JPH0452721Y2 - - Google Patents
Info
- Publication number
- JPH0452721Y2 JPH0452721Y2 JP1981176596U JP17659681U JPH0452721Y2 JP H0452721 Y2 JPH0452721 Y2 JP H0452721Y2 JP 1981176596 U JP1981176596 U JP 1981176596U JP 17659681 U JP17659681 U JP 17659681U JP H0452721 Y2 JPH0452721 Y2 JP H0452721Y2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- lens
- tip lens
- refractive index
- corneal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 26
- 238000007654 immersion Methods 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 31
- 239000010408 film Substances 0.000 description 23
- 238000005286 illumination Methods 0.000 description 14
- 230000001681 protective effect Effects 0.000 description 13
- 210000004087 cornea Anatomy 0.000 description 8
- 210000000399 corneal endothelial cell Anatomy 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 210000000871 endothelium corneal Anatomy 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 210000001508 eye Anatomy 0.000 description 4
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 3
- 239000010436 fluorite Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 102100025490 Slit homolog 1 protein Human genes 0.000 description 1
- 101710123186 Slit homolog 1 protein Proteins 0.000 description 1
- 241000270708 Testudinidae Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Surface Treatment Of Optical Elements (AREA)
Description
【考案の詳細な説明】
本考案は、反射率の少ない被観察物を同軸照明
で、かつ液浸方式によつて観察を行う場合に有害
な反射光を極力生じさせない液浸方式観察装置用
先端レンズに関する。[Detailed description of the invention] The present invention provides a tip for an immersion observation device that minimizes harmful reflected light when observing objects with low reflectivity using coaxial illumination and an immersion method. Regarding lenses.
従来、反射率の小さい被観察物、例えば人眼の
角膜内皮細胞の観察を行う場合、観察装置の先端
レンズを角膜に接近させその間を角膜表面上にあ
るtear filmと略同じ屈折率の角膜保護媒質で満
たし角膜保護媒質と角膜との界面における反射を
防止していた。 Conventionally, when observing objects with low reflectivity, such as corneal endothelial cells in the human eye, the tip lens of the observation device is brought close to the cornea, and a corneal protector with approximately the same refractive index as the tear film on the corneal surface is used in between. It was filled with a medium to prevent reflections at the interface between the corneal protective medium and the cornea.
しかし、上記のような液浸方法をとつても先端
レンズと角膜保護媒質との界面における反射を防
止することはできない。この反射光は角膜内皮細
胞像の結像面には結像することはないが、この種
の光学装置の作動距離は1mm前後と短いため、観
察光学系により角膜を観察した場合、角膜内皮像
の近くに該反射光による像が現われる。従つて、
スリツト照明光の巾を大きくした場合、角膜内皮
像と、上記先端レンズと角膜保護媒質との境界面
によるスリツト照明光の反射像とが重なり、角膜
内皮像の解像コントラストが著しく悪化する。 However, even with the liquid immersion method described above, reflection at the interface between the tip lens and the corneal protective medium cannot be prevented. This reflected light does not form an image on the imaging plane of the corneal endothelial cell image, but since the working distance of this type of optical device is short, around 1 mm, when the cornea is observed using the observation optical system, the corneal endothelial cell image is An image created by the reflected light appears near. Therefore,
When the width of the slit illumination light is increased, the corneal endothelium image and the reflected image of the slit illumination light by the interface between the tip lens and the corneal protective medium overlap, and the resolution contrast of the corneal endothelium image is significantly deteriorated.
ところで、上記先端レンズと角膜保護媒質との
境界面による反射光が観察光学系に入らないよう
にするため、種々の提案がなされている。第1の
提案例は、光軸に沿つて2分割した先端レンズを
不透明層を介在させて接着接合して構成し、一方
の分割部材を通して照明し他方の分割部材を通し
て観察するものである。この先端レンズの製造は
レンズの切断及び不透明層を介した接合等の困難
な作業を含み、かつ接合に使用する接着剤が眼球
に悪影響を及ぼすおそれがある。第2の提案例
は、先端レンズを光軸と垂直をなす面で切断した
2つの部材で構成し、被検眼側該部材を角膜保護
媒質の屈折率と他方の部材の屈折率との間の屈折
率を有するように材料を選択して、構成すること
により、先端レンズと角膜保護媒質との境界面に
よる反射光を減少させるものである。しかし、先
端レンズとして使用できる透明材料の屈折率値は
限られており、従来のものに比較して該反射光が
わずかに減少するに過ぎないのが実状である。 Incidentally, various proposals have been made to prevent light reflected by the interface between the tip lens and the corneal protection medium from entering the observation optical system. The first proposed example is constructed by adhesively bonding a tip lens divided into two along the optical axis with an opaque layer interposed therebetween, and illuminating through one divided member and observing through the other divided member. Manufacturing this tip lens involves difficult operations such as cutting the lens and bonding through an opaque layer, and the adhesive used for bonding may have an adverse effect on the eyeball. The second proposed example consists of two members in which the distal lens is cut along a plane perpendicular to the optical axis, and the member on the eye side is arranged between the refractive index of the corneal protective medium and the refractive index of the other member. By selecting and configuring the material to have a refractive index, light reflected by the interface between the tip lens and the corneal protective medium is reduced. However, the refractive index value of transparent materials that can be used as tip lenses is limited, and the reality is that the reflected light is only slightly reduced compared to conventional lenses.
