temperature compensation command is output from the calculation comparison unit to the limiter, and the current is output from the limiter. The command value is limited.

定数α=ステータ温度差/誘起電圧差・・・(1)
ステータ温度差;同一回転速度で測定したステータ温度Aとステータ温度Bとのステータ温度差
誘起電圧差;同一の回転速度で測定したステータ温度Aとステータ温度Bとにおける誘起電圧差
ロータ温度Tr=ステータ温度+誘起電圧×α・・・(2)
また、請求項2記載のPMモータの制御方法は、インバータ部から出力される三相交流電流によりPMモータを駆動して、前記PMモータの誘起電圧,回転速度,ステータ温度をそれぞれ電圧センサ,磁極位置センサ,温度センサにより測定するとともに、前記誘起電圧,回転速度,ステータ温度からPMモータのロータ温度を演算比較部において推定し、その推定されたロータ温度に基づいてPMモータの電流制御ブロックに出力される電流指令値をリミッタにおいて制限するPMモータの制御方法であって、予備運転時に、前記誘起電圧,回転速度,ステータ温度の測定を行い、その測定された値から演算比較部において、誘起電圧と回転速度によって定められロータ温度と対応した定数βを下記特性式(3)により算出して記憶部に記憶するとともに、測定値からステータ温度をパラメータにした誘起電圧‐回転速度特性のテーブルシートを作成して記憶部に記憶し、前記演算比較部においてロータ温度の閾値における定数βを設定し、運転時において、誘起電圧,回転速度,ステータ温度の測定を行うとともに、誘起電圧または回転速度のどちらか一方が測定できなかった場合は前記テーブルシートにより測定できなかった値を求め、前記誘起電圧,回転速度から下記特性式(3´)により定数γを算出し、予め予備運転時に記憶部に記憶された閾値における定数βと運転時における定数γとを比較し、定数γの方が小さい場合、演算比較部からリミッタに温度補償指令を出力し、リミッタにおいて電流指令値に制限を掛けることを特徴とする。
Constant α = stator temperature difference / induced voltage difference (1)
Stator temperature difference; stator temperature difference between stator temperature A and stator temperature B measured at the same rotational speed Induced voltage difference; induced voltage difference between stator temperature A and stator temperature B measured at the same rotational speed Rotor temperature Tr = stator Temperature + induced voltage x α (2)
According to a second aspect of the present invention, there is provided a PM motor control method in which a PM motor is driven by a three-phase alternating current output from an inverter unit, and an induced voltage, a rotational speed, and a stator temperature of the PM motor are respectively measured with a voltage sensor and a magnetic pole. The measurement is performed by a position sensor and a temperature sensor, and the rotor temperature of the PM motor is estimated by the calculation comparison unit from the induced voltage, the rotation speed, and the stator temperature, and output to the current control block of the PM motor based on the estimated rotor temperature. A control method for a PM motor that limits a current command value to be generated in a limiter, and measures the induced voltage, the rotational speed, and the stator temperature during preliminary operation. The constant β determined by the rotation speed and corresponding to the rotor temperature is calculated by the following characteristic equation (3) and stored in the storage unit. In addition, a table sheet of induced voltage-rotation speed characteristics using the stator temperature as a parameter from the measured value is created and stored in the storage unit, and a constant β at the rotor temperature threshold value is set in the calculation comparison unit. In addition to measuring the induced voltage, rotation speed, and stator temperature, if either the induced voltage or the rotation speed could not be measured, obtain a value that could not be measured by the table sheet, from the induced voltage, the rotation speed. The constant γ is calculated by the following characteristic equation (3 ′), the constant β at the threshold stored in the storage unit in advance during preliminary operation is compared with the constant γ during operation, and if the constant γ is smaller, the operation comparison unit The temperature compensation command is output from the limiter to the limiter, and the current command value is limited by the limiter.

定数β=誘起電圧差/回転速度差・・・(3)
誘起電圧差;同一にステータ温度で測定した回転速度Aと回転速度Bとにおける誘起電圧差
回転速度差;同一のステータ温度で測定した回転速度Aと回転速度Bとの回転速度差
定数γ=誘起電圧/回転速度・・・(3´)
請求項3記載のPMモータの制御方法は、請求項2記載の発明において、前記(3)式および(3´)式で算出された定数βおよび定数γを、補正後電流指令値が適正な値となるように選定された基準となるステータ温度の定数βで除算して定数β´および定数γ´の値を算出し、運転時において前記(3´)式で算出された定数γにおける定数γ´と、閾値のロータ温度における定数β´の値と、の比較を行い、前記定数γ´のほうが小さい場合、リミッタにおいて下記特性式(4)により補正後電流指令値を算出して出力し、電流指令値の制限を行うことを特徴とする。
Constant β = induced voltage difference / rotational speed difference (3)
Induced voltage difference; difference in induced voltage between rotational speed A and rotational speed B measured at the same stator temperature Rotational speed difference; rotational speed difference between rotational speed A and rotational speed B measured at the same stator temperature Constant γ = induced Voltage / Rotation speed (3 ')
According to a third aspect of the present invention, there is provided a PM motor control method according to the second aspect of the invention, wherein the constant β and the constant γ calculated by the equations (3) and (3 ′) are corrected and the current command value after correction is appropriate. The value of the constant β ′ and the constant γ ′ is calculated by dividing by the constant β of the reference stator temperature selected so as to be a value, and the constant at the constant γ calculated by the equation (3 ′) during operation is calculated. γ ′ is compared with the value of constant β ′ at the threshold rotor temperature. If the constant γ ′ is smaller, the limiter calculates and outputs a corrected current command value by the following characteristic equation (4). The current command value is limited.

補正後電流指令値=電流指令値×γ´・・・(4)   Current command value after correction = current command value × γ ′ (4)

以上のように請求項1〜3記載の発明によれば、実機から測定したデータによりPMモータのロータ温度の推定を行っているため、製品間の動特性のばらつきを抑制することができるとともに、推定されるロータ温度の精度を向上させることが可能となる。また、上記のように、ロータ温度の推定を定数に基づいて行っているため、モータ制御を行うためのコンピュータによるデータ処理の負担が軽減され、安価なコンピュータによる高速処理も可能となる。   As described above, according to the first to third aspects of the invention, the rotor temperature of the PM motor is estimated based on the data measured from the actual machine, so that variation in dynamic characteristics between products can be suppressed, It is possible to improve the accuracy of the estimated rotor temperature. Further, as described above, since the rotor temperature is estimated based on a constant, the burden of data processing by a computer for performing motor control is reduced, and high-speed processing by an inexpensive computer is also possible.

また、請求項2記載の発明によれば、運転時において算出された定数γと、予備運転時に記憶された閾値の定数βと、を比較するのみであるため、モータ制御を行うためのコンピュータによるデータ処理の負担がさらに軽減され、安価なコンピュータであっても高速処理が可能となる。   According to the second aspect of the present invention, since the constant γ calculated during the operation is only compared with the threshold constant β stored during the preliminary operation, a computer for performing motor control is used. The burden of data processing is further reduced, and high-speed processing is possible even with an inexpensive computer.

