JPH0452278A - 光反転cvd方法 - Google Patents
光反転cvd方法Info
- Publication number
- JPH0452278A JPH0452278A JP16010790A JP16010790A JPH0452278A JP H0452278 A JPH0452278 A JP H0452278A JP 16010790 A JP16010790 A JP 16010790A JP 16010790 A JP16010790 A JP 16010790A JP H0452278 A JPH0452278 A JP H0452278A
- Authority
- JP
- Japan
- Prior art keywords
- cvd
- light
- substrate
- adsorbent
- patterning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 19
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 238000000059 patterning Methods 0.000 claims abstract description 11
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 8
- 238000002230 thermal chemical vapour deposition Methods 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims 1
- 239000002994 raw material Substances 0.000 abstract description 6
- 230000001678 irradiating effect Effects 0.000 abstract description 3
- -1 dimethylaluminum halide Chemical class 0.000 abstract 1
- 239000003463 adsorbent Substances 0.000 description 27
- 230000005284 excitation Effects 0.000 description 8
- 238000003795 desorption Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010504 bond cleavage reaction Methods 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000005469 synchrotron radiation Effects 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、各種材料のCVDにおいて、レジスト塗布、
露光、レジスト剥離などのプロセス無しで、光利用によ
って空間選択性良くパターニングできるCVD方法に関
するものである。
露光、レジスト剥離などのプロセス無しで、光利用によ
って空間選択性良くパターニングできるCVD方法に関
するものである。
(従来の技術)
熱CVD中に光を照射し、光照射部でのCVD膜成長を
抑制することによって直接CVD膜のパターニングを行
う光反転CVD方法は、光照射部に膜を成長させる通常
の光CVD方法に比べて気相分解による降り積もりの影
響を除去できるため、パターン転写の分解能を向上させ
ることができる。この方法の従来例として、産出の発明
による特開昭62−116786号公報(特願昭60−
254582号)「表面選択処理方法」や、杉田らの発
表による第36回応用物理学関係連合講演会(1989
年春季)第2分冊592頁講演番号2p−L−5rシン
クロトロン放射光を用いたポジ型パターン転写CVDJ
例がある。これらの方法を要約してまとめると、基板・
吸着子間結合の振動エネルギーに共鳴する赤外光照射に
よる吸着子の脱離、または、真空紫外光照射による基板
・吸着子間結合切断による吸着子の脱離を利用するもの
である。
抑制することによって直接CVD膜のパターニングを行
う光反転CVD方法は、光照射部に膜を成長させる通常
の光CVD方法に比べて気相分解による降り積もりの影
響を除去できるため、パターン転写の分解能を向上させ
