JP2006223037A - Motor controller and its control method - Google Patents

Motor controller and its control method Download PDF

Info

Publication number
JP2006223037A
JP2006223037A JP2005033032A JP2005033032A JP2006223037A JP 2006223037 A JP2006223037 A JP 2006223037A JP 2005033032 A JP2005033032 A JP 2005033032A JP 2005033032 A JP2005033032 A JP 2005033032A JP 2006223037 A JP2006223037 A JP 2006223037A
Authority
JP
Japan
Prior art keywords
current
allowable
temperature
motor
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005033032A
Other languages
Japanese (ja)
Inventor
Kenichi Nakajima
健一 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2005033032A priority Critical patent/JP2006223037A/en
Publication of JP2006223037A publication Critical patent/JP2006223037A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor controller which can prevent the occurrence of demagnetization of a permanent magnet, and its control method. <P>SOLUTION: The motor controller is composed of a current controller 21 which generates a current command and a voltage command from a motor current, a PWM controller 22 which generates a gate signal formed of PWM by the voltage command, a current controller 20 consisting of a vector converter 23 for converting the motor current into vector, a power converter 10 which amplifies the power of the gate signal, and a protective circuit part 30 which breaks the gate signal when the motor current gets over a specified value. Herein, the protective circuit part 30 is equipped with a allowable demagnetizing current calculating circuit 33 which calculates the allowable demagnetizing current, based on the temperature of the permanent magnet of the rotor of the motor, an overcurrent detecting circuit 32 which breaks the above gate signal when the motor current gets over the above allowable demagnetizing current value, and a magnet temperature abnormal rise detecting circuit 34 which breaks the gate signal when the temperature of the permanent magnet gets over the allowable temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、永久磁石をロータにもつモータの制御で、特に永久磁石の減磁を保護するモータ制御装置とその制御方法に関する。   The present invention relates to a motor control device for controlling a motor having a permanent magnet in a rotor, and particularly to protecting demagnetization of the permanent magnet, and a control method therefor.

従来の制御装置では、永久磁石モータの固定子巻線の温度のみを監視し、固定子巻線の温度が所定の値を越えた場合、制御装置の出力電流値を抑制して、回転子の永久磁石の不可逆減磁を回避しようとしている。(例えば、特許文献1参照)。また、永久磁石モータの回転子の永久磁石の温度のみを推定演算し、その推定した永久磁石の温度が許容値を越えた場合、制御装置の出力電流値を抑制して、永久磁石の不可逆減磁を回避しようとしているものもある。(例えば、特許文献2参照)。   In the conventional control device, only the temperature of the stator winding of the permanent magnet motor is monitored, and when the temperature of the stator winding exceeds a predetermined value, the output current value of the control device is suppressed and the rotor Trying to avoid irreversible demagnetization of permanent magnets. (For example, refer to Patent Document 1). Also, only the temperature of the permanent magnet of the rotor of the permanent magnet motor is estimated and calculated. If the estimated temperature of the permanent magnet exceeds the allowable value, the output current value of the control device is suppressed and the permanent magnet is irreversibly reduced. Some are trying to avoid magnetism. (For example, refer to Patent Document 2).

図2は、従来の制御ブロック図である。図2は、負荷1に接続された永久磁石モータ2と、永久磁石モータ2の駆動を制御する駆動制御装置8とから構成されている。駆動制御装置8内には永久磁石モータ2の電機子に流れる電流を制御する電流制御部20と、電流制御部20から出力される制御信号を永久磁石モータ2を駆動するための電力に変換する電力変換部10と、永久磁石モータ2を不測の事態から守る保護回路部30が設けられている。電力変換部10から出力された電力が永久磁石モータ2に供給され、供給された電力が永久磁石モータ2において回転子のトルクに変換されて、その回転トルクによって負荷1が駆動される。   FIG. 2 is a conventional control block diagram. FIG. 2 includes a permanent magnet motor 2 connected to the load 1 and a drive control device 8 that controls driving of the permanent magnet motor 2. In the drive control device 8, a current control unit 20 that controls a current flowing through the armature of the permanent magnet motor 2, and a control signal output from the current control unit 20 is converted into electric power for driving the permanent magnet motor 2. A protection circuit unit 30 that protects the power conversion unit 10 and the permanent magnet motor 2 from an unexpected situation is provided. The electric power output from the power converter 10 is supplied to the permanent magnet motor 2, and the supplied electric power is converted into the torque of the rotor in the permanent magnet motor 2, and the load 1 is driven by the rotational torque.

電流制御器21にて永久磁石モータ2の電機子に流れる電流を制御するための電圧指令値を演算し、その演算結果をPWM制御器22に出力する。PWM制御器22では、Vu、Vv、Vwの3相の電圧を電力変換部10より出力するためのスイッチング信号を電力変換器11に出力する。電力変換器11では、PWM制御器22より出力されたスイッチング信号に従って、永久磁石モータ2の駆動に必要となる周波数で電圧が制御され、永久磁石モータ2の各相にIu、Iv、Iwの電流が流れる。 The current controller 21 calculates a voltage command value for controlling the current flowing through the armature of the permanent magnet motor 2, and outputs the calculation result to the PWM controller 22. In the PWM controller 22, a switching signal for outputting the three-phase voltages Vu, Vv, and Vw from the power converter 10 is output to the power converter 11. In the power converter 11, the voltage is controlled at a frequency necessary for driving the permanent magnet motor 2 in accordance with the switching signal output from the PWM controller 22, and currents of Iu, Iv, and Iw are supplied to each phase of the permanent magnet motor 2. Flows.