また、請求項3記載の発明によれば、リミッタにおいて容易に補正後の電流指令値を算出することが可能となる。   According to the third aspect of the present invention, the corrected current command value can be easily calculated in the limiter.

〈実施形態1〉
以下、本実施形態1を図面とともに説明する。図1は本実施形態1によるPMモータ(永久磁石式同期電動機)の電流制御ブロック図を示す。Id*,Iq*は、電流制御ブロックに入力されるd軸電流の指令値,q軸電流の指令値であり、それぞれ減算部1,2に入力され、固定−回転電流座標変換部3からの出力であるd軸電流検出値Id^,q軸電流検出値Iq^がそれぞれ減算される。減算部1,2の出力信号(Id*−Id^),(Iq*−Iq^)は、リミッタ4において演算比較部5の出力である温度補償指令および速度演算部6の出力であるモータ回転速度に応じて制限が掛けられ、電流制御部7,8にそれぞれ出力される。(前記リミッタ4等の動作については後述する)。前記電流制御部7,8は、リミッタ4からの出力信号をPI演算し、d軸,q軸の電圧指令値として出力する。このd軸,q軸の電圧指令値は、回転‐固定電圧座標変換部9に入力され、回転座標系から固定座標系に座標変換されて2相/3相変換部10に出力される。次に、2相/3相変換部10において、固定座標系の電圧指令値がU相電圧指令Vu,V相電圧指令Vv,W相電圧指令Vwに変換され、インバータ部11を構成するスイッチング素子IGBTのゲート端子に出力される。インバータ部11は、3相電圧指令(U相電圧指令Vu,V相電圧指令Vv,W相電圧指令Vw)に基づいて制御され、PMモータ12に3相交流電流を出力することにより、PMモータ12を駆動制御する。
<Embodiment 1>
The first embodiment will be described below with reference to the drawings. FIG. 1 shows a current control block diagram of a PM motor (permanent magnet synchronous motor) according to the first embodiment. Id * and Iq * are a command value for the d-axis current and a command value for the q-axis current that are input to the current control block, and are input to the subtraction units 1 and 2 respectively. The output d-axis current detection value Id ^ and q-axis current detection value Iq ^ are subtracted, respectively. The output signals (Id * −Id ^) and (Iq * −Iq ^) of the subtracting units 1 and 2 are the temperature compensation command output from the operation comparing unit 5 and the motor rotation output from the speed calculating unit 6 in the limiter 4. Limitation is applied according to the speed, and the current is output to the current control units 7 and 8, respectively. (The operation of the limiter 4 and the like will be described later). The current control units 7 and 8 perform PI calculation on the output signal from the limiter 4 and output it as d-axis and q-axis voltage command values. The d-axis and q-axis voltage command values are input to the rotation-fixed voltage coordinate conversion unit 9, coordinate-converted from the rotation coordinate system to the fixed coordinate system, and output to the 2-phase / 3-phase conversion unit 10. Next, in the two-phase / three-phase converter 10, the voltage command value in the fixed coordinate system is converted into the U-phase voltage command Vu, the V-phase voltage command Vv, and the W-phase voltage command Vw, and the switching element constituting the inverter unit 11. It is output to the gate terminal of the IGBT. The inverter unit 11 is controlled based on a three-phase voltage command (U-phase voltage command Vu, V-phase voltage command Vv, W-phase voltage command Vw), and outputs a three-phase alternating current to the PM motor 12 to thereby generate a PM motor. 12 is driven and controlled.

PMモータ12を駆動する3相交流電流は、A/D変換部13においてA/D(アナログ信号からデジタル信号に)変換されて、デジタルの3相交流電流値Iu,Iv,Iwとして出力され、3相/2相変換部14において固定座標系の検出電流値に変換される。この固定座標系の検出電流値は、固定−回転電流座標変換部3に出力され、固定−回転電流座標変換部3において回転座標系のd軸電流検出値Id^及びq軸電流検出値Iq^に変換されてから、減算部1,2に入力される。   The three-phase alternating current that drives the PM motor 12 is A / D converted from an analog signal to a digital signal in the A / D converter 13 and output as digital three-phase alternating current values Iu, Iv, and Iw. The three-phase / two-phase conversion unit 14 converts the detected current value into a fixed coordinate system. The detected current value of the fixed coordinate system is output to the fixed-rotating current coordinate conversion unit 3, and the fixed-rotating current coordinate conversion unit 3 detects the d-axis current detection value Id ^ and the q-axis current detection value Iq ^ of the rotating coordinate system. Is then input to the subtracting units 1 and 2.

一方、PMモータ12の誘起電圧は、図示しない電圧センサにより検出されA/D変換部15によるA/D(アナログ信号からデジタル信号に)変換後に演算比較部5に入力されて、その演算比較部5から温度補償指令がリミッタ4に入力される。また、PMモータ12の位相θ(磁極位置)が磁極位置センサ(PS)16により検出され、この位相θを示す信号はA/D変換部17によりA/D(アナログ信号からデジタル信号に)変換された後、速度演算部6に出力される。その速度演算部6では、位相θを示すデジタル信号に基づいてPMモータ12の回転速度が演算され、前記リミッタ4に入力される。また、位相θを示すデジタル信号は、固定−回転電流座標変換部3及び回転−固定電圧座標変換部9にも入力され、誘起電圧との同期がとられる。   On the other hand, the induced voltage of the PM motor 12 is detected by a voltage sensor (not shown) and input to the operation comparison unit 5 after A / D conversion (from an analog signal to a digital signal) by the A / D conversion unit 15. 5, a temperature compensation command is input to the limiter 4. The phase θ (magnetic pole position) of the PM motor 12 is detected by a magnetic pole position sensor (PS) 16, and a signal indicating this phase θ is A / D converted from an analog signal to a digital signal by an A / D converter 17. Is output to the speed calculator 6. In the speed calculation unit 6, the rotational speed of the PM motor 12 is calculated based on the digital signal indicating the phase θ and input to the limiter 4. The digital signal indicating the phase θ is also input to the fixed-rotating current coordinate conversion unit 3 and the rotation-fixed voltage coordinate conversion unit 9, and is synchronized with the induced voltage.

以下、本実施形態1におけるPMモータ12のロータ温度の推定方法および電流制御方法について具体的に説明する。なお、手順[1]〜[6]は、予備運転時の手順を示し、手順[7]〜[9]は運転時の手順を示す。   Hereinafter, a method for estimating the rotor temperature of the PM motor 12 and a current control method in the first embodiment will be specifically described. Procedures [1] to [6] show the procedure during preliminary operation, and procedures [7] to [9] show the procedure during operation.