ることができる。この方法の従来例として、産出の発明
による特開昭62−116786号公報(特願昭60−
254582号)「表面選択処理方法」や、杉田らの発
表による第36回応用物理学関係連合講演会(1989
年春季)第2分冊592頁講演番号2p−L−5rシン
クロトロン放射光を用いたポジ型パターン転写CVDJ
例がある。これらの方法を要約してまとめると、基板・
吸着子間結合の振動エネルギーに共鳴する赤外光照射に
よる吸着子の脱離、または、真空紫外光照射による基板
・吸着子間結合切断による吸着子の脱離を利用するもの
である。
(発明が解決しようとする課題)
上述の従来法によるCVD膜のパターニング方法は、基
板上の所望の部分にのみ光を照射し、この光照射部での
CVDを抑制することによってパターニングを行ってい
る。CVDの抑制を、基板・吸着子間結合の振動エネル
ギーに共鳴する赤外光照射による吸着子の脱離で行う場
合、赤外光によって基板が加熱されるので、吸着子の脱
離だけでなく熱分解による堆積が生じ、CVDの抑制は
不十分になる。また、真空紫外光照射による基板・吸着
子間結合切断による吸着子の脱離によってCVDの抑制
を行う場合、基板、吸着子間の結合切断だけでなく吸着
子内の結合切断による光化学的CVDが生じ、CVDの
抑制は不十分になる。
板上の所望の部分にのみ光を照射し、この光照射部での
CVDを抑制することによってパターニングを行ってい
る。CVDの抑制を、基板・吸着子間結合の振動エネル
ギーに共鳴する赤外光照射による吸着子の脱離で行う場
合、赤外光によって基板が加熱されるので、吸着子の脱
離だけでなく熱分解による堆積が生じ、CVDの抑制は
不十分になる。また、真空紫外光照射による基板・吸着
子間結合切断による吸着子の脱離によってCVDの抑制
を行う場合、基板、吸着子間の結合切断だけでなく吸着
子内の結合切断による光化学的CVDが生じ、CVDの
抑制は不十分になる。
また、このようなCVD抑制のメカニズムからくる不十
分さ以外に、光源の種類の制約がある。結合の振動エネ
ルギーに共鳴する赤外光照射によって吸着子を脱離させ
る方法では、照射光のエネルギーを振動エネルギーに共
鳴させる必要がある。
分さ以外に、光源の種類の制約がある。結合の振動エネ
ルギーに共鳴する赤外光照射によって吸着子を脱離させ
る方法では、照射光のエネルギーを振動エネルギーに共
鳴させる必要がある。
また、吸着子の種類は通常一種類ではないので、全ての
吸着子を脱離させるには、それぞれに共鳴した光を使用
しなければならないので、用意すべき光源の数が多くな
り、装置構成上の障害になる。一方、紫外光照射によっ
て基板、吸着子間結合を切断して吸着子を脱離させる方
法では、吸着子の価電子励起によって、結合性軌道にあ
る電子を反結合性軌道へ移動させることによって行う。
吸着子を脱離させるには、それぞれに共鳴した光を使用
しなければならないので、用意すべき光源の数が多くな
り、装置構成上の障害になる。一方、紫外光照射によっ
て基板、吸着子間結合を切断して吸着子を脱離させる方
法では、吸着子の価電子励起によって、結合性軌道にあ
る電子を反結合性軌道へ移動させることによって行う。
このことは、光励起の始状態と、終状態が決まっている
ことを意味するので、このエネルギーに相当する波長の
光の使用に限定される。また、更に波長が短い真空紫外
光を用いた場合、吸着子のイオン化が起こり、これによ
って吸着子・基板間の結合が切れて吸着子の脱離が起き
、真空紫外光照射領域でのCVDを抑制できる。この場
合、用いる光のエネルギーは、イオン化の閾値エネルギ
ーより大きければ良いので、上記2つの方法に比べて波
長の制約が緩くなる。しかし、価電子励起によるイオン
化では、吸着子脱離によるCVDの抑制はまだ不十分で
あるという問題がある。
ことを意味するので、このエネルギーに相当する波長の
光の使用に限定される。また、更に波長が短い真空紫外
光を用いた場合、吸着子のイオン化が起こり、これによ
って吸着子・基板間の結合が切れて吸着子の脱離が起き
、真空紫外光照射領域でのCVDを抑制できる。この場
合、用いる光のエネルギーは、イオン化の閾値エネルギ
ーより大きければ良いので、上記2つの方法に比べて波
長の制約が緩くなる。しかし、価電子励起によるイオン
化では、吸着子脱離によるCVDの抑制はまだ不十分で
あるという問題がある。
また、光の回折効果によるCVD膜のパターニング上の
問題がある。光照射領域はマスクの開口部の形状で決ま