本考案は上記従来の問題を解消した液浸型観察
装置の液浸型先端レンズを提供することを目的と
するものであつて、その特徴とするところは、液
浸媒質に液浸させて使用する対物レンズの先端レ
ンズであつて、該先端レンズに向つてMgF2の第
1層と、SiO2の第2層とからなる表面コートを
有し、該先端レンズの屈折率が1.47〜1.59であ
り、該1層および第2層の光学膜厚が設計基準波
長の1/4であることにある。 The purpose of the present invention is to provide an immersion type tip lens for an immersion type observation device that solves the above-mentioned conventional problems. A tip lens of an objective lens, which has a surface coating toward the tip lens consisting of a first layer of MgF 2 and a second layer of SiO 2 , and has a refractive index of 1.47 to 1.59. The reason is that the optical thickness of the first layer and the second layer is 1/4 of the design standard wavelength.
本考案によれば、液浸媒質と液浸用先端レンズ
との境界における反射を防止し、その結果有害反
射光の効果的な除去を行うことができ、耐剥離強
度が高く初期性能を長期に亘り維持し得る液浸用
先端レンズを提供することができる。 According to the present invention, reflection at the boundary between the immersion medium and the immersion tip lens can be prevented, and as a result, harmful reflected light can be effectively removed, and the peeling resistance is high and the initial performance can be maintained for a long time. It is possible to provide an immersion tip lens that can be maintained over a long period of time.
以下本考案の先端レンズを、角膜内皮観察光学
装置に応用した場合を具体例として、以下詳細に
説明する。 Hereinafter, a case in which the tip lens of the present invention is applied to an optical device for observing the corneal endothelium will be described in detail as a specific example.
人眼の角膜裏面には角膜内皮細胞と呼ばれる大
きさ20ミクロン前後の亀甲型の細胞からなる細胞
膜がある。この角膜内皮細胞膜は、角膜皮質と同
様に透明で周囲とのコントラストの差が小さいた
め一般の顕微鏡等ではその観察が困難であり、特
殊な照明観察方法が採用されている。すなわち、
照明光学系と観察光学系とを一部共通とし観察光
学系内に光分割ミラーを配置して照明光束を導入
している。 On the back surface of the cornea of the human eye, there is a cell membrane called corneal endothelial cells, which is made up of tortoise shell-shaped cells approximately 20 microns in size. This corneal endothelial cell membrane is transparent like the corneal cortex and has a small contrast difference with the surrounding area, so it is difficult to observe with a general microscope, etc., so a special illumination observation method is used. That is,
A part of the illumination optical system and the observation optical system are shared, and a light splitting mirror is arranged in the observation optical system to introduce the illumination light flux.
角膜内皮観察光学装置は先端レンズ3、合焦レ
ンズ4、リレーレンズ5、光分割器6、写真感光
材7及び接眼レンズ8で構成される観察光学系
と、照明用光源9、リレーレンズ10、写真撮影
用光源11、コンデンサレンズ12、スリツト1
3、及びミラー14で構成される照明光学系とか
ら成り、ミラー14は照明光学系の照明光束を観
察光学系内に導入している。 The corneal endothelium observation optical device includes an observation optical system composed of a tip lens 3, a focusing lens 4, a relay lens 5, a light splitter 6, a photosensitive material 7, and an eyepiece 8, an illumination light source 9, a relay lens 10, Photography light source 11, condenser lens 12, slit 1
3 and an illumination optical system constituted by a mirror 14, and the mirror 14 introduces the illumination light flux of the illumination optical system into the observation optical system.