過電流検出回路32は、電流検出器12で検出された永久磁石モータ2のu相、v相、w相に流れる電流Iu、Iv、Iwを入力し、Iu、Iv、Iwの各電流のうちいずれかがある許容値以上になった場合、過電流故障と判断し故障表示を行うとともにPWM制御器22へゲート信号を即時に遮断するための信号を出力する。   The overcurrent detection circuit 32 inputs the currents Iu, Iv, Iw flowing in the u-phase, v-phase, and w-phase of the permanent magnet motor 2 detected by the current detector 12, and among the currents of Iu, Iv, Iw If any of the values exceeds a certain allowable value, it is determined that an overcurrent failure has occurred, a failure display is performed, and a signal for immediately interrupting the gate signal is output to the PWM controller 22.

コイル温度抑制回路31は、温度検出器(固定子巻線用)5で検出した永久磁石モータ2の固定子の巻線3bの温度を入力し、その温度が所定の値を越えた場合、電流制御器21へ出力電流値を抑制するように制御信号を出力する。なお、温度検出器(巻線用)5で検出する温度は永久磁石モータ2の固定子の巻線3aあるいは巻線3cの温度でも良い。
このように、従来のモータ制御装置は、永久磁石モータの固定子の巻線温度が所定の値を越えないように、制御装置の出力電流値を抑制して、回転子の永久磁石の不可逆減磁を回避しようとするのである。
特開平11−341884号公報 特開2003−235286号公報
The coil temperature suppression circuit 31 inputs the temperature of the stator winding 3b of the permanent magnet motor 2 detected by the temperature detector (for the stator winding) 5, and if the temperature exceeds a predetermined value, A control signal is output to the controller 21 so as to suppress the output current value. The temperature detected by the temperature detector (for winding) 5 may be the temperature of the winding 3a or 3c of the stator of the permanent magnet motor 2.
Thus, the conventional motor control device suppresses the output current value of the control device so that the winding temperature of the stator of the permanent magnet motor does not exceed a predetermined value, and irreversibly reduces the permanent magnet of the rotor. It tries to avoid magnetism.
Japanese Patent Laid-Open No. 11-341884 JP 2003-235286 A