〔予備運転時〕
[1]まず、ある回転速度において温度センサ(例えば、サーミスタ;図示省略)によりステータ温度を測定し、そのステータ温度が常温時(例えば、25℃の時)に、磁極位置センサ16によりPMモータ12の回転速度を検出するとともに、インバータ部11のゲートをオフ制御し前記電圧センサによりPMモータ12の誘起電圧(ゲートオフ時の誘起電圧)を測定する。
[During preliminary operation]
[1] First, a stator temperature is measured by a temperature sensor (for example, thermistor; not shown) at a certain rotational speed, and the PM motor 12 is detected by the magnetic pole position sensor 16 when the stator temperature is normal temperature (for example, 25 ° C.). , And the gate of the inverter unit 11 is turned off, and the induced voltage of the PM motor 12 (induced voltage when the gate is turned off) is measured by the voltage sensor.

[2]手順[1]と同じ回転速度で一定時間(例えば、数時間)PMモータ12を駆動してステータ温度を上昇させ、各ステータ温度(例えば、80℃)における誘起電圧を測定する。   [2] The PM motor 12 is driven at the same rotational speed as in the procedure [1] for a certain time (for example, several hours) to increase the stator temperature, and the induced voltage at each stator temperature (for example, 80 ° C.) is measured.

[3]手順[1][2]で測定されたステータ温度,回転速度,誘起電圧は、記憶部(例えば、IC等で構成された記憶部;図示省略)に出力され、ステータ温度をパラメータにした「誘起電圧‐回転速度」特性のテーブルシートとして記憶される。   [3] The stator temperature, rotational speed, and induced voltage measured in steps [1] and [2] are output to a storage unit (for example, a storage unit configured by an IC or the like; not shown), and the stator temperature is used as a parameter. Is stored as a table sheet having the "induced voltage-rotation speed" characteristic.

すなわち、PMモータ12のロータの永久磁石磁束密度は、温度上昇とともに低下する。そのため、図2(誘起電圧‐回転速度特性の一例を示すグラフ)に示すように、ロータ温度が上昇すると、同一回転速度であっても誘起電圧は低下する。   That is, the permanent magnet magnetic flux density of the rotor of the PM motor 12 decreases as the temperature increases. Therefore, as shown in FIG. 2 (a graph showing an example of the induced voltage-rotational speed characteristic), when the rotor temperature increases, the induced voltage decreases even at the same rotational speed.

[4]手順[3]で記憶部に記憶された(手順[1]および手順[2]で測定された)誘起電圧とステータ温度が演算比較部5に出力され、ステータ温度差および誘起電圧差によって定まる定数αが下記(1)式により算出される。なお、下記(1)式のステータ温度差は、手順[1]で測定したステータ温度と手順[2]で測定した温度との差(℃)を示し、誘起電圧差は手順[1]で測定した誘起電圧と手順[2]で測定した誘起電圧との差[V]を示す。なお、定数αは前記演算比較部5から前記記憶部に出力して記憶させる。   [4] The induced voltage and the stator temperature stored in the storage unit in step [3] (measured in step [1] and step [2]) are output to the operation comparison unit 5, and the stator temperature difference and induced voltage difference are output. Is calculated by the following equation (1). In addition, the stator temperature difference of the following formula (1) indicates the difference (° C.) between the stator temperature measured in the procedure [1] and the temperature measured in the procedure [2], and the induced voltage difference is measured in the procedure [1]. The difference [V] between the induced voltage measured and the induced voltage measured in the procedure [2] is shown. The constant α is output from the calculation comparison unit 5 and stored in the storage unit.

定数α(℃/V)=ステータ温度差(℃)/誘起電圧差(V)・・・(1)
[5]PMモータ12の回転速度を変更して、手順[1]〜[]を繰り返して実行し、前記記憶部のテーブルシートを完成させる。
Constant α (° C./V)=Stator temperature difference (° C.) / Induced voltage difference (V) (1)
[5] The rotation speed of the PM motor 12 is changed, and the procedures [1] to [ 4 ] are repeatedly executed to complete the table sheet of the storage unit.

[6]演算比較部5にロータ温度Tr(℃)の閾値を設定する。   [6] A threshold value of the rotor temperature Tr (° C.) is set in the calculation comparison unit 5.

〔運転時〕
[7]インバータ11からPMモータ12に対する状態が無通電時(インバータ11のオフ時による空転時およびインバータ動作時の無通電時)に、ステータ温度,誘起電圧,回転速度が測定される。
[During operation]
[7] When the state from the inverter 11 to the PM motor 12 is not energized (when idling when the inverter 11 is off and when not energizing when the inverter is operating), the stator temperature, induced voltage, and rotational speed are measured.

[8]手順[7]で測定されたステータ温度,誘起電圧および予備運転時に記憶された定数αからロータ温度が下記(2)式により算出される。   [8] The rotor temperature is calculated by the following equation (2) from the stator temperature measured in step [7], the induced voltage, and the constant α stored during the preliminary operation.

なお、ステータ温度,誘起電圧のうち一方が判らない場合は、前記テーブルシートのデータから回転速度によりステータ温度あるいは誘起電圧を算出し、その値により下記(2)式の演算が行われる。   When one of the stator temperature and the induced voltage is not known, the stator temperature or the induced voltage is calculated from the data of the table sheet based on the rotation speed, and the following equation (2) is calculated based on the value.

ロータ温度Tr(℃)=ステータ温度Ts(℃)+誘起電圧(V)×α(℃/V)・・・(2)
[9]演算比較部5によって、手順[8]で推定されたロータ温度Tr(℃)と手順[6]で設定されたロータ温度の閾値との比較が行われる。その比較の結果、手順[8]で推定されたロータ温度Tr(℃)の方が高いと判定された場合は、演算比較部5からリミッタ4に温度補償指令が出力され、そのリミッタ4において減算部1,2から出力された信号((Id*−Id^)信号および(Iq*−Iq^)信号)に対して制限が掛けられる。前記のように制限が掛けられることにより、PMモータ12のステータ(巻線)に印加される電流値が減少(あるいは、停止)してステータ温度が低下し、それに伴いロータの温度Tr(℃)も低下する。なお、前記比較の結果、手順[8]で推定されたロータ温度の方が低いと判定された場合は、リミッタ4において制限は行われない。
Rotor temperature Tr (° C.) = Stator temperature Ts (° C.) + Induced voltage (V) × α (° C./V) (2)
[9] The operation comparison unit 5 compares the rotor temperature Tr (° C.) estimated in the procedure [8] with the rotor temperature threshold value set in the procedure [6]. As a result of the comparison, if it is determined that the rotor temperature Tr (° C.) estimated in step [8] is higher, a temperature compensation command is output from the operation comparison unit 5 to the limiter 4, and the limiter 4 performs subtraction. restriction is applied on the signal output from the parts 1,2 ((Id * -Id ^) signal and (Iq * -Iq ^) signal). By being restricted as described above, the current value applied to the stator (winding) of the PM motor 12 is reduced (or stopped), the stator temperature is lowered, and accordingly the rotor temperature Tr (° C.). Also decreases. As a result of the comparison, when it is determined that the rotor temperature estimated in the procedure [8] is lower, the limiter 4 does not limit.