角膜内皮細胞の観察の際には、被検眼角膜1に
先端レンズ3を接近させ、その間隙は角膜保護媒
質で満されている。 When observing corneal endothelial cells, the tip lens 3 is brought close to the cornea 1 of the eye to be examined, and the gap therebetween is filled with a corneal protective medium.
観察光源9は、リレーレンズ10に対し写真撮
影用光源11と共役な位置に置かれ、それらの光
束はリレーレンズ10、コンデンサレンズ12お
よびスリツト13を通つてミラー14で反射した
後、合焦レンズ4、先端レンズ3及び角膜保護媒
質2を通り角膜1上に導びかれスリツト状の照明
が行われる。 The observation light source 9 is placed at a position conjugate with the photography light source 11 with respect to the relay lens 10, and the light beam passes through the relay lens 10, the condenser lens 12, and the slit 13, and is reflected by the mirror 14, and then passes through the focusing lens. 4. Slit-shaped illumination is guided onto the cornea 1 through the tip lens 3 and the corneal protective medium 2.
その照明によつて生ずる角膜内皮細胞からの反
射光は、角膜保護媒質2、先端レンズ3、合焦レ
ンズ4、結像レンズ5、光分割器6を通つて接眼
レンズ8又は写真感光材7に導びかれ、それぞれ
肉眼による観察又は写真撮影による記録がなされ
る。 The reflected light from the corneal endothelial cells caused by the illumination passes through the corneal protective medium 2, the tip lens 3, the focusing lens 4, the imaging lens 5, and the light splitter 6 to the eyepiece lens 8 or the photosensitive material 7. Each specimen is guided and recorded by visual observation or photography.
また、この種の光学装置においては、角膜表面
の反射によるゴーストを防止する等のために、照
明光学系や観察光学系の先端に透明部材からなる
先端レンズを配置し、この先端レンズを角膜表面
に直接あるいは液体を介して接触させ、この先端
レンズを介して照明観察を行つている。 In addition, in this type of optical device, in order to prevent ghosts caused by reflections on the corneal surface, a tip lens made of a transparent material is placed at the tip of the illumination optical system and observation optical system, and this tip lens is attached to the corneal surface. The object is brought into contact with the object directly or through a liquid, and illumination observation is performed through this tip lens.
この種の液体としては生理食塩水又は、角膜保
護媒質が使用され、その屈折率は角膜の屈折率
1.376にほヾ等しい1.33である。そのため、角膜
保護媒質と角膜との境界面では、反射はほとんど
生じないといわれている。 Physiological saline or a corneal protective medium is used as this type of liquid, and its refractive index is the refractive index of the cornea.
It is 1.33 which is almost equal to 1.376. Therefore, it is said that almost no reflection occurs at the interface between the corneal protective medium and the cornea.
しかし、角膜保護媒質と先端レンズとの間の屈
折率ギヤツプは先端レンズの屈折率を1.5として
も0.35%の反射率であり、角膜内皮細胞における
反射率0.02%程度に比べて、あまりに大きく、た
とえ結像しないとしても観察の障害となることは
前述の通りである。 However, even if the refractive index of the tip lens is 1.5, the refractive index gap between the corneal protective medium and the tip lens is 0.35%, which is too large compared to the reflectance of about 0.02% in the corneal endothelial cells. As mentioned above, even if the image is not formed, it becomes an obstacle to observation.
境界面における反射を防止するためにレンズ等
の光学部材の表面に反射防止膜を施すことは従来
から種々行われてきた。しかし、これらは空気に
対する反射防止に関して行われていたのであり、
これを液浸型先端レンズに施しても所期の反射防
止の機能を十分にはたすものではなく、またその
反射率もかなり大きなものである。 Conventionally, various antireflection films have been applied to the surfaces of optical members such as lenses in order to prevent reflection at boundary surfaces. However, these were done to prevent reflection from the air.
Even if this is applied to an immersion-type tip lens, it does not sufficiently achieve the desired anti-reflection function, and its reflectance is also quite high.
まず、反射防止膜を単層で行う場合、膜の屈折
率nは角膜保護媒質の屈折率をnp、ガラスの屈折
率をngとすればn2=npngで表わされる。 First, when the antireflection film is formed as a single layer, the refractive index n of the film is expressed as n 2 =n p n g where n p is the refractive index of the corneal protective medium and n g is the refractive index of glass.