永久磁石は、磁石温度と反磁界を発生させる減磁電流との組み合わせの状態が、ある領域の範囲に入った場合に不可逆減磁が発生するという特性をもっている。しかしながら、従来の技術では、永久磁石モータの固定子の巻線の温度のみの監視であり、減磁電流に関係する制御装置の出力電流は制御装置の保護用に設けている過電流検出回路で監視されているのみで、永久磁石の不可逆減磁が発生するメカニズムにマッチした保護方法になっていないという問題があった。また、永久磁石モータの回転子の永久磁石の温度を推定監視している場合も、減磁電流に関係する制御装置の出力電流は制御装置の保護用に設けている過電流検出回路で監視されているのみで、永久磁石の不可逆減磁が発生するメカニズムにマッチした保護方法になっていないという問題があった。
本発明はこのような問題点に鑑みてなされたものであり、永久磁石の不可逆減磁の発生を防止できるモータ制御装置とその制御方法を提供することを目的とする。
Permanent magnets have the property that irreversible demagnetization occurs when the combination of the magnet temperature and the demagnetizing current that generates a demagnetizing field falls within a certain range. However, in the conventional technology, only the temperature of the stator winding of the permanent magnet motor is monitored, and the output current of the control device related to the demagnetizing current is detected by an overcurrent detection circuit provided for protection of the control device. There is a problem that the protection method is not matched with the mechanism that the irreversible demagnetization of the permanent magnet occurs only by being monitored. Also, when the temperature of the permanent magnet of the rotor of the permanent magnet motor is estimated and monitored, the output current of the control device related to the demagnetization current is monitored by the overcurrent detection circuit provided for protection of the control device. However, there is a problem that the protection method does not match the mechanism that causes irreversible demagnetization of the permanent magnet.
The present invention has been made in view of such problems, and an object thereof is to provide a motor control device and a control method thereof that can prevent the occurrence of irreversible demagnetization of a permanent magnet.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、電流指令とモータ電流から電圧指令を生成する電流制御器と、前記電圧指令からPWMされたゲート信号を生成するPWM制御器と、前記モータ電流をベクトル変換するベクトル変換器とからなる電流制御部と、前記ゲート信号を電力増幅する電力変換部と、前記モータ電流が所定値を超えた場合には前記ゲート信号を遮断する保護回路部と、で構成されるモータ制御装置において、前記保護回路部は、前記モータのロータの永久磁石温度と許容減磁電流の関係式と、許容温度を設定する定数設定器と、前記関係式に基づいて許容減磁電流を演算する許容減磁電流演算回路と、前記モータ電流が前記許容減磁電流を越えた場合、前記ゲート信号を遮断する過電流検出回路と、前記永久磁石の温度が前記許容温度を超えた場合、前記ゲート信号を遮断する磁石温度異常上昇検出回路と、を備えたことを特徴とするものである。
請求項2に記載の発明は、請求項1に記載のモータ制御装置にいて、前記関係式は、あらかじめ磁石温度と減磁電流との関係を記憶しておき、制御周期ごとに前記磁石温度から遮断する減磁電流を読込み、モータ電流と比較することを特徴とするものである。
請求項3に記載の発明は、請求項1に記載のモータ制御装置において、前記関係式は、1次式の形で記憶され、制御周期ごとに磁石温度から減磁電流を算出し、モータ電流と比較することを特徴とするものである。
In order to solve the above problem, the present invention is configured as follows.
The invention according to claim 1 is a current controller that generates a voltage command from a current command and a motor current, a PWM controller that generates a gate signal PWMed from the voltage command, and a vector that vector-converts the motor current A motor comprising: a current control unit including a converter; a power conversion unit that amplifies the gate signal; and a protection circuit unit that interrupts the gate signal when the motor current exceeds a predetermined value. In the control device, the protection circuit unit calculates a permissible demagnetizing current based on the relational expression between the permanent magnet temperature of the motor rotor and the permissible demagnetizing current, a constant setter for setting the permissible temperature, and the relational expression. An allowable demagnetization current calculation circuit, an overcurrent detection circuit that interrupts the gate signal when the motor current exceeds the allowable demagnetization current, and the temperature of the permanent magnet exceeds the allowable temperature. If, it is characterized in that and a magnet temperature abnormal increase detection circuit for interrupting the gate signal.
The invention according to claim 2 is the motor control device according to claim 1, wherein the relational expression stores a relationship between a magnet temperature and a demagnetizing current in advance, and from the magnet temperature for each control cycle. The demagnetizing current to be interrupted is read and compared with the motor current.
According to a third aspect of the present invention, in the motor control device according to the first aspect, the relational expression is stored in the form of a linear expression, a demagnetizing current is calculated from the magnet temperature for each control period, and the motor current is calculated. It is characterized by comparing with.

請求項4に記載の発明は、電流指令とモータ電流から電圧指令を生成する電流制御器と、前記電圧指令からPWMされたゲート信号を生成するPWM制御器と、前記モータ電流をベクトル変換するベクトル変換器とからなる電流制御部と、前記ゲート信号を電力増幅する電力変換部と、前記モータ電流が所定値を超えた場合には前記ゲート信号を遮断する保護回路部と、で構成されるモータ制御方法において、永久磁石温度と許容減磁電流の関係式と永久磁石許容温度を設定するステップと、永久磁石モータの永久磁石に取り付けた温度センサから永久磁石温度を読込むステップと、前記関係式を用いて、前記永久磁石温度から許容減磁電流を読み出すステップと、モータ電流と許容減磁電流を比較するステップと、モータ電流が許容減磁電流よりも大きい場合はゲート信号を遮断するステップと、前記永久磁石温度が前記許容温度を比較するステップと、前記永久磁石温度が前記許容温度を超えた場合はゲート信号を遮断するステップと、を備えたことを特徴とするものである。
請求項5に記載の発明は、請求項4に記載のモータ制御方法において、前記関係式は、あらかじめ永久磁石温度と許容減磁電流との関係を記憶しておくことを特徴とするものである。
請求項6に記載の発明は、請求項4に記載のモータ制御方法において、前記関係式は、永久磁石温度と許容減磁電流の関係を、1次式で記憶しておくことを特徴とするものである。
According to a fourth aspect of the present invention, there is provided a current controller that generates a voltage command from a current command and a motor current, a PWM controller that generates a PWM gate signal from the voltage command, and a vector that vector-converts the motor current. A motor comprising: a current control unit including a converter; a power conversion unit that amplifies the gate signal; and a protection circuit unit that interrupts the gate signal when the motor current exceeds a predetermined value. In the control method, a step of setting a relational expression between the permanent magnet temperature and the allowable demagnetizing current and a permanent magnet allowable temperature, a step of reading the permanent magnet temperature from a temperature sensor attached to the permanent magnet of the permanent magnet motor, and the relational expression And reading the allowable demagnetizing current from the permanent magnet temperature, comparing the motor current with the allowable demagnetizing current, and A step of cutting off the gate signal when the temperature is larger than the step of comparing the allowable temperature with the permanent magnet temperature, and a step of cutting off the gate signal when the permanent magnet temperature exceeds the allowable temperature. It is characterized by that.
According to a fifth aspect of the present invention, in the motor control method of the fourth aspect, the relational expression stores a relationship between a permanent magnet temperature and an allowable demagnetizing current in advance. .
According to a sixth aspect of the present invention, in the motor control method according to the fourth aspect, the relational expression stores a relation between the permanent magnet temperature and the allowable demagnetizing current as a linear expression. Is.