本実施形態1においては、実機から測定したデータ(ステータ温度,回転速度,誘起電圧)からロータ温度Tr(℃)を推定しているため、製品間の動特性のばらつきを抑制することができるとともに、推定されるロータ温度Tr(℃)の精度を向上させることが可能となる。   In the first embodiment, since the rotor temperature Tr (° C.) is estimated from data (stator temperature, rotation speed, induced voltage) measured from the actual machine, it is possible to suppress variations in dynamic characteristics between products. The accuracy of the estimated rotor temperature Tr (° C.) can be improved.

また、上記のように、ロータ温度Tr(℃)の推定を定数αに基づいて行っているため、3つ(誘起電圧,ステータ温度,定数α)のデータを考慮したロータ温度の推定ではあるものの、モータ制御を行うためのコンピュータ(CPU等の演算比較できるもの)によるデータ処理負担が軽減され、安価なコンピュータによる高速処理も可能となる。   Further, as described above, since the estimation of the rotor temperature Tr (° C.) is performed based on the constant α, the rotor temperature is estimated in consideration of data of three (induced voltage, stator temperature, constant α). In addition, the data processing load by a computer (a CPU or the like that can compare operations) for motor control is reduced, and high-speed processing by an inexpensive computer is also possible.

さらに、ロータ温度Tr(℃)が閾値以上になると、リミッタ4においてd軸電流指令値及びq軸電流指令値に対して制限が実行されるため、ロータ温度Tr(℃)の上昇を抑えることができ、ロータ温度Tr(℃)の変化による動特性の変化分を抑制することが可能となる。   Further, when the rotor temperature Tr (° C.) is equal to or higher than the threshold value, the limiter 4 performs a restriction on the d-axis current command value and the q-axis current command value, so that an increase in the rotor temperature Tr (° C.) can be suppressed. It is possible to suppress the change in the dynamic characteristics due to the change in the rotor temperature Tr (° C.).

〈実施形態2〉
本実施形態2におけるPMモータ12の電流制御ブロックは図1と同様に構成され、その動作も基本的には同様である。
<Embodiment 2>
The current control block of the PM motor 12 in the second embodiment is configured in the same manner as in FIG. 1, and its operation is basically the same.

以下、本実施形態2におけるPMモータ12のロータ温度の推定方法および電流制御方法について具体的に説明する。なお、手順[1]〜手順[7]は予備運転時の手順を示し、手順[8]〜手順[11]は運転時における手順を示す。   Hereinafter, a method for estimating the rotor temperature and the current control method for the PM motor 12 according to the second embodiment will be specifically described. In addition, procedure [1]-procedure [7] show the procedure at the time of preliminary operation, and procedure [8]-procedure [11] show the procedure at the time of operation.

〔予備運転時〕
[1]まず、ある回転速度においてステータ温度を測定し、ステータ温度が常温時(例えば、25℃の時)に、磁極位置センサ16によりPMモータ12の回転速度を検出するとともに、インバータ部11のゲートをオフ制御し前記電圧センサによりPMモータ12の誘起電圧を測定する。
[During preliminary operation]
[1] First, the stator temperature is measured at a certain rotational speed, and when the stator temperature is normal temperature (for example, at 25 ° C.), the rotational speed of the PM motor 12 is detected by the magnetic pole position sensor 16 and the inverter unit 11 The gate is turned off and the induced voltage of the PM motor 12 is measured by the voltage sensor.

[2]手順[1]と同じ回転速度で一定時間(例えば、数時間)PMモータ12を駆動してステータ温度を上昇させ、各ステータ温度(例えば、80℃)における誘起電圧を測定する。   [2] The PM motor 12 is driven at the same rotational speed as in the procedure [1] for a certain time (for example, several hours) to increase the stator temperature, and the induced voltage at each stator temperature (for example, 80 ° C.) is measured.

[3]手順[1][2]で測定されたステータ温度,回転速度,誘起電圧は、記憶部に出力され、ステータ温度をパラメータにした「誘起電圧‐回転速度」特性のテーブルシートとして記憶される。   [3] The stator temperature, rotational speed, and induced voltage measured in the steps [1] and [2] are output to the storage unit and stored as a table sheet of “induced voltage-rotational speed” characteristics using the stator temperature as a parameter. The

[4]PMモータ12の回転速度を変更して、手順[1]〜[3]を繰り返し実行する。   [4] The rotation speed of the PM motor 12 is changed, and the procedures [1] to [3] are repeatedly executed.

[5]手順[3],[4]により記憶部に記憶されたテーブルシートのデータから、誘起電圧と回転速度によって定まる定数βを下記(3)式により算出する。この定数βは図2(各ステータ温度における誘起電圧と回転速度の特性図)における特性(例えば、特性ハ,ニ)の傾きβに相当する。なお、下記(3)式における誘起電圧差は同じステータ温度における回転速度Aと回転速度Bとにおける誘起電圧差を示し、回転速度差は同じステータ温度における回転速度Aと回転速度Bとの回転速度差を示す。   [5] A constant β determined by the induced voltage and the rotation speed is calculated from the data of the table sheet stored in the storage unit by the procedures [3] and [4] by the following equation (3). This constant β corresponds to the slope β of the characteristics (for example, characteristics C and D) in FIG. 2 (characteristic chart of induced voltage and rotational speed at each stator temperature). The induced voltage difference in the following equation (3) indicates the induced voltage difference between the rotational speed A and the rotational speed B at the same stator temperature, and the rotational speed difference is the rotational speed between the rotational speed A and the rotational speed B at the same stator temperature. Indicates the difference.

定数β=誘起電圧差[V]/回転速度差[rpm]・・・(3)
上記(3)式で算出された定数βはロータ温度Tr(℃)と対応しており、ロータ温度が低い場合定数βは大きな値となり、ロータ温度が高い場合定数βは小さな値となる。そのため、定数βの値からロータ温度を推定することが可能となる。
Constant β = induced voltage difference [V] / rotational speed difference [rpm] (3)
The constant β calculated by the above equation (3) corresponds to the rotor temperature Tr (° C.). When the rotor temperature is low, the constant β is a large value, and when the rotor temperature is high, the constant β is a small value. Therefore, the rotor temperature can be estimated from the value of the constant β.