この単層の場合では一般に中心波長域における
反射率は低くなるが、その周辺域での反射は急に
増加する傾向にあり、例えば先端レンズを重フリ
ントガラスとしこれにsio2を蒸着した構成のも
の:図2,B、また最適な特性を示すものは先端
レンズをホタル石としそれにMgF2を蒸着させた
構成のもの図2,A以外に考えられないが、これ
は実用性に乏しい。すなわち、ホタル石は高価な
ものである上、ホタル石の表面にMgF2膜を蒸着
する事もかなりの作業困難性を含むとともに、そ
の結果得られた膜は密着性に乏しく、容易に剥離
したりキズがつくので問題がある。 In the case of this single layer, the reflectance in the central wavelength region is generally low, but the reflection in the peripheral region tends to increase rapidly . 2, B. I can't think of anything other than the structure shown in FIG. 2, A, in which the tip lens is made of fluorite and MgF 2 is vapor-deposited thereon, but this is impractical. In other words, fluorite is expensive, and evaporating a MgF2 film on the surface of fluorite is quite difficult, and the resulting film has poor adhesion and is easily peeled off. This is a problem because it can cause scratches.
次に、多層膜で反射防止を行う場合には、従来
の反射防止膜から類推して次の三層構造が考えら
れる。すなわち、基板に向つて
第三層:ガラスより少し高めの屈折率n3をもつた
膜を光学的厚さλ/4で蒸着する。(たヾし、
λは設計基準波長を表す。以下同じ。)
第二層:屈折率n2の膜を光学的厚さλ/2で蒸着
する。 Next, when antireflection is performed using a multilayer film, the following three-layer structure can be considered by analogy with conventional antireflection films. That is, a third layer: a film having a refractive index n 3 slightly higher than that of glass is deposited to an optical thickness of λ/4 toward the substrate. (Tawashi,
λ represents the design reference wavelength. same as below. ) Second layer: deposit a film of refractive index n 2 with optical thickness λ/2.
第一層:屈折率n1の膜を光学的厚さλ/4で蒸着
する。First layer: A film with a refractive index n 1 is deposited to an optical thickness of λ/4.
この膜の中心波長における反射防止の条件は ngn2 1npn2 3 である(たヾし、ng,npは前記定義通りである)。 The anti-reflection condition at the center wavelength of this film is n g n 2 1 n p n 2 3 (where n g and n p are as defined above).
さらに、可視域全般にわたつて低反射率とする
為に適当な屈折率をもつ第二層を光学的膜厚λ/
2で蒸着すれば、反射防止は理論上行うことがで
きる。 Furthermore, in order to achieve low reflectance over the entire visible range, the second layer with an appropriate refractive index is coated with an optical thickness of λ/
In theory, anti-reflection can be achieved by vapor-depositing with 2.
しかしながら、0.02%以下の反射防止が要求さ
れる場合において、三層構成をとることは危険度
が大きい。というのは第三層において一度反射率
を高めているためであり、膜厚及び屈折率の誤差
が敏感に反射率に影響してしまい所望の膜を製造
することは非常に困難である。 However, in cases where anti-reflection of 0.02% or less is required, adopting a three-layer structure is highly dangerous. This is because the reflectance is increased once in the third layer, and errors in film thickness and refractive index sensitively affect the reflectance, making it extremely difficult to manufacture a desired film.
さらに付け加えるならば、高屈折率の物質は一
般的に屈折率が安定していないという不安もある
ため三層構造は採用できない。 Furthermore, there is a concern that the refractive index of materials with high refractive index is generally unstable, so a three-layer structure cannot be adopted.
本考案は、以上の理由によつて以下の層構造の
反射防止膜を採用することとした。 For the above reasons, the present invention has decided to adopt an antireflection film having the following layer structure.
本考案においては、屈折率ギヤツプを一定方向
にかつできる限り減少させるため、先端レンズ材
料としては屈折率のなるべく低いものを選択し、
角膜保護媒質の屈折率1.33に近づけるように、基
板に向つてMgF2(λ/4)およびSiO2(λ/4)
の膜構成を採用することとした。その模式的構成
を図6に示す。 In this invention, in order to reduce the refractive index gap in a certain direction and as much as possible, we select a material with the lowest possible refractive index as the tip lens material.
M g F 2 (λ/4) and SiO 2 (λ/4) toward the substrate to approximate the refractive index of the corneal protective medium, 1.33.
We decided to adopt the following membrane configuration. Its schematic configuration is shown in FIG.