請求項1乃至請求項3に記載の発明によると、永久磁石の不可逆減磁の発生を防止できるモータ制御装置を提供することができる。
請求項4乃至請求項6に記載の発明によると、永久磁石の不可逆減磁の発生を未然に防止するモータ制御方法を提供することができる。
According to the first to third aspects of the invention, it is possible to provide a motor control device capable of preventing the occurrence of irreversible demagnetization of the permanent magnet.
According to the fourth to sixth aspects of the invention, it is possible to provide a motor control method for preventing the occurrence of irreversible demagnetization of the permanent magnet.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の制御ブロック図である。図1において1は負荷、2は永久磁石モータ、3a〜3cはモータのステータ巻線、4a〜4dはモータのロータに配置された永久磁石、5はステータ巻線の温度検出器、6はロータの永久磁石の温度検出器、7はスリップリング、8はモータ制御装置である。また、モータ制御装置8の中の10は電力変換部、20は電流制御部、30は保護回路部である。さらに、電力変換部10の中の11は電力変換器、12は電流検出器であり、電流制御部20の中の21は電流制御器、22はPWM制御器であり、保護回路部30の中の32は過電流検出回路、33は許容減磁電流演算器、34は磁石温度異常上昇検出回路、35は定数設定器である。    FIG. 1 is a control block diagram of the present invention. In FIG. 1, 1 is a load, 2 is a permanent magnet motor, 3a to 3c are stator windings of the motor, 4a to 4d are permanent magnets arranged on the rotor of the motor, 5 is a temperature detector for the stator winding, and 6 is a rotor. A permanent magnet temperature detector, 7 is a slip ring, and 8 is a motor control device. Further, 10 in the motor control device 8 is a power conversion unit, 20 is a current control unit, and 30 is a protection circuit unit. Furthermore, 11 in the power conversion unit 10 is a power converter, 12 is a current detector, 21 in the current control unit 20 is a current controller, 22 is a PWM controller, and in the protection circuit unit 30. 32 is an overcurrent detection circuit, 33 is an allowable demagnetization current calculator, 34 is a magnet temperature abnormal rise detection circuit, and 35 is a constant setter.