[6]演算比較部5において、手順[5]で算出された定数βのうち、基準となるステータ温度(例えば、25℃)の定数βを定数β´=1に換算する。また、その他のステータ温度における定数βの値を前記基準となるステータ温度の定数βの値で除算し、各ステータ温度における定数β´の値を算出する。すなわち、基準となるステータ温度の定数βの値をβ´=1と設定し、その他の各ステータ温度における定数βの値を基準となるステータ温度の定数βに合わせて換算する(基準となるステータ温度については後述する)。なお、各ステータ温度における定数βの値,定数β´の値は記憶部に出力して記憶させる。   [6] The operation comparison unit 5 converts the constant β of the reference stator temperature (for example, 25 ° C.) out of the constant β calculated in the procedure [5] into a constant β ′ = 1. Further, the value of the constant β at other stator temperatures is divided by the value of the constant β of the reference stator temperature to calculate the value of the constant β ′ at each stator temperature. That is, the value of the constant β of the reference stator temperature is set to β ′ = 1, and the value of the constant β at each other stator temperature is converted according to the constant β of the reference stator temperature (the reference stator The temperature will be described later). Note that the value of the constant β and the value of the constant β ′ at each stator temperature are output and stored in the storage unit.

[7]演算比較部5において、ロータ温度の閾値を設定し、この閾値における定数β´の値を記憶部に出力して記憶させる。閾値における定数β´の算出方法は、演算比較部5において、前記閾値における定数βから基準となるステータ温度の定数βを除算する方法等が挙げられる。   [7] The operation comparison unit 5 sets a threshold value of the rotor temperature, and outputs the value of the constant β ′ at this threshold value to the storage unit for storage. Examples of a method for calculating the constant β ′ at the threshold include a method in which the operation comparison unit 5 divides the constant β at the reference stator temperature from the constant β at the threshold.

〔運転時〕
[8]インバータ11からPMモータ12に対する状態が無通電時(インバータ11のオフ時による空転時およびインバータ動作時の無通電時)に、ステータ温度および誘起電圧が測定される。
[During operation]
[8] The stator temperature and the induced voltage are measured when the state from the inverter 11 to the PM motor 12 is not energized (when idling when the inverter 11 is off and when deenergizing during inverter operation).

[9]演算比較部5において、手順[8]で測定した誘起電圧、回転速度から下記(3´)式により定数γを算出する。   [9] In the operation comparison unit 5, the constant γ is calculated by the following equation (3 ′) from the induced voltage and the rotational speed measured in the procedure [8].

定数γ=誘起電圧[V]/回転速度[rpm]・・・(3´)
なお、この定数γも定数βと同様に図2における特性の傾きに相当する。また、誘起電圧,回転速度のうち一方が判らない場合は、前記テーブルシートのデータからステータ温度により、誘起電圧または回転速度を算出し、その値により(3´)式の演算を行う。
Constant γ = induced voltage [V] / rotational speed [rpm] (3 ′)
The constant γ corresponds to the slope of the characteristic in FIG. When one of the induced voltage and the rotational speed is unknown, the induced voltage or the rotational speed is calculated from the data of the table sheet based on the stator temperature, and the calculation of equation (3 ′) is performed based on the calculated value.

[10]上記(3´)式により算出された定数γの値から定数γ´の値を算出する。定数γ´の算出方法は、上記(3´)式により算出された定数γを演算比較部5において基準となるステータ温度の定数βで除算して算出する方法等が挙げられる。   [10] The value of the constant γ ′ is calculated from the value of the constant γ calculated by the above equation (3 ′). Examples of a method for calculating the constant γ ′ include a method in which the constant γ calculated by the above equation (3 ′) is calculated by dividing the constant γ ′ by the constant β of the stator temperature serving as a reference in the calculation comparison unit 5.

[11]演算比較部5において、手順[10]で算出された定数γ´の値と[7]で設定された閾値における定数β´の値(例えば、定数β´=0.4)とが比較される。手順[10]で算出された定数γ´の値が閾値における定数β´の値(0.4)以下と判定された場合、リミッタ4に温度補償指令として手順[10]で算出された定数γ´の値を出力し、減算部1,2から出力された信号(d軸電流指令値(Id*−Id^),q軸電流指令値(Iq*−Iq^))に制限を掛けられる。 [11] In the operation comparison unit 5, the value of the constant γ ′ calculated in step [10] and the value of the constant β ′ in the threshold set in [7] (for example, the constant β ′ = 0.4) are obtained. To be compared. When it is determined that the value of the constant γ ′ calculated in the procedure [10] is equal to or less than the value (0.4) of the constant β ′ in the threshold, the constant γ calculated in the procedure [10] as a temperature compensation command to the limiter 4. The value of ′ is output, and the signals (d-axis current command value (Id * −Id ^), q-axis current command value (Iq * −Iq ^)) output from the subtracting units 1 and 2 are limited.

前記のリミッタ4においては、下記(4)(5)式に示すように、減算部1,2から出力された信号に対し、手順[10]で算出された定数γ´の値が乗算され、補正後d軸電流指令Idおよび補正後q軸電流指令Iqが算出される。   In the limiter 4, as shown in the following equations (4) and (5), the signals output from the subtracting units 1 and 2 are multiplied by the value of the constant γ ′ calculated in the procedure [10], A corrected d-axis current command Id and a corrected q-axis current command Iq are calculated.

Id=(Id*−Id^)×γ´・・・(4)
Iq=(Iq*−Iq^)×γ´・・・(5)
例えば、手順[10]で算出された定数γ´を0.4とすると、補正後d軸電流指令値Id,補正後q軸電流指令値Iqは下記(6),(7)式となる。
Id = (Id * −Id ^) × γ ′ (4)
Iq = (Iq * −Iq ^) × γ ′ (5)
For example, when the constant γ ′ calculated in the procedure [10] is 0.4, the corrected d-axis current command value Id and the corrected q-axis current command value Iq are expressed by the following equations (6) and (7).

Id=(Id*−Id^)×0.4・・・(6)
Iq=(Iq*−Iq^)×0.4・・・(7)
上記のように減算部1,2から出力される信号に制限が掛けられることによりPMモータ12のステータ(巻線)に印加される電流値が減少してステータ温度が低下し、それに伴いロータ温度Tr(℃)も低下する。
Id = (Id * −Id ^) × 0.4 (6)
Iq = (Iq * −Iq ^) × 0.4 (7)
As described above, the signals output from the subtracting units 1 and 2 are limited, so that the current value applied to the stator (winding) of the PM motor 12 is reduced and the stator temperature is lowered. Tr (° C.) also decreases.

上記特性式(4)(5)あるいは、(6)(7)において補正後(d軸,q軸)電流指令値が決定されるため、定数γ´を算出する際に用いられる基準となるステータ温度は適正な値を選択する必要がある。すなわち、基準となるステータ温度は、PMモータの巻線やロータ等により異なるため、補正後(d軸,q軸)電流指令値が適切な値となるように、手順[6]において基準となるステータ温度を適宜選択する。   Since the corrected (d-axis, q-axis) current command value is determined in the above characteristic formulas (4), (5), or (6), (7), the reference stator used when calculating the constant γ ′ It is necessary to select an appropriate value for the temperature. That is, since the reference stator temperature varies depending on the PM motor winding, rotor, and the like, the reference in step [6] is set so that the corrected (d-axis, q-axis) current command value becomes an appropriate value. The stator temperature is appropriately selected.