り、パターニング後のCVD膜のエツジ形状の切れの良
さは、マスクの開口部での光の回折による非照射部への
光の回り込みを、如何に抑えるかによって決まる。この
回り込みの大きさは、光の波長に比例するので、赤外光
を使用するよりも、もっと波長の短い真空紫外光を使う
方が回折による光の回り込みを抑えることが出来る。
問題がある。光照射領域はマスクの開口部の形状で決ま
り、パターニング後のCVD膜のエツジ形状の切れの良
さは、マスクの開口部での光の回折による非照射部への
光の回り込みを、如何に抑えるかによって決まる。この
回り込みの大きさは、光の波長に比例するので、赤外光
を使用するよりも、もっと波長の短い真空紫外光を使う
方が回折による光の回り込みを抑えることが出来る。
しかし、これまでに使用されている波長では、まだ回折
効果の抑制は不十分である。
効果の抑制は不十分である。
本発明の目的は、光照射部での吸着子の脱離促進による
効果的なCVD抑制を行い、しかも、所望の波長を発す
る光源の選択幅を大きく採れ、また、同時に、光の回折
効果を抑え、光照射部と非照射部の境界のエツジの切れ
が良(て空間選択性がよい光反転CVD方法を提供する
ことにある。
効果的なCVD抑制を行い、しかも、所望の波長を発す
る光源の選択幅を大きく採れ、また、同時に、光の回折
効果を抑え、光照射部と非照射部の境界のエツジの切れ
が良(て空間選択性がよい光反転CVD方法を提供する
ことにある。
(課題を解決するための手段)
本発明の光反転CVD方法は、熱CVD中に光を照射す
るCVD方法において、基板、または、原料ガスを構成
する原子の内、少なくとも一種類の原子の内殼をイオン
化できるエネルギの光を照射し、光照射部でのCVDを
抑制することによって直接CVD膜のパターニングを行
うことを特徴とする。
るCVD方法において、基板、または、原料ガスを構成
する原子の内、少なくとも一種類の原子の内殼をイオン
化できるエネルギの光を照射し、光照射部でのCVDを
抑制することによって直接CVD膜のパターニングを行
うことを特徴とする。
(作用)
本発明の作用上の特徴は、基板、または、吸着子を構成
する原子の内、少なくとも1つの原子の内殼励起による
吸着子の分解・脱離の促進と、内殼励起可能な光の波長
が従来使用されていた光に比べて短波長であることによ
る回折効果の抑制との2つの要因に帰着する。
する原子の内、少なくとも1つの原子の内殼励起による
吸着子の分解・脱離の促進と、内殼励起可能な光の波長
が従来使用されていた光に比べて短波長であることによ
る回折効果の抑制との2つの要因に帰着する。
本発明の方法によるCVDの抑制は、内殼励起で形成さ
れた内殼ホールのカスケード的なオージェ遷移によって
形成された、吸着子の不安定な多価イオンの分解・脱離
によって行われる。これまで、気相中での有機金属化合
物やSiH4などの分解反応では、これを構成する原子
の内殼を励起する方が、価電子を励起するよりも、解離
度の高い分解生成物ができることが知られている。これ
らのことは、例えば、ナガオカ(Nagaoka)らに
よってケミカルフィジックスレターズ誌(Chem、
Phy、 Lett、)第154巻(1988)の36
3ページから368ページに発表された論文や、ヤギシ
タ(Yagisita)らによってケミカルフィジック
スレターズ誌(Chem、 Phy、 Lett、)第
132巻(1986)の437ページから440ページ
に発表された論文に見られる。このような、これまでに
報告されている気相反応だけではなく、基板上の吸着分
子についても内殼を励起する方が解離度が上がるだけで
なく、解離生成物の脱離が促進されることが、本発明者
の実験結果から分かった。従って、従来の赤外光や、真
空紫外光を用いてCVDを抑制するよりも、内殼を励起
できる程の短波長の光を用いた方が、CVDの抑制効果
がある。そのため、光照射部にCVDを行う場合に問題
となる、光照射領域以外への気相生成活性層の拡散によ
る空間選択性の低下を、光照射部での拡散してくる活性
種の脱離、吸着分子の脱離によるCVD抑制でパターニ
ングを行うことによって、従来技術に比べて更に空間選
択性を向上させることができる。
れた内殼ホールのカスケード的なオージェ遷移によって
形成された、吸着子の不安定な多価イオンの分解・脱離
によって行われる。これまで、気相中での有機金属化合
物やSiH4などの分解反応では、これを構成する原子
の内殼を励起する方が、価電子を励起するよりも、解離