次に動作について説明する。電流制御器21は電流指令Idref、Iqrefとモータ電流Idfb、Iqfbから電圧指令を生成し、不図示のベクトル変換器を介して3相電圧指令Vuref、Vvref、Vwrefを生成する。PWM変換器22は電圧指令Vuref、Vvref、Vwrefから3相のPWMされたゲート信号を生成する。電力変換器11はゲート信号を電力増幅し、永久磁石モータに電流を供給して駆動する。電流検出器12は、3相のモータ電流を検出してIufb、Ivfb、Iwfbを生成する。ベクトル変換器23は3相電流検出値Iufb、Ivfb、Iwfbからモータ電気角によりベクトル変換し、Idfb、Iqfbを生成する。温度検出器6は永久磁石モータ2のロータの永久磁石4cの温度を検出する。永久磁石温度はスリップリング7を介して、許容減磁電流演算回路33及び磁石温度異常上昇検出回路34へ伝送される。なお、温度検出器6で検出する温度は永久磁石4a、永久磁石4bあるいは永久磁石4dの温度でも良い。また、定数設定器35は、許容減磁電流演算回路33で必要なパラメータである磁石温度T1、磁石温度T、減磁電流I、減磁電流Iを設定するとともに、磁石温度異常上昇検出回路34で必要なパラメータである磁石温度許容上限値Tmaxを設定する。定数設定器35で設定されるパラメータの値は、永久磁石モータ2のロータに使用される永久磁石4a〜4dの磁石温度−減磁電流特性にあわせたものである。許容減磁電流演算回路33は、温度検出器6より入力された磁石温度値に対する許容減磁電流値を定数設定器35で設定された磁石温度−減磁電流特性に従って関係式を定め、関係式から自動的に演算して、過電流検出回路32へ出力する。なお、許容減磁電流演算回路33の磁石温度−減磁電流特性において、右上側の斜線部が不可逆減磁領域となり、永久磁石温度と許容減磁電流の関係式を不可逆減磁領域に入りこまないように定める。関係式は1次式でもいいし、図4に示すように非線形な曲線をメモリに記憶したテーブルを参照して、1次近似で許容減磁電流を求めてもよい。例えば、図4で、テーブルにn個の値(T、I)〜(T、I)が記憶されているとき、永久磁石の温度がTk−1<T<=Tのときは、I=Ik−1−(T−Tk−1)(I−Ik−1)/(T−Tk−1)として算出できる。過電流検出回路32は電流検出器12で検出された電流Iufb、Ivfb、Iwfbを入力し、Iufb、Ivfb、Iwfbの各電流のうちいずれかが、許容減磁電流演算回路32から入力された許容減磁電流値以上になった場合、過電流故障と判断し故障表示を行うとともにPWM制御器22へのゲート信号を即時に遮断する。磁石温度異常上昇検出回路34は温度検出器6より入力された磁石温度値が定数設定器33で設定された磁石温度許容上限値Tmaxを越えた場合、磁石温度異常上昇と判断し故障表示を行うとともにPWM制御器22へのゲート信号を即時に遮断する。 Next, the operation will be described. The current controller 21 generates a voltage command from the current commands Idref and Iqref and the motor currents Idfb and Iqfb, and generates three-phase voltage commands Vuref, Vvref, and Vwref via a vector converter (not shown). The PWM converter 22 generates a three-phase PWM gate signal from the voltage commands Vuref, Vvref, and Vwref. The power converter 11 amplifies the power of the gate signal and supplies a current to the permanent magnet motor to drive it. The current detector 12 detects three-phase motor currents and generates Iufb, Ivfb, and Iwfb. The vector converter 23 vector-converts the detected three-phase current values Iufb, Ivfb, and Iwfb with the motor electrical angle to generate Idfb and Iqfb. The temperature detector 6 detects the temperature of the permanent magnet 4 c of the rotor of the permanent magnet motor 2. The permanent magnet temperature is transmitted to the allowable demagnetizing current calculation circuit 33 and the magnet temperature abnormality rise detection circuit 34 via the slip ring 7. The temperature detected by the temperature detector 6 may be the temperature of the permanent magnet 4a, the permanent magnet 4b, or the permanent magnet 4d. The constant setter 35 sets the magnet temperature T 1 , the magnet temperature T 2 , the demagnetizing current I 1 , and the demagnetizing current I 2 that are parameters necessary for the allowable demagnetizing current calculation circuit 33, and abnormal magnet temperature. A magnet temperature allowable upper limit value Tmax which is a necessary parameter in the rise detection circuit 34 is set. The parameter value set by the constant setting unit 35 is in accordance with the magnet temperature-demagnetization current characteristics of the permanent magnets 4a to 4d used in the rotor of the permanent magnet motor 2. The allowable demagnetizing current calculation circuit 33 determines the allowable demagnetizing current value with respect to the magnet temperature value input from the temperature detector 6 according to the magnet temperature-demagnetizing current characteristic set by the constant setting unit 35, and sets the relational expression. Is automatically calculated and output to the overcurrent detection circuit 32. In the magnet temperature-demagnetization current characteristic of the allowable demagnetization current calculation circuit 33, the shaded portion on the upper right side is the irreversible demagnetization region, and the relational expression between the permanent magnet temperature and the allowable demagnetization current enters the irreversible demagnetization region. Decide not to. The relational expression may be a linear expression, or the allowable demagnetization current may be obtained by linear approximation with reference to a table in which a non-linear curve is stored in a memory as shown in FIG. For example, in FIG. 4, when n values (T 1 , I 1 ) to (T n , I n ) are stored in the table, the temperature of the permanent magnet is T k−1 <T <= T k . Is calculated as I = I k−1 − (T−T k−1 ) (I k −I k−1 ) / (T k −T k−1 ). The overcurrent detection circuit 32 inputs the currents Iufb, Ivfb, and Iwfb detected by the current detector 12, and any of the currents Iufb, Ivfb, and Iwfb is input from the allowable demagnetization current calculation circuit 32. If the demagnetization current value is exceeded, it is determined that an overcurrent failure has occurred, and a failure display is made and the gate signal to the PWM controller 22 is immediately cut off. When the magnet temperature value input from the temperature detector 6 exceeds the magnet temperature allowable upper limit value Tmax set by the constant setting unit 33, the magnet temperature abnormality rise detection circuit 34 determines that the magnet temperature has risen and displays a failure. At the same time, the gate signal to the PWM controller 22 is immediately cut off.

図3は、本発明の制御方法を示すフローチャートである。図3において、まずステップST1で永久磁石温度と許容減磁電流の関係式と、永久磁石の許容温度を設定する。次にステップST2で永久磁石温度をモータロータの永久磁石に取り付けられた温度検出器から読みこむ。次にステップST3で3永久磁石温度から関係式を参照して許容減磁電流を読み出す。次にステップST4でモータ電流と許容減磁電流を比較する。モータ電流が許容電流以下であればステップST5に移行し、許容値以上であればステップST6でゲート信号を遮断する。次にステップST5で永久磁石の温度が許容温度が比較される。永久磁石が許容温度以下であれば終了し、次の制御周期まで待機する。許容温度以上であればゲート信号を遮断する。   FIG. 3 is a flowchart showing the control method of the present invention. In FIG. 3, first, in step ST1, the relational expression between the permanent magnet temperature and the allowable demagnetizing current and the allowable temperature of the permanent magnet are set. Next, in step ST2, the permanent magnet temperature is read from a temperature detector attached to the permanent magnet of the motor rotor. Next, in step ST3, an allowable demagnetizing current is read from the three permanent magnet temperatures with reference to a relational expression. Next, in step ST4, the motor current is compared with the allowable demagnetizing current. If the motor current is equal to or less than the allowable current, the process proceeds to step ST5. If the motor current is equal to or greater than the allowable value, the gate signal is interrupted in step ST6. Next, in step ST5, the temperature of the permanent magnet is compared with the allowable temperature. If the permanent magnet is below the allowable temperature, the process ends and waits for the next control cycle. If it is above the allowable temperature, the gate signal is cut off.

