JPH0451491Y2 - - Google Patents

Info

Publication number
JPH0451491Y2
JPH0451491Y2 JP1985126791U JP12679185U JPH0451491Y2 JP H0451491 Y2 JPH0451491 Y2 JP H0451491Y2 JP 1985126791 U JP1985126791 U JP 1985126791U JP 12679185 U JP12679185 U JP 12679185U JP H0451491 Y2 JPH0451491 Y2 JP H0451491Y2
Authority
JP
Japan
Prior art keywords
cooler
heat insulating
signal detection
detection element
minute signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985126791U
Other languages
Japanese (ja)
Other versions
JPS6234450U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985126791U priority Critical patent/JPH0451491Y2/ja
Publication of JPS6234450U publication Critical patent/JPS6234450U/ja
Application granted granted Critical
Publication of JPH0451491Y2 publication Critical patent/JPH0451491Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Radiation Pyrometers (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea] 【考案の属する技術分野】[Technical field to which the idea belongs]

この考案は例えば赤外線センサ等の電気的な微
小信号検出素子を冷却機で冷却するように構成し
た微小信号検出装置を対象とする微小信号検出器
と冷却機との組立構造に関する。
This invention relates to an assembly structure of a minute signal detector and a cooler, which is intended for a minute signal detection device configured to cool an electric minute signal detection element such as an infrared sensor with a cooler.

【従来技術とその問題点】[Prior art and its problems]

頭記した赤外線センサないしレーザー受信器等
の微小信号を検出する検出装置では、熱的雑音を
除去して検出性能を向上させるために検出素子を
例えば液体窒素温度(約−200℃)程度の極低温
に冷却する必要がある。このために上記赤外線検
出装置を対象に第3図のように赤外線検出素子と
冷却機とを組み合せた装置が知られている。すな
わち第3図において、1が赤外線検出素子、2が
検出素子を冷却する例えば逆スターリングサイク
ル方式の冷却機であり、該冷却機2の運転により
膨張シリンダ21の頂部コールドステーシヨン2
2に発生した冷熱で検出素子1を極低温に冷却す
る。このために検出素子1はあらかじめ内外二重
構造体としてなる熱伝導率の小さな薄肉ガラス製
の断熱容器3における内筒31の頂部に埋込み固
定され、一方冷却機2のコールドステーシヨン2
2側には熱伝導性の良い銅薄板を積層した可撓伝
熱部材4を介して冷却板5を伝熱的に結合してお
き、前記容器3を冷却機2のフランジ23上に結
合した状態で前記冷却板5を検出素子1の底面に
当接させて両者間を伝熱結合し、これにより冷却
機2のコールドステーシヨン22に発生した冷熱
で検出素子1を冷却するようにしている。またコ
ールドステーシヨン22と冷却板5との間には冷
却板を検出素子1へ押圧するためのばね部材6を
介装して加圧力を与えている。一方前記の断熱容
器3は検出素子1に対向して外筒32の頂部に透
視検出窓33を備えており、かつ内筒31と外筒
32との間を真空に保持して熱対流による外部か
らの熱侵入を防止している。さらに内筒31に付
いても同様に内筒31を冷却機2のフランジ23
との間でOリング等の気密シール部材7を介して
結合した上で、真空引き口34より内筒31の内
部空間35を真空引きして外方からの熱侵入防止
を図つている。なお1aは検出素子1から引き出
したリード線、8は冷却機2の据付基台である。
かかる構成により外部から極低温部への熱侵入を
抑制しつつ、冷却機2の運転によりコールドステ
ーシヨン22に発生した冷熱で検出素子1を極低
温に冷却することができる。 ところで上記構成の微小信号検出装置では次記
のような問題がある。すなわち検出素子1を装備
した断熱容器3が冷却機2のフランジ23に直接
結合して設置されているために、冷却機2の駆動
モータ24の回転によつて発生する振動がそのま
まフランジ23から断熱容器3を介して検出素子
1に伝播する。このために信号検出素子1はいわ
ゆるカメラぶれと同様な現象が生じて出力信号に
雑音を含むようになり、この検出信号を画像処理
する際に前記の雑音が影響して鮮明な画質が得ら
れなくなる。
In the above-mentioned detection devices that detect minute signals such as infrared sensors or laser receivers, the detection element is heated to an extreme temperature of, for example, liquid nitrogen temperature (approximately -200℃) in order to remove thermal noise and improve detection performance. Needs to be cooled to low temperatures. For this purpose, a device is known which combines an infrared detection element and a cooler as shown in FIG. 3 for the above-mentioned infrared detection device. That is, in FIG. 3, 1 is an infrared detection element, and 2 is a cooler, for example, a reverse Stirling cycle type, for cooling the detection element.
The detection element 1 is cooled to an extremely low temperature by the cold heat generated in step 2. For this purpose, the detection element 1 is embedded and fixed in advance in the top of an inner cylinder 31 of a thin-walled glass insulating container 3 with a low thermal conductivity, which has a dual structure inside and outside.
A cooling plate 5 was thermally connected to the 2 side via a flexible heat transfer member 4 made of laminated copper thin plates with good thermal conductivity, and the container 3 was connected to the flange 23 of the cooler 2. In this state, the cooling plate 5 is brought into contact with the bottom surface of the detection element 1 to form a heat transfer connection between the two, whereby the detection element 1 is cooled by the cold heat generated in the cold station 22 of the cooler 2. Further, a spring member 6 is interposed between the cold station 22 and the cooling plate 5 for pressing the cooling plate against the detection element 1 to apply a pressing force. On the other hand, the heat insulating container 3 is equipped with a see-through detection window 33 at the top of the outer cylinder 32 facing the detection element 1, and maintains a vacuum between the inner cylinder 31 and the outer cylinder 32 so that the external This prevents heat from entering. Furthermore, when attaching the inner cylinder 31 to the flange 23 of the cooler 2,
The internal space 35 of the inner cylinder 31 is evacuated through the vacuum port 34 to prevent heat from entering from outside. Note that 1a is a lead wire drawn out from the detection element 1, and 8 is an installation base for the cooler 2.
With this configuration, it is possible to cool the detection element 1 to a cryogenic temperature with the cold heat generated in the cold station 22 by operating the cooler 2 while suppressing heat intrusion from the outside into the cryogenic part. However, the small signal detection device having the above configuration has the following problems. That is, since the heat insulating container 3 equipped with the detection element 1 is installed directly coupled to the flange 23 of the cooler 2, vibrations generated by the rotation of the drive motor 24 of the cooler 2 are directly transmitted from the flange 23 to the heat insulating container 3. It propagates to the detection element 1 via the container 3. For this reason, a phenomenon similar to so-called camera shake occurs in the signal detection element 1, and the output signal includes noise, and when this detection signal is image-processed, the above-mentioned noise affects it, making it difficult to obtain clear image quality. It disappears.