図3では設計基準波長を520nmとし第一層の
MgF2と第二層のSi02を520nm/4の光学膜厚
(以下単に膜厚という)で屈折率1.48,1.50およ
び1.57の先端レンズに蒸着した場合の反射率特性
曲線をそれぞれA,B,Cで示している。 In Figure 3, the design standard wavelength is 520nm, and the first layer
The reflectance characteristic curves when MgF 2 and the second layer of Si0 2 are deposited with an optical film thickness of 520 nm/4 (hereinafter simply referred to as film thickness) on tip lenses with refractive indexes of 1.48, 1.50, and 1.57 are shown in A, B, and A, respectively. It is shown by C.
図3の反射率特性曲線から明らかなように、先
端レンズの屈折率を1.50とした曲線Bの示す反射
率特性は、可視全域にわたつて反射率が低くおさ
えられており最適であることがわかる。 As is clear from the reflectance characteristic curve in Figure 3, it can be seen that the reflectance characteristic shown by curve B, where the refractive index of the tip lens is 1.50, is optimal as the reflectance is kept low over the entire visible range. .
しかしながら、先端レンズの屈折率を1.48ある
いは1.53と多少変化させても、曲線AあるいはC
に示されるように使用に十分耐え得るものである
ことも明らかである。 However, even if the refractive index of the tip lens is slightly changed to 1.48 or 1.53, curves A or C
It is also clear that the product is durable enough for use.
また図4では、先端レンズの屈折率を1.51とし
第一層、第二層の成分はそれぞれ図3と同様とし
その膜厚を第一層480nm/4、第二層を560nm/
4としたときの反射率透過特性曲線を曲線Aで示
し、第一層を560nm/4、第二層を480nm/4と
したときの特性曲線をBで示し、かつ第一層を
520nm/4、第二層を440nm/4としたときの特
性曲線をCで示している。 In Figure 4, the refractive index of the tip lens is 1.51, the components of the first layer and the second layer are the same as in Figure 3, and the film thickness is 480 nm/4 for the first layer and 560 nm/4 for the second layer.
Curve A shows the reflectance transmission characteristic curve when the wavelength is 4, and curve B shows the characteristic curve when the first layer is 560 nm/4 and the second layer is 480 nm/4.
C shows the characteristic curve when the thickness is 520 nm/4 and the second layer is 440 nm/4.
図4の3つの特性曲線から明らかなように第一
層及び第二層の膜厚は、きびしい制限をうけるも
のではなくその許容範囲が広いことがうかがえ
る。 As is clear from the three characteristic curves in FIG. 4, it can be seen that the film thicknesses of the first layer and the second layer are not subject to severe restrictions and have a wide allowable range.
図5では、設計基準波長を520nmとし、第一層
をMgF2と、第二層を蒸着用ガラスで構成し、
520nm/4の膜厚で屈折率1.53,1.55、および
1.57の先端レンズに蒸着した場合の反射率特性曲
線をそれぞれ、A,B,Cで示している。 In Figure 5, the design standard wavelength is 520 nm, the first layer is made of MgF 2 , the second layer is made of glass for vapor deposition,
At a film thickness of 520nm/4, the refractive index is 1.53, 1.55, and
The reflectance characteristic curves when deposited on a 1.57 tip lens are shown as A, B, and C, respectively.
図5の結果も図3および図4と同様な傾向を示
している。 The results in FIG. 5 also show the same tendency as FIGS. 3 and 4.
以上の記載から明らかなように、上記の反射防
止膜を施した液浸用先端レンズで液浸観察を行え
ば被観察物の反射率が低く周辺とのコントラスト
の差が相当低い場合においても、先端レンズと液
浸液との境界の反射光によつて観察を妨げられる
ことがない。 As is clear from the above description, if immersion observation is performed using the immersion tip lens coated with the above-mentioned anti-reflection film, even if the reflectance of the object to be observed is low and the contrast difference with the surrounding area is quite low, Observation is not obstructed by reflected light from the boundary between the tip lens and the immersion liquid.
図1は、角膜内被皮観察光学装置の光学配置図
であり、図2は、単一の反射防止膜を有する先端
レンズの反射率特性を示す図であり、図3〜図5
は、夫々2層からなる反射防止膜を有する本考案
の先端レンズの反射率特性を示す図であり、図6
は本考案の反射防止膜を施した先端レンズの模式
図である。
a……第1層、b……第2層、c……先端レン
ズ。
FIG. 1 is an optical layout diagram of an optical device for observing the corneal endothelium, FIG. 2 is a diagram showing the reflectance characteristics of a tip lens having a single antireflection film, and FIGS.