度の高い分解生成物ができることが知られている。これ
らのことは、例えば、ナガオカ(Nagaoka)らに
よってケミカルフィジックスレターズ誌(Chem、
Phy、 Lett、)第154巻(1988)の36
3ページから368ページに発表された論文や、ヤギシ
タ(Yagisita)らによってケミカルフィジック
スレターズ誌(Chem、 Phy、 Lett、)第
132巻(1986)の437ページから440ページ
に発表された論文に見られる。このような、これまでに
報告されている気相反応だけではなく、基板上の吸着分
子についても内殼を励起する方が解離度が上がるだけで
なく、解離生成物の脱離が促進されることが、本発明者
の実験結果から分かった。従って、従来の赤外光や、真
空紫外光を用いてCVDを抑制するよりも、内殼を励起
できる程の短波長の光を用いた方が、CVDの抑制効果
がある。そのため、光照射部にCVDを行う場合に問題
となる、光照射領域以外への気相生成活性層の拡散によ
る空間選択性の低下を、光照射部での拡散してくる活性
種の脱離、吸着分子の脱離によるCVD抑制でパターニ
ングを行うことによって、従来技術に比べて更に空間選
択性を向上させることができる。
また、光照射部でのCVD抑制によって膜をパターニン
グする場合、基板上への光照射領域を決めるマクスの開
口部の端で回折された回折光が、非照射部にも照射され
る。その結果、回折されずに直進する光による照射部だ
けでなく、非照射部でも回折光によってCVDが部分的
に抑制されてしまい、所望の形状にCVD膜をパターニ
ングできない。しかし、用いる光の波長が内殼励起可能
なほど短波長になると、これまで使用されている赤外光
や価電子励起可能な真空紫外光に比べて、回折光の強度
、及び、回り込みが2〜3桁小さくなるので、直進する
光による照射部だけでCVDを抑制でき、所望の形状に
CVD膜をパターニングできる。
グする場合、基板上への光照射領域を決めるマクスの開
口部の端で回折された回折光が、非照射部にも照射され
る。その結果、回折されずに直進する光による照射部だ
けでなく、非照射部でも回折光によってCVDが部分的
に抑制されてしまい、所望の形状にCVD膜をパターニ
ングできない。しかし、用いる光の波長が内殼励起可能
なほど短波長になると、これまで使用されている赤外光
や価電子励起可能な真空紫外光に比べて、回折光の強度
、及び、回り込みが2〜3桁小さくなるので、直進する
光による照射部だけでCVDを抑制でき、所望の形状に
CVD膜をパターニングできる。
以上のように、内殼励起によって吸着子の分解・脱離を
効果的に行わせることができ、同時に、回折効果を抑え
ることができ、所望の形状に空間選択性良<CVD膜を
パターニングできる。
効果的に行わせることができ、同時に、回折効果を抑え
ることができ、所望の形状に空間選択性良<CVD膜を
パターニングできる。
(実施例)
以下、本発明について第1図を参照しながら説明する。
本実施例では、Siデバイスの形成において、A1配線
を形成する場合について述べる。
を形成する場合について述べる。
第1図(a)は、Si基板11上に熱酸化膜12がパタ
ーニングされており、この上の全面にポリシリコンpo
ly−8i膜13が成膜されている。
ーニングされており、この上の全面にポリシリコンpo
ly−8i膜13が成膜されている。
第1図(b)には、第1図(a)の基板上に、AI配線
14を光15を用いて直接パターニングしながら堆積さ
せ、AI配線14をpoly−8i膜13を介してSi
基板11に対して電気的コンタクトを形成する方法を示
しである。具体的成膜方法を以下に示す。第1図(a)
の構造を持つ基板を、CVDチャンバに装着し、AI原
料としてのジメチルアルミニウムハイドライドAl(C
H3)2Hをチャンバ内に導入し基板温度を200’C
にして熱CVDを行う。光15としてAI原子、C原子
、Si原子の内殼を励起できる100eVよりも高エネ
ルギーの放射光を用い、マスク16で配線形成領域に光
15を当てないようにして、この光の当たらない部分に
のみAIのCVDを行いAI配線14を形成する。
14を光15を用いて直接パターニングしながら堆積さ
せ、AI配線14をpoly−8i膜13を介してSi
基板11に対して電気的コンタクトを形成する方法を示
しである。具体的成膜方法を以下に示す。第1図(a)
の構造を持つ基板を、CVDチャンバに装着し、AI原
料としてのジメチルアルミニウムハイドライドAl(C