なお、手順[10]で算出された定数γ´の値が[7]で設定された閾値の定数β´(例えば、定数β´=0.4)以上と判定された場合はリミッタ4において制限は行われない。   When the value of the constant γ ′ calculated in the procedure [10] is determined to be equal to or larger than the threshold value β ′ (for example, the constant β ′ = 0.4) set in [7], the limiter 4 limits the value. Is not done.

本実施形態2においては、実機から得られたデータを用いているため、製品間の動特性のばらつきを抑制することができるとともに、推定されるロータ温度Tr(℃)の精度を向上させることが可能となる。   In the second embodiment, since data obtained from an actual machine is used, variation in dynamic characteristics between products can be suppressed, and accuracy of the estimated rotor temperature Tr (° C.) can be improved. It becomes possible.

また、運転時においては、演算比較部5において算出された定数γ´と、予めテーブルシートに記憶された閾値の定数β´と、を比較するのみであるため、モータ制御を行うためのコンピュータ(CPU等の演算比較できるもの)によるデータ処理の負担が軽減され、安価なコンピュータであっても高速処理が可能となる。さらに、電流指令値から補正後の電流指令値を算出する場合、その電流指令値に定数γ´を乗算するのみであるため、容易に補正後の電流指令値を算出することが可能となる。   Further, during operation, only the constant γ ′ calculated by the operation comparison unit 5 is compared with the threshold constant β ′ stored in advance in the table sheet. The burden of data processing due to operations such as CPUs can be reduced, and high-speed processing is possible even with an inexpensive computer. Furthermore, when the corrected current command value is calculated from the current command value, the current command value is simply multiplied by a constant γ ′, so that the corrected current command value can be easily calculated.

また、定数γ´の値が閾値以下になると、リミッタ4においてd軸電流及びq軸電流を制限しており、ロータ温度の上昇を抑制することができ、温度による動特性の変化分を抑制することができる。   Further, when the value of the constant γ ′ becomes equal to or smaller than the threshold value, the limiter 4 limits the d-axis current and the q-axis current, and can suppress the increase in the rotor temperature and suppress the change in the dynamic characteristics due to the temperature. be able to.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、実施形態1,2では特定の構成の電流制御ブロックについて説明したが、その他の構成の電流制御ブロックでも適宜適用可能である。   For example, in the first and second embodiments, the current control block having a specific configuration has been described. However, the current control block having other configurations can be appropriately applied.

この発明の実施形態1及び実施形態2によるPMモータの電流制御ブロック図である。It is a current control block diagram of PM motor by Embodiment 1 and Embodiment 2 of this invention. この発明の実施形態1及び実施形態2によるPMモータの回転速度と誘起電圧との関係を示す特性図である。It is a characteristic view which shows the relationship between the rotational speed and induced voltage of PM motor by Embodiment 1 and Embodiment 2 of this invention. 一般的なPMモータの回転速度とトルクとの関係を示す特性図である。It is a characteristic view which shows the relationship between the rotational speed and torque of a general PM motor.

符号の説明Explanation of symbols

3…固定−回転電流座標変換部
4…リミッタ
5…演算比較部
6…速度演算部
7,8…電流制御部
9…回転−固定電圧座標変換部
10…2相/3相変換部
11…インバータ部
12…PMモータ
13,15,17…A/D変換部
14…3相/2相変換部
16…磁極位置センサ
DESCRIPTION OF SYMBOLS 3 ... Fixed-rotation current coordinate conversion part 4 ... Limiter 5 ... Calculation comparison part 6 ... Speed calculation part 7, 8 ... Current control part 9 ... Rotation-fixed voltage coordinate conversion part 10 ... Two-phase / 3-phase conversion part 11 ... Inverter Part 12: PM motor 13, 15, 17 ... A / D converter 14 ... Three-phase / 2-phase converter 16 ... Magnetic pole position sensor

Claims (3)