以上述べたように、本発明によれば、あらゆる操業運転状態において、永久磁石の温度上昇の変化及び、駆動制御装置の出力電流の変化に対して、自動的に永久磁石モータの永久磁石の不可逆減磁の発生を回避することができるの一般産業機械をはじめロボットや工作機械などの用途へも適用が期待できる。 As described above, according to the present invention, the permanent magnet of the permanent magnet motor is automatically irreversible with respect to a change in the temperature increase of the permanent magnet and a change in the output current of the drive control device in any operating state. It can be expected to be applied to general industrial machines that can avoid demagnetization, as well as robots and machine tools.

本発明のIPMモータの制御装置の実施例の構成を示す制御ブロック図The control block diagram which shows the structure of the Example of the control apparatus of the IPM motor of this invention 従来のIPMモータの制御装置の構成を示す制御ブロック図Control block diagram showing the configuration of a conventional IPM motor control device 本発明の方法を示すフローチャートFlowchart illustrating the method of the present invention 本発明の許容減磁電流を算出するための参考図Reference diagram for calculating the allowable demagnetization current of the present invention

符号の説明Explanation of symbols

1 負荷
2 永久磁石モータ
3a、3b、3c ステータ巻線
4a、4b、4c、4d 永久磁石
5 ステータ巻線の温度検出器
6 ロータ永久磁石の温度検出器
7 スリップリング
8 モータ制御装置
10 電力変換部
11 電力変換器
12 電流検出器
20 電流制御部
21 電流制御器
22 PWM制御器
23 ベクトル変換器
30 保護回路部
31 コイル温度抑制回路
32 過電流検出回路
33 許容減磁電流演算回路
34 磁石温度異常上昇検出回路
35 定数設定器
DESCRIPTION OF SYMBOLS 1 Load 2 Permanent magnet motor 3a, 3b, 3c Stator winding 4a, 4b, 4c, 4d Permanent magnet 5 Stator winding temperature detector 6 Rotor permanent magnet temperature detector 7 Slip ring 8 Motor controller 10 Power converter DESCRIPTION OF SYMBOLS 11 Power converter 12 Current detector 20 Current control part 21 Current controller 22 PWM controller 23 Vector converter 30 Protection circuit part 31 Coil temperature suppression circuit 32 Overcurrent detection circuit 33 Allowable demagnetization current calculation circuit 34 Magnet temperature abnormal rise Detection circuit 35 Constant setter

Claims (6)