H3)2Hをチャンバ内に導入し基板温度を200’C
にして熱CVDを行う。光15としてAI原子、C原子
、Si原子の内殼を励起できる100eVよりも高エネ
ルギーの放射光を用い、マスク16で配線形成領域に光
15を当てないようにして、この光の当たらない部分に
のみAIのCVDを行いAI配線14を形成する。
このようにして、AI配線14を光15を用いて直接パ
ターニングしながら堆積させ、電気的コンタクトを形成
することができる。
ターニングしながら堆積させ、電気的コンタクトを形成
することができる。
この後、堆積させたAIをマスクにして、poly−8
iをプラズマエツチングで取り除いてAI配線形成プロ
セスが終了する。この方法でAI配線を形成した後、こ
の配線とコンタクトを形成していない配線との間の抵抗
を測定したところ電気的リークはなく、絶縁は良好であ
った。
iをプラズマエツチングで取り除いてAI配線形成プロ
セスが終了する。この方法でAI配線を形成した後、こ
の配線とコンタクトを形成していない配線との間の抵抗
を測定したところ電気的リークはなく、絶縁は良好であ
った。
本実施例では、Al(CH3)2Hを原料としたAIの
光反転CVDについて述べたが、原料はこれに限られる
ことはなく、トリメチルアルミニウムAl(CH3)3
やトリイソブチルアルミニウムAI−Al−1so(C
4H等の他の有機金属でも良いし、塩素原子を含んでい
ても良い。また基板も実施例に限らず他の半導体基板で
も有効である。また、反転CVDさせるものも、AIに
限らず、SiやGaAs等の半導体やこれらの混晶であ
ってもよいし、5i02等の絶縁膜であっても良い。成
層するものに応じて、基板や原料ガスや、光のエネルギ
ー、基板温度等の成長条件を作用の項で述べた原理に合
うよう変えればよい。
光反転CVDについて述べたが、原料はこれに限られる
ことはなく、トリメチルアルミニウムAl(CH3)3
やトリイソブチルアルミニウムAI−Al−1so(C
4H等の他の有機金属でも良いし、塩素原子を含んでい
ても良い。また基板も実施例に限らず他の半導体基板で
も有効である。また、反転CVDさせるものも、AIに
限らず、SiやGaAs等の半導体やこれらの混晶であ
ってもよいし、5i02等の絶縁膜であっても良い。成
層するものに応じて、基板や原料ガスや、光のエネルギ
ー、基板温度等の成長条件を作用の項で述べた原理に合
うよう変えればよい。
(発明の効果)
本発明によれば、各種材料のCVDにおいて、レジスト
塗布、露光、レジスト剥離などのプロセス無しで、高エ
ネルギーの光利用によって所望の微細パターン形状にお
いても空間選択性良くパターニングできるCVD方法を
得ることができる。
塗布、露光、レジスト剥離などのプロセス無しで、高エ
ネルギーの光利用によって所望の微細パターン形状にお
いても空間選択性良くパターニングできるCVD方法を
得ることができる。
第1図(a)、(b)は、本発明の方法による配線形成
方法を示す概念図である。 11・・・Si基板、 12・・・熱酸化膜、 13−poly−8i膜、 14・・・AI配線、 15・・・光、 16・・・マスク
方法を示す概念図である。 11・・・Si基板、 12・・・熱酸化膜、 13−poly−8i膜、 14・・・AI配線、 15・・・光、 16・・・マスク
Claims (1)
- 熱CVD中に光を照射するCVD方法において、基板
、または、原料ガスを構成する原子の内、少なくとも一
種類の原子の内殼をイオン化できるエネルギーの光を照
射し、光照射部でのCVDを抑制することによってCV
D膜のパターニングを行うことを特徴とする光反転CV
D方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16010790A JP2890693B2 (ja) | 1990-06-19 | 1990-06-19 | 光反転cvd方法 |
US07/717,603 US5393577A (en) | 1990-06-19 | 1991-06-19 | Method for forming a patterned layer by selective chemical vapor deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16010790A JP2890693B2 (ja) | 1990-06-19 | 1990-06-19 | 光反転cvd方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0452278A true JPH0452278A (ja) | 1992-02-20 |