6 is a diagram showing the reflectance characteristics of the tip lens of the present invention each having an antireflection film consisting of two layers, and FIG.
1 is a schematic diagram of a tip lens coated with an antireflection film according to the present invention. a...first layer, b...second layer, c...tip lens.
Claims (1)
端レンズであつて、該先端レンズに向つてMgF2
の第1層と、SiO2の第2層とからなる表面コー
トを有し、該先端レンズの屈折率が1.47〜1.59で
あり、該1層および第2層の光学膜厚が設計基準
波長の1/4であることを特徴とする、液浸用先端
レンズ。 This is the tip lens of an objective lens that is used by immersing it in an immersion medium .
The tip lens has a surface coating consisting of a first layer of SiO 2 and a second layer of SiO 2 , and the refractive index of the tip lens is 1.47 to 1.59, and the optical thickness of the first layer and second layer is equal to the design reference wavelength. A tip lens for liquid immersion, characterized by its 1/4 size.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981176596U JPS5881501U (en) | 1981-11-27 | 1981-11-27 | Immersion tip lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981176596U JPS5881501U (en) | 1981-11-27 | 1981-11-27 | Immersion tip lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5881501U JPS5881501U (en) | 1983-06-02 |
JPH0452721Y2 true JPH0452721Y2 (en) | 1992-12-11 |
Family
ID=29969715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981176596U Granted JPS5881501U (en) | 1981-11-27 | 1981-11-27 | Immersion tip lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5881501U (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6022101A (en) * | 1983-07-18 | 1985-02-04 | Matsushita Electric Ind Co Ltd | Antireflection film for plastic optical parts |
JP2005189850A (en) * | 2003-12-15 | 2005-07-14 | Carl Zeiss Smt Ag | Refractive projection objective lens for immersion lithography |
JP4907596B2 (en) * | 2003-12-15 | 2012-03-28 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Refractive projection objective |
EP1810609B1 (en) * | 2004-10-01 | 2013-12-04 | Hoya Corporation | Lens for intraocular observation and contact lens for vitreous operation |
SG174021A1 (en) * | 2007-07-13 | 2011-09-29 | Alcon Inc | Off-axis anti-reflective intraocular lenses |
JP2012008297A (en) * | 2010-06-24 | 2012-01-12 | Nikon Corp | Optical element and optical apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55148531A (en) * | 1979-05-08 | 1980-11-19 | Konan Camera Res Inst | Eyeball microscope |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54183360U (en) * | 1978-06-15 | 1979-12-26 |
-
1981
- 1981-11-27 JP JP1981176596U patent/JPS5881501U/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55148531A (en) * | 1979-05-08 | 1980-11-19 | Konan Camera Res Inst | Eyeball microscope |
Also Published As
Publication number | Publication date |
---|---|
JPS5881501U (en) | 1983-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2620712B2 (en) | 2-wavelength antireflection multilayer film | |
JP4524877B2 (en) | Eyeglass lenses | |
US5341238A (en) | Dichroic optical filter | |
JP4014716B2 (en) | Optical system having polarization compensation optical system | |
Musset et al. | IV multilayer antireflection coatings | |
JPH08110492A (en) | Optical system and visual sense display device | |
JPH0452721Y2 (en) | ||
JP3799696B2 (en) | Mirror for excimer laser | |
JP3808918B2 (en) | Endoscope optical system | |
JP4562157B2 (en) | Antireflection film and optical element | |
JP3630808B2 (en) | Non-polarizing beam splitter | |
NL8401158A (en) | DEVICE WITH THIN LAYERS. | |
JP2000034557A (en) | Reflection enhancing film for near infrared rays and production of the same | |
JP2002055207A (en) | Optical component and optical device | |
JP2537773B2 (en) | Plastic mirror lenses | |
JPH05264802A (en) | Multilayered antireflection film | |
JPH0242201B2 (en) | ||
JP3531444B2 (en) | Prism beam splitter | |
JPS6133167B2 (en) | ||
JPH05127018A (en) | Strain removing method for substrate subjected to vapor deposition and filter | |
JPS62127701A (en) | Antireflection film | |
JPS6028603A (en) | Prism type beam splitter | |
JP3113371B2 (en) | Multi-layer anti-reflective coating | |
JP2023150384A (en) | Black spot plate for ophthalmologic apparatus and manufacturing method thereof, and ophthalmologic apparatus | |
JP2001013308A (en) | Prism type beam splitter |