インバータ部から出力される三相交流電流によりPMモータを駆動して、前記PMモータの誘起電圧,回転速度,ステータ温度をそれぞれ電圧センサ,磁極位置センサ,温度センサにより測定するとともに、前記誘起電圧,回転速度,ステータ温度からPMモータのロータ温度を演算比較部において推定し、その推定されたロータ温度に基づいてPMモータの電流制御ブロックに出力される電流指令値をリミッタにおいて制限するPMモータの制御方法であって、
予備運転時に、前記誘起電圧,回転速度,ステータ温度の測定を行い、その測定された値から、演算比較部において、誘起電圧差およびステータ温度差によって定まる定数αを下記特性式(1)により算出して記憶部に記憶するとともに、測定値からステータ温度をパラメータにした誘起電圧‐回転速度特性のテーブルシートを作成して記憶部に記憶し、前記演算比較部においてロータ温度の閾値を設定し、
運転時において、誘起電圧,回転速度,ステータ温度の測定を行うとともに、誘起電圧またはステータ温度のどちらか一方が測定できなかった場合は前記テーブルシートにより測定できなかった値を求め、前記誘起電圧,ステータ温度,記憶部に記憶された定数αから、ロータ温度を下記特性式(2)により算出し、運転時のロータ温度が前記閾値よりも高い場合には、演算比較部からリミッタに温度補償指令を出力し、リミッタにおいて電流指令値に制限を掛けることを特徴とするPMモータの制御方法。
定数α=ステータ温度差/誘起電圧差・・・(1)
ステータ温度差;同一回転速度で測定したステータ温度Aとステータ温度Bとのステータ温度差
誘起電圧差;同一の回転速度で測定したステータ温度Aとステータ温度Bとにおける誘起電圧差
ロータ温度Tr=ステータ温度+誘起電圧×α・・・(2)
The PM motor is driven by the three-phase alternating current output from the inverter unit, and the induced voltage, rotational speed, and stator temperature of the PM motor are measured by a voltage sensor, a magnetic pole position sensor, and a temperature sensor, respectively, and the induced voltage, Control of the PM motor that estimates the rotor temperature of the PM motor from the rotation speed and the stator temperature in the calculation comparison unit, and limits the current command value output to the current control block of the PM motor based on the estimated rotor temperature in the limiter. A method,
During the preliminary operation, the induced voltage, the rotational speed, and the stator temperature are measured, and a constant α determined by the induced voltage difference and the stator temperature difference is calculated from the measured values by the following characteristic equation (1). And storing it in the storage unit, creating a table sheet of induced voltage-rotation speed characteristics using the stator temperature as a parameter from the measured value and storing it in the storage unit, and setting the threshold value of the rotor temperature in the calculation comparison unit,
During operation, the induced voltage, the rotational speed, and the stator temperature are measured, and when either the induced voltage or the stator temperature cannot be measured, a value that cannot be measured by the table sheet is obtained, and the induced voltage, The rotor temperature is calculated from the stator temperature and the constant α stored in the storage unit by the following characteristic equation (2). When the rotor temperature during operation is higher than the threshold value, the operation comparison unit sends a temperature compensation command to the limiter. And a limiter to limit the current command value in the limiter.
Constant α = stator temperature difference / induced voltage difference (1)
Stator temperature difference; stator temperature difference between stator temperature A and stator temperature B measured at the same rotational speed Induced voltage difference; induced voltage difference between stator temperature A and stator temperature B measured at the same rotational speed Rotor temperature Tr = stator Temperature + induced voltage x α (2)
インバータ部から出力される三相交流電流によりPMモータを駆動して、前記PMモータの誘起電圧,回転速度,ステータ温度をそれぞれ電圧センサ,磁極位置センサ,温度センサにより測定するとともに、前記誘起電圧,回転速度,ステータ温度からPMモータのロータ温度を演算比較部において推定し、その推定されたロータ温度に基づいてPMモータの電流制御ブロックに出力される電流指令値をリミッタにおいて制限するPMモータの制御方法であって、
予備運転時に、前記誘起電圧,回転速度,ステータ温度の測定を行い、その測定された値から演算比較部において、誘起電圧と回転速度によって定められロータ温度と対応した定数βを下記特性式(3)により算出して記憶部に記憶するとともに、測定値からステータ温度をパラメータにした誘起電圧‐回転速度特性のテーブルシートを作成して記憶部に記憶し、前記演算比較部においてロータ温度の閾値における定数βを設定し、
運転時において、誘起電圧,回転速度,ステータ温度の測定を行うとともに、誘起電圧または回転速度のどちらか一方が測定できなかった場合は前記テーブルシートにより測定できなかった値を求め、前記誘起電圧,回転速度から下記特性式(3´)により定数γを算出し、予め予備運転時に記憶部に記憶された閾値における定数βと運転時における定数γとを比較し、定数γの方が小さい場合、演算比較部からリミッタに温度補償指令を出力し、リミッタにおいて電流指令値に制限を掛けることを特徴とするPMモータの制御方法。
定数β=誘起電圧差/回転速度差・・・(3)
誘起電圧差;同一にステータ温度で測定した回転速度Aと回転速度Bとにおける誘起電圧差
回転速度差;同一のステータ温度で測定した回転速度Aと回転速度Bとの回転速度差
定数γ=誘起電圧/回転速度・・・(3´)
The PM motor is driven by the three-phase alternating current output from the inverter unit, and the induced voltage, rotational speed, and stator temperature of the PM motor are measured by a voltage sensor, a magnetic pole position sensor, and a temperature sensor, respectively, and the induced voltage, Control of the PM motor that estimates the rotor temperature of the PM motor from the rotation speed and the stator temperature in the calculation comparison unit, and limits the current command value output to the current control block of the PM motor based on the estimated rotor temperature in the limiter. A method,
During the preliminary operation, the induced voltage, the rotational speed, and the stator temperature are measured, and a constant β corresponding to the rotor temperature, which is determined by the induced voltage and the rotational speed, is determined from the measured values in the calculation comparison unit by the following characteristic formula (3 ) And is stored in the storage unit, and a table sheet of induced voltage-rotational speed characteristics with the stator temperature as a parameter is created from the measured value and stored in the storage unit. Set constant β
During operation, the induced voltage, the rotational speed, and the stator temperature are measured, and when either the induced voltage or the rotational speed cannot be measured, a value that cannot be measured by the table sheet is obtained, and the induced voltage, When the constant γ is calculated from the rotational speed by the following characteristic formula (3 ′), the constant β in the threshold value stored in the storage unit in advance during the preliminary operation is compared with the constant γ during the operation, and the constant γ is smaller, A control method for a PM motor, characterized in that a temperature compensation command is output from a calculation comparison unit to a limiter, and the current command value is limited by the limiter.
Constant β = induced voltage difference / rotational speed difference (3)
Induced voltage difference; difference in induced voltage between rotational speed A and rotational speed B measured at the same stator temperature Rotational speed difference; rotational speed difference between rotational speed A and rotational speed B measured at the same stator temperature Constant γ = induced Voltage / Rotation speed (3 ')
前記演算比較部において、
前記(3)式および(3´)式で算出された定数βおよび定数γを、補正後電流指令値が適正な値となるように選定された基準となるステータ温度の定数βで除算して定数β´および定数γ´の値を算出し、
運転時において前記(3´)式で算出された定数γにおける定数γ´と、閾値のロータ温度における定数β´の値と、の比較を行い、前記定数γ´のほうが小さい場合、リミッタにおいて下記特性式(4)により補正後電流指令値を算出して出力し、電流指令値の制限を行うことを特徴とする請求項2記載のPMモータの制御方法。
補正後電流指令値=電流指令値×γ´・・・(4)
In the operation comparison unit,
The constant β and the constant γ calculated by the equations (3) and (3 ′) are divided by a reference stator temperature constant β selected so that the corrected current command value becomes an appropriate value. Calculate the values of constant β ′ and constant γ ′,
In operation, the constant γ ′ in the constant γ calculated by the equation (3 ′) is compared with the value of the constant β ′ at the threshold rotor temperature. When the constant γ ′ is smaller, the limiter The PM motor control method according to claim 2, wherein the corrected current command value is calculated and output by the characteristic formula (4) to limit the current command value.
Current command value after correction = current command value × γ ′ (4)
JP2008296221A 2008-11-20 2008-11-20 Method of controlling pm motor Pending JP2010124610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008296221A JP2010124610A (en) 2008-11-20 2008-11-20 Method of controlling pm motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008296221A JP2010124610A (en) 2008-11-20 2008-11-20 Method of controlling pm motor

Publications (1)

Publication Number Publication Date
JP2010124610A true JP2010124610A (en) 2010-06-03

Family

ID=42325443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008296221A Pending JP2010124610A (en) 2008-11-20 2008-11-20 Method of controlling pm motor

Country Status (1)