【考案の目的】[Purpose of invention]

この考案は上記の点にかんがみなされたもので
あり、外部からの熱侵入防止機能を保持しつつ、
冷却機から発生する振動が直接検出素子に伝播し
ないように構成した微小信号検出装置の組立構造
を提供することを目的とする。
This idea was developed in consideration of the above points, and while maintaining the function of preventing heat intrusion from the outside,
It is an object of the present invention to provide an assembly structure of a minute signal detection device configured so that vibrations generated from a cooler are not directly propagated to a detection element.

【考案の要点】[Key points of the idea]

上記目的を達成するために、この考案は冷却機
および検出素子を装備した断熱容器をそれぞれ各
独立的に据付基台上に据付け設置するとともに、
前記断熱容器の内筒と冷却機側の膨張シリンダと
の間の残余空間に断熱材を充填して構成したもの
である。
In order to achieve the above object, this invention installs a heat insulating container equipped with a cooler and a detection element each independently on an installation base, and
The remaining space between the inner cylinder of the heat insulating container and the expansion cylinder on the cooler side is filled with a heat insulating material.

【考案の実施例】[Example of idea]

第1図および第2図はそれぞれこの考案の異な
る実施例を示すものであり、各図において第3図
と対応する同一部材には同じ符号が付してある。 まず第1図の実施例において、この考案により
冷却機2は防振ゴム25を介して据付基台8上に
防振的に据えつけ支持されている。一方、検出素
子1を装備した断熱容器3は架台9を介して冷却
機2とは独立して据付基台8の上に設置されてい
る。この場合に冷却機2のフランジ23と断熱容
器3との間には僅かな隙間を残して両者が直接接
触し合わないようにしてある。かかる組立状態で
冷却機側の膨張シリンダ21と断熱容器3の内筒
31との間の残余空間には符号10で示す断熱材
が充填されている。この断熱材としては例えば発
泡スチロール等の粒状発泡樹脂が好適であり、冷
却機2と断熱容器3とを据付基台8上に組立てた
状態で前記の残余空間に充填される。なお断熱材
10がばね6の押圧機能を阻害する恐れのある場
合には、ばね6の外周を筒で覆つて断熱材10が
入り込まないようにすればよい。 上記の構成によれば、検出素子1を装備した断
熱容器と冷却機2との間は、第3図の従来構成の
ように剛節的に結合されずに切り離して各独立的
に据付基台上に据えつけ設置され、かつ冷却機2
3は据付基台8に対して防振支持されている。し
たがつて冷却機2の振動が直接検出素子1に伝播
することがなく、冷却機2の振動が原因で検出素
子1に雑音を与えることを極力防止できる。しか
も断熱容器3の内筒31と冷却機側の膨張シリン
ダ21との間の空間には断熱材10が充填されて
いるので外部からの熱侵入も良好に防止でき、こ
れにより検出素子1を効果的に冷却保持して熱的
な雑音の影響が加わるのを良好に防止できる。 次に第2図に第1図の実施例を更に発展させた
実施例を示す。この実施例では第1図の構成に加
えて冷却機2のフランジ23とこれに対面する断
熱容器3のとの間をダイヤフラム等の可撓性封止
部材11で接続し、断熱容器3の内筒31と膨張
シリンダ22との間の残余空間に充填された断熱
材10を空間内に封じ込めるようにしたものであ
る。これにより粒状、バルク状の充填断熱材10
が空間からこぼれ落ちるのを良好に防止できる。
1 and 2 each show a different embodiment of this invention, and in each figure, the same members corresponding to those in FIG. 3 are given the same reference numerals. First, in the embodiment shown in FIG. 1, according to this invention, the cooler 2 is installed and supported on the installation base 8 via the anti-vibration rubber 25 in a vibration-proof manner. On the other hand, the heat insulating container 3 equipped with the detection element 1 is installed on the installation base 8 via the pedestal 9, independently of the cooler 2. In this case, a small gap is left between the flange 23 of the cooler 2 and the heat insulating container 3 to prevent them from coming into direct contact with each other. In this assembled state, the remaining space between the expansion cylinder 21 on the cooler side and the inner cylinder 31 of the heat insulating container 3 is filled with a heat insulating material indicated by the reference numeral 10. As this heat insulating material, for example, granular foamed resin such as expanded polystyrene is suitable, and the remaining space is filled with the cooler 2 and the heat insulating container 3 assembled on the installation base 8. If there is a possibility that the heat insulating material 10 may impede the pressing function of the spring 6, the outer periphery of the spring 6 may be covered with a tube to prevent the heat insulating material 10 from entering. According to the above configuration, the heat insulating container equipped with the detection element 1 and the cooler 2 are not connected rigidly as in the conventional configuration shown in FIG. Cooler 2
3 is supported on an installation base 8 in a vibration-proof manner. Therefore, the vibrations of the cooler 2 do not directly propagate to the detection element 1, and it is possible to prevent as much as possible the vibrations of the cooler 2 from imparting noise to the detection element 1. Moreover, since the space between the inner cylinder 31 of the heat insulating container 3 and the expansion cylinder 21 on the cooler side is filled with the heat insulating material 10, it is possible to effectively prevent heat from entering from the outside. It is possible to effectively prevent the effects of thermal noise by maintaining cooling. Next, FIG. 2 shows an embodiment that is a further development of the embodiment shown in FIG. In this embodiment, in addition to the configuration shown in FIG. The heat insulating material 10 filled in the remaining space between the tube 31 and the expansion cylinder 22 is sealed within the space. As a result, granular and bulk filled insulation material 10
can be effectively prevented from spilling out of the space.

【考案の効果】[Effect of the idea]

以上述べたようにこの考案によれば、冷却機お
よび断熱容器をそれぞれ各独立的に据付基台上に
据付け設置するとともに、前記断熱容器の内筒と
冷却機側の膨張シリンダとの間の残余空間に断熱
材を充填して構成したことにより、外部からの熱
侵入を防止しつつ、冷却機の振動に起因する検出
素子の出力信号の雑音発生を良好に防止すること
ができる。
As described above, according to this invention, the cooler and the heat insulating container are each independently installed on the installation base, and the remaining space between the inner cylinder of the heat insulating container and the expansion cylinder on the cooler side is By filling the space with a heat insulating material, it is possible to prevent heat from entering from the outside and to effectively prevent the generation of noise in the output signal of the detection element due to vibrations of the cooler.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれこの考案の異な
る実施例の組立構成断面図、第3図は従来におけ
る微小信号検出装置の組立構成断面図である。図
において、 1……検出素子、2……冷却機、21……膨張
シリンダ、22……コールドステーシヨン、23
……フランジ、4……可撓性の熱伝達部材、8…
…据付基台、10……断熱材、11……可撓性の
封止部材。
FIGS. 1 and 2 are sectional views of different embodiments of this invention, respectively, and FIG. 3 is a sectional view of the assembled structure of a conventional minute signal detection device. In the figure, 1...detection element, 2...cooler, 21...expansion cylinder, 22...cold station, 23
...Flange, 4...Flexible heat transfer member, 8...
... Installation base, 10 ... Heat insulating material, 11 ... Flexible sealing member.