電流指令とモータ電流から電圧指令を生成する電流制御器と、前記電圧指令からPWMされたゲート信号を生成するPWM制御器とからなる電流制御部と、前記ゲート信号を電力増幅する電力変換部と、前記モータ電流が所定値を超えた場合には前記ゲート信号を遮断する保護回路部と、で構成されるモータ制御装置において、
前記保護回路部は、
前記モータのロータの永久磁石温度と許容減磁電流の関係式と、許容温度を設定する定数設定器と、
前記関係式に基づいて許容減磁電流を演算する許容減磁電流演算回路と、
前記モータ電流が前記許容減磁電流を越えた場合、前記ゲート信号を遮断する過電流検出回路と、
前記永久磁石の温度が前記許容温度を超えた場合、前記ゲート信号を遮断する磁石温度異常上昇検出回路と、
を備えたことを特徴とするモータ制御装置。
A current controller that generates a voltage command from a current command and a motor current; a current controller that includes a PWM controller that generates a gate signal PWMed from the voltage command; and a power converter that amplifies the gate signal. In the motor control device configured with a protection circuit unit that cuts off the gate signal when the motor current exceeds a predetermined value,
The protection circuit unit is
A relational expression between the permanent magnet temperature of the motor rotor and the allowable demagnetization current, and a constant setter for setting the allowable temperature;
An allowable demagnetization current calculation circuit for calculating an allowable demagnetization current based on the relational expression;
An overcurrent detection circuit that shuts off the gate signal when the motor current exceeds the allowable demagnetization current;
When the temperature of the permanent magnet exceeds the allowable temperature, a magnet temperature abnormal rise detection circuit that cuts off the gate signal;
A motor control device comprising:
前記関係式は、あらかじめ磁石温度と減磁電流との関係を記憶しておき、制御周期ごとに前記磁石温度から遮断する減磁電流を読込み、モータ電流と比較することを特徴とする請求項1記載のモータ制御装置。   The relational expression stores a relationship between a magnet temperature and a demagnetizing current in advance, reads a demagnetizing current that is cut off from the magnet temperature for each control period, and compares it with a motor current. The motor control apparatus described. 前記関係式は、1次式の形で記憶され、制御周期ごとに磁石温度から減磁電流を算出し、モータ電流と比較することを特徴とする請求項1記載のモータ制御装置。   2. The motor control apparatus according to claim 1, wherein the relational expression is stored in the form of a linear expression, and a demagnetizing current is calculated from a magnet temperature for each control period and compared with a motor current. 電流指令とモータ電流から電圧指令を生成する電流制御器と、前記電圧指令からPWMされたゲート信号を生成するPWM制御器とからなる電流制御部と、前記ゲート信号を電力増幅する電力変換部と、前記モータ電流が所定値を超えた場合には前記ゲート信号を遮断する保護回路部と、で構成されるモータ制御方法において、
永久磁石温度と許容減磁電流の関係式と永久磁石許容温度を設定するステップと、
永久磁石に取り付けた温度センサから永久磁石温度を読込むステップと、
前記関係式を用いて、前記永久磁石温度から許容減磁電流を読み出すステップと、
モータ電流と許容減磁電流を比較するステップと、
モータ電流が許容減磁電流よりも大きい場合はゲート信号を遮断するステップと、
前記永久磁石温度と前記許容温度を比較するステップと、
前記永久磁石温度が前記許容温度を超えた場合はゲート信号を遮断するステップと、
を備えたことを特徴とするモータ制御方法。
A current controller that generates a voltage command from a current command and a motor current; a current controller that includes a PWM controller that generates a gate signal PWMed from the voltage command; and a power converter that amplifies the gate signal. In a motor control method comprising: a protection circuit unit that cuts off the gate signal when the motor current exceeds a predetermined value;
A step of setting the relational expression between the permanent magnet temperature and the allowable demagnetizing current and the allowable permanent magnet temperature;
Reading the permanent magnet temperature from a temperature sensor attached to the permanent magnet;
Using the relational expression, reading an allowable demagnetization current from the permanent magnet temperature;
Comparing the motor current and the allowable demagnetization current;
Cutting off the gate signal if the motor current is greater than the allowable demagnetization current;
Comparing the permanent magnet temperature with the allowable temperature;
Blocking the gate signal when the permanent magnet temperature exceeds the allowable temperature;
A motor control method comprising:
前記関係式は、あらかじめ永久磁石温度と許容減磁電流との関係を記憶しておくことを特徴とする請求項4記載のモータ制御方法。   5. The motor control method according to claim 4, wherein the relational expression stores a relation between a permanent magnet temperature and an allowable demagnetizing current in advance. 前記関係式は、永久磁石温度と許容減磁電流の関係を、1次式で記憶しておくことを特徴とする請求項4記載のモータ制御方法。   5. The motor control method according to claim 4, wherein the relational expression stores a relation between a permanent magnet temperature and an allowable demagnetizing current as a linear expression.
JP2005033032A 2005-02-09 2005-02-09 Motor controller and its control method Pending JP2006223037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033032A JP2006223037A (en) 2005-02-09 2005-02-09 Motor controller and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033032A JP2006223037A (en) 2005-02-09 2005-02-09 Motor controller and its control method

Publications (1)

Publication Number Publication Date
JP2006223037A true JP2006223037A (en) 2006-08-24

Family

ID=36984970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033032A Pending JP2006223037A (en) 2005-02-09 2005-02-09 Motor controller and its control method

Country Status (1)