Country Link
JP (1) JP2010124610A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2280473A1 (en) 2009-07-29 2011-02-02 TDK Corporation Switching power supply
JP2011143850A (en) * 2010-01-15 2011-07-28 Honda Motor Co Ltd Driving device for vehicles
CN102638150A (en) * 2011-02-14 2012-08-15 精工爱普生株式会社 Electromechanical device, movable body, robot, method of measuring temperature of electromechanical device
JP2013036937A (en) * 2011-08-10 2013-02-21 Nittetsu Elex Co Ltd Characteristic determination method for motor using permanent magnet for rotor
WO2013108877A1 (en) * 2012-01-20 2013-07-25 三菱電機株式会社 Control device and control method for permanent magnet electric motor
FR2986921A1 (en) * 2012-02-10 2013-08-16 Renault Sa SYSTEM AND METHOD FOR CONTROLLING THE POWER SUPPLY OF AN ELECTRIC MACHINE IN ACCORDANCE WITH THE TEMPERATURE.
JP2014057385A (en) * 2012-09-11 2014-03-27 Toyota Motor Corp Controller of dynamo-electric machine and dynamo-electric machine drive system including the same
FR3083039A1 (en) * 2018-06-21 2019-12-27 Renault S.A.S DEVICE FOR MONITORING A SYNCHRONOUS ELECTRIC MACHINE WITH PERMANENT MAGNETS FOR TRACTION OF A MOTOR VEHICLE
CN112865665A (en) * 2021-01-26 2021-05-28 大陆汽车电子(长春)有限公司 Electronic control unit and computer program product for driving an electric machine in a sensorless manner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010677A (en) * 2000-06-21 2002-01-11 Hitachi Ltd Motor-control unit
JP2005012914A (en) * 2003-06-19 2005-01-13 Koyo Seiko Co Ltd Driver for motor
JP2005218215A (en) * 2004-01-29 2005-08-11 Nsk Ltd Driving method and temperature-estimating method of pm motor
JP2006223037A (en) * 2005-02-09 2006-08-24 Yaskawa Electric Corp Motor controller and its control method
JP2007104855A (en) * 2005-10-07 2007-04-19 Toyota Motor Corp Control unit of internal combustion engine and control unit of electric motor
JP2007259586A (en) * 2006-03-23 2007-10-04 Ihi Corp Rotary machine control device and rotary machine control method
JP2008206340A (en) * 2007-02-21 2008-09-04 Toyota Motor Corp Drive controller of rotating electrical machine and vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010677A (en) * 2000-06-21 2002-01-11 Hitachi Ltd Motor-control unit
JP2005012914A (en) * 2003-06-19 2005-01-13 Koyo Seiko Co Ltd Driver for motor
JP2005218215A (en) * 2004-01-29 2005-08-11 Nsk Ltd Driving method and temperature-estimating method of pm motor
JP2006223037A (en) * 2005-02-09 2006-08-24 Yaskawa Electric Corp Motor controller and its control method
JP2007104855A (en) * 2005-10-07 2007-04-19 Toyota Motor Corp Control unit of internal combustion engine and control unit of electric motor
JP2007259586A (en) * 2006-03-23 2007-10-04 Ihi Corp Rotary machine control device and rotary machine control method
JP2008206340A (en) * 2007-02-21 2008-09-04 Toyota Motor Corp Drive controller of rotating electrical machine and vehicle

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2280473A1 (en) 2009-07-29 2011-02-02 TDK Corporation Switching power supply
JP2011143850A (en) * 2010-01-15 2011-07-28 Honda Motor Co Ltd Driving device for vehicles
CN102638150A (en) * 2011-02-14 2012-08-15 精工爱普生株式会社 Electromechanical device, movable body, robot, method of measuring temperature of electromechanical device
JP2013036937A (en) * 2011-08-10 2013-02-21 Nittetsu Elex Co Ltd Characteristic determination method for motor using permanent magnet for rotor
CN104081652A (en) * 2012-01-20 2014-10-01 三菱电机株式会社 Control device and control method for permanent magnet electric motor
JPWO2013108877A1 (en) * 2012-01-20 2015-05-11 三菱電機株式会社 Control device and control method for permanent magnet motor
CN104081652B (en) * 2012-01-20 2016-06-29 三菱电机株式会社 The control device of motor with permanent magnet and control method
US9160272B2 (en) 2012-01-20 2015-10-13 Mitsubishi Electric Corporation Control device and control method for permanent magnet motor
WO2013108877A1 (en) * 2012-01-20 2013-07-25 三菱電機株式会社 Control device and control method for permanent magnet electric motor
CN104094519A (en) * 2012-02-10 2014-10-08 雷诺股份公司 System and method for controlling the power supply of an electric machine on the basis of the temperature thereof
KR20140128345A (en) * 2012-02-10 2014-11-05 르노 에스.아.에스. System and method for controlling the power supply of an electric machine on the basis of the temperature thereof
FR2986921A1 (en) * 2012-02-10 2013-08-16 Renault Sa SYSTEM AND METHOD FOR CONTROLLING THE POWER SUPPLY OF AN ELECTRIC MACHINE IN ACCORDANCE WITH THE TEMPERATURE.
WO2013117500A3 (en) * 2012-02-10 2014-04-17 Renault S.A.S. System and method for controlling the power supply of an electric machine on the basis of the temperature thereof
US9685902B2 (en) 2012-02-10 2017-06-20 Renault S.A.S. System and method for controlling the power supply of an electric machine on the basis of the temperature thereof
KR102067722B1 (en) 2012-02-10 2020-01-17 르노 에스.아.에스. System and method for controlling the power supply of an electric machine on the basis of the temperature thereof
JP2014057385A (en) * 2012-09-11 2014-03-27 Toyota Motor Corp Controller of dynamo-electric machine and dynamo-electric machine drive system including the same
FR3083039A1 (en) * 2018-06-21 2019-12-27 Renault S.A.S DEVICE FOR MONITORING A SYNCHRONOUS ELECTRIC MACHINE WITH PERMANENT MAGNETS FOR TRACTION OF A MOTOR VEHICLE
CN112865665A (en) * 2021-01-26 2021-05-28 大陆汽车电子(长春)有限公司 Electronic control unit and computer program product for driving an electric machine in a sensorless manner
CN112865665B (en) * 2021-01-26 2022-12-02 大陆汽车电子(长春)有限公司 Electronic control unit for driving an electric motor in a sensorless manner

Similar Documents

Publication Publication Date Title
JP2010124610A (en) Method of controlling pm motor
JP6647822B2 (en) Torque control device and method, and motor controller
US10333439B2 (en) Methods of estimating a position of a rotor in a motor under transient and systems thereof
US10715077B2 (en) Method of controlling motor and device of controlling motor
WO2018016448A1 (en) Motor module, motor control device, temperature estimation device, and temperature estimation method
JPWO2011070651A1 (en) Power converter
JP5731355B2 (en) Control device for induction motor for vehicle drive
JP6286450B2 (en) Power converter
JP5050387B2 (en) Motor control device
JP5471156B2 (en) Control device for permanent magnet type synchronous motor
JP2009290962A (en) Controller of permanent magnet type synchronous motor
CN110235355B (en) Speed estimation method for induction motor and power conversion device using the same
JP4775145B2 (en) Synchronous motor controller
JP2013146155A (en) Winding temperature estimating device and winding temperature estimating method
JP4667741B2 (en) Induction motor control device
JP5446494B2 (en) Control device for permanent magnet type synchronous motor
JP5534991B2 (en) Control device for synchronous motor
JP2009278692A (en) Controller of permanent magnet synchronous motor
JP6794693B2 (en) Induction motor control device
JP5288957B2 (en) Electric motor control device with resistance compensation function
JP5983636B2 (en) Electric motor control device
JP4687104B2 (en) Control device and method for permanent magnet type rotary motor
JP5092572B2 (en) Control device for permanent magnet type synchronous motor
JP2011067067A (en) Controller for permanent magnet type synchronous motor
JP5333716B2 (en) Control device for permanent magnet type synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625