Claims (1)

【実用新案登録請求の範囲】 1) 赤外線センサ等の微小信号検出素子を内蔵
装備した断熱容器を冷却機の膨張シリンダを包
囲して据付け、かつこの据付状態で膨張シリン
ダの頂部に形成されたコールドステーシヨンと
前記検出素子との間を伝熱結合して冷却機によ
り検出素子を冷却するようにした微小信号検出
装置において、冷却機および断熱容器をそれぞ
れ各独立的に据付基台上に据付け設置するとと
もに、前記断熱容器と冷却機側の膨張シリンダ
との間の残余空間に断熱材を充填して構成した
ことを特徴とする微小信号検出装置。 2) 実用新案登録請求の範囲第1項記載の微小
信号検出装置において、断熱材が粒状の発泡性
樹脂であることを特徴とする微小信号検出装
置。 3) 実用新案登録請求の範囲第1項記載の微小
信号検出装置において、冷却機が据付基台上に
防振支持されていることを特徴とする微小信号
検出装置。 4) 実用新案登録請求の範囲第1項記載の微小
信号検出装置において、冷却機側の膨張シリン
ダの下部にフランジを設け、該フランジとこれ
に対面する断熱容器との間を断熱材封じ込み用
の可撓性封止部材で接続したことを特徴とする
微小信号検出装置。
[Scope of Claim for Utility Model Registration] 1) A heat insulating container equipped with a built-in minute signal detection element such as an infrared sensor is installed surrounding the expansion cylinder of a cooler, and in this installed state, a cold is formed at the top of the expansion cylinder. In a minute signal detection device in which a station and the detection element are heat-transfer coupled and the detection element is cooled by a cooler, the cooler and the heat insulating container are each independently installed on an installation base. In addition, a minute signal detection device characterized in that a remaining space between the heat insulating container and the expansion cylinder on the cooler side is filled with a heat insulating material. 2) Utility Model Registration The minute signal detection device according to claim 1, wherein the heat insulating material is a granular foamed resin. 3) Utility Model Registration The minute signal detection device according to claim 1, characterized in that the cooler is supported on an installation base in a vibration-proof manner. 4) Utility Model Registration In the minute signal detection device according to claim 1, a flange is provided at the lower part of the expansion cylinder on the cooler side, and a heat insulating material is used to seal in the gap between the flange and the heat insulating container facing the flange. A minute signal detection device characterized in that the device is connected with a flexible sealing member.
JP1985126791U 1985-08-20 1985-08-20 Expired JPH0451491Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985126791U JPH0451491Y2 (en) 1985-08-20 1985-08-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985126791U JPH0451491Y2 (en) 1985-08-20 1985-08-20

Publications (2)

Publication Number Publication Date
JPS6234450U JPS6234450U (en) 1987-02-28
JPH0451491Y2 true JPH0451491Y2 (en) 1992-12-03

Family

ID=31020936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985126791U Expired JPH0451491Y2 (en) 1985-08-20 1985-08-20

Country Status (1)

Country Link
JP (1) JPH0451491Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187663B2 (en) * 2008-12-04 2013-04-24 株式会社ジェック東理社 Insulated calorimeter

Also Published As

Publication number Publication date
JPS6234450U (en) 1987-02-28

Similar Documents

Publication Publication Date Title
JP2001024127A (en) Local humidity adjustment system, electronic device assembly and its manufacture
JPH0451491Y2 (en)
JP3548625B2 (en) Thermoelectric clock
JP2001144337A (en) Thermoelectric conversion module, heat exchanging unit and manufacturing method therefor
JPH08261821A (en) Infrared detector
JPS6236306Y2 (en)
JPH0546381Y2 (en)
JPS6459877A (en) Thermo-element module
JPS6211019Y2 (en)
CN218917903U (en) Efficient refrigeration camera dispels heat
JPS6015110Y2 (en