Country Link
JP (1) JP2006223037A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010060691A1 (en) * 2008-11-25 2010-06-03 Schaeffler Technologies Gmbh & Co. Kg Adjustment device for adjusting a relative rotational angle position of two shafts and method for operating an actuator, particularly of such an adjustment device
JP2010124610A (en) * 2008-11-20 2010-06-03 Meidensha Corp Method of controlling pm motor
JP2011157041A (en) * 2010-02-03 2011-08-18 Honda Motor Co Ltd Electric power steering apparatus
JP2014023338A (en) * 2012-07-20 2014-02-03 Aida Engineering Ltd Permanent magnet motor and drive method for the same, and control device for the permanent magnet motor
JP2014107928A (en) * 2012-11-27 2014-06-09 Honda Motor Co Ltd Motor controller
JP2014117013A (en) * 2012-12-06 2014-06-26 Toyota Motor Corp Control device for motor and vehicle with motor mounted therein as drive source
CN104808148A (en) * 2015-05-07 2015-07-29 哈尔滨工业大学 Temperature rise test method for multiphase multi-unit permanent magnet motor
JP2016220463A (en) * 2015-05-25 2016-12-22 マツダ株式会社 Control device for vehicle with permanent magnet type synchronous motor mounted therein, and method for setting upper limit temperature of permanent magnet type synchronous motor
WO2017158680A1 (en) * 2016-03-14 2017-09-21 三菱電機株式会社 Three-phase redundant motor device for electric power steering devices
WO2017158681A1 (en) * 2016-03-14 2017-09-21 三菱電機株式会社 Electric motor control system and electric power steering device equipped with same
KR20190014208A (en) * 2017-07-28 2019-02-12 현대자동차주식회사 Egr control method for engine
JP2019122188A (en) * 2018-01-10 2019-07-22 株式会社デンソー Motor control device and demagnetization determination circuit
JP2020069856A (en) * 2018-10-30 2020-05-07 三菱電機株式会社 Electric braking device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07337072A (en) * 1994-06-07 1995-12-22 Nippondenso Co Ltd Protector for sealed compressor
JP2005012914A (en) * 2003-06-19 2005-01-13 Koyo Seiko Co Ltd Driver for motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07337072A (en) * 1994-06-07 1995-12-22 Nippondenso Co Ltd Protector for sealed compressor
JP2005012914A (en) * 2003-06-19 2005-01-13 Koyo Seiko Co Ltd Driver for motor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124610A (en) * 2008-11-20 2010-06-03 Meidensha Corp Method of controlling pm motor
WO2010060691A1 (en) * 2008-11-25 2010-06-03 Schaeffler Technologies Gmbh & Co. Kg Adjustment device for adjusting a relative rotational angle position of two shafts and method for operating an actuator, particularly of such an adjustment device
US8766562B2 (en) 2008-11-25 2014-07-01 Schaeffler Technologies AG & Co. KG Adjustment device for adjusting a relative rotational angle position of two shafts and method for operating an actuator, particularly of such an adjustment device
JP2011157041A (en) * 2010-02-03 2011-08-18 Honda Motor Co Ltd Electric power steering apparatus
JP2014023338A (en) * 2012-07-20 2014-02-03 Aida Engineering Ltd Permanent magnet motor and drive method for the same, and control device for the permanent magnet motor
JP2014107928A (en) * 2012-11-27 2014-06-09 Honda Motor Co Ltd Motor controller
JP2014117013A (en) * 2012-12-06 2014-06-26 Toyota Motor Corp Control device for motor and vehicle with motor mounted therein as drive source
CN104808148A (en) * 2015-05-07 2015-07-29 哈尔滨工业大学 Temperature rise test method for multiphase multi-unit permanent magnet motor
JP2016220463A (en) * 2015-05-25 2016-12-22 マツダ株式会社 Control device for vehicle with permanent magnet type synchronous motor mounted therein, and method for setting upper limit temperature of permanent magnet type synchronous motor
WO2017158681A1 (en) * 2016-03-14 2017-09-21 三菱電機株式会社 Electric motor control system and electric power steering device equipped with same
WO2017158680A1 (en) * 2016-03-14 2017-09-21 三菱電機株式会社 Three-phase redundant motor device for electric power steering devices
JPWO2017158680A1 (en) * 2016-03-14 2018-05-24 三菱電機株式会社 Three-phase duplex motor device for electric power steering device
JPWO2017158681A1 (en) * 2016-03-14 2018-05-24 三菱電機株式会社 Electric motor control system and electric power steering apparatus provided with the same
CN108778896A (en) * 2016-03-14 2018-11-09 三菱电机株式会社 Motor control system and the electric power-assisted steering apparatus for having motor control system
CN108778895A (en) * 2016-03-14 2018-11-09 三菱电机株式会社 The three-phase double electronic device of electric power-assisted steering apparatus
US10644642B2 (en) 2016-03-14 2020-05-05 Mitsubishi Electric Corporation Three phase duplexing motor for electric power steering apparatus
US11001297B2 (en) 2016-03-14 2021-05-11 Mitsubishi Electric Corporation Electric motor control system and electric power steering apparatus therewith
KR20190014208A (en) * 2017-07-28 2019-02-12 현대자동차주식회사 Egr control method for engine
KR102251332B1 (en) 2017-07-28 2021-05-13 현대자동차주식회사 Egr control method for engine
JP2019122188A (en) * 2018-01-10 2019-07-22 株式会社デンソー Motor control device and demagnetization determination circuit
JP2020069856A (en) * 2018-10-30 2020-05-07 三菱電機株式会社 Electric braking device

Similar Documents

Publication Publication Date Title
JP2006223037A (en) Motor controller and its control method
JP4085112B2 (en) Motor control method and motor control apparatus
JP5229645B2 (en) Electric motor drive device and electric power steering device using the same
JP6107936B2 (en) Power converter
US9660560B2 (en) Motor drive circuit and method of driving a motor
JP2009232498A (en) Motor control device
JP2006158182A (en) Motor drive system
JP4066914B2 (en) Motor drive control device
JP5326222B2 (en) Control device for permanent magnet type synchronous motor
JP6165877B2 (en) Power converter and method for controlling permanent magnet synchronous motor
JP2005147672A (en) Disconnection detecting system
JP2009017707A (en) Motor control unit
JP4877607B2 (en) Inverter device
JP2002238299A (en) Fault detection system of inverter
JP6012211B2 (en) Motor drive device and air conditioner equipped with the same
JP2013123288A (en) Controller of motor
WO2015098154A1 (en) Power conversion device and power conversion device control method
JP2011120471A (en) Motor control method and apparatus of the same
US20170070179A1 (en) Motor drive having function of detecting dc link current
JP4682746B2 (en) Electric motor control device
US20220123684A1 (en) Motor actuator for on-vehicle equipment
JP2008125205A (en) Motor driver and air conditioner using it
JP2008154335A (en) Inverter and method for suppressing overvoltage
JP2010239762A (en) Motor driver
JP2010098871A (en) Electric motor driver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110124