JP2890693B2 JP2890693B2 (ja) | 1999-05-17 |
Family
ID=15708006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16010790A Expired - Lifetime JP2890693B2 (ja) | 1990-06-19 | 1990-06-19 | 光反転cvd方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2890693B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04273434A (ja) * | 1991-02-28 | 1992-09-29 | Nec Corp | 光cvd方法 |
JPH0613333A (ja) * | 1992-02-18 | 1994-01-21 | Nec Corp | 熱cvd方法 |
-
1990
- 1990-06-19 JP JP16010790A patent/JP2890693B2/ja not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04273434A (ja) * | 1991-02-28 | 1992-09-29 | Nec Corp | 光cvd方法 |
JPH0613333A (ja) * | 1992-02-18 | 1994-01-21 | Nec Corp | 熱cvd方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2890693B2 (ja) | 1999-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5344522A (en) | Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process | |
US5393577A (en) | Method for forming a patterned layer by selective chemical vapor deposition | |
EP0909988A1 (en) | Photolithographic processing method | |
JPH0622212B2 (ja) | ドライエッチング方法 | |
EP0175456B1 (en) | Phototreating apparatus | |
US11037798B2 (en) | Self-limiting cyclic etch method for carbon-based films | |
JPS61174639A (ja) | 光エツチング方法 | |
JPS61117822A (ja) | 半導体装置の製造装置 | |
JPH04159718A (ja) | ハロゲン化物質使用の銅エッチング工程 | |
US5112645A (en) | Phototreating method and apparatus therefor | |
JPH0452278A (ja) | 光反転cvd方法 | |
JPS6289882A (ja) | 気相エツチング方法 | |
JP2770578B2 (ja) | 光cvd方法 | |
JPS61228633A (ja) | 薄膜形成方法 | |
JPH07254556A (ja) | パターン形成方法および形成装置 | |
JPH04293776A (ja) | 熱cvd方法 | |
JP2782757B2 (ja) | エッチング方法 | |
JPS63317675A (ja) | プラズマ気相成長装置 | |
JP2968657B2 (ja) | 熱cvd方法 | |
JPH03155621A (ja) | ドライエッチング方法 | |
JP2586700B2 (ja) | 配線形成方法 | |
JPH07118475B2 (ja) | 基板表面処理方法 | |
JPH10209132A (ja) | 有機物の除去方法 | |
JP2001003176A (ja) | 微細構造パターンの形成方法 | |
JPH02183530A (ja) | 半導体素子の作製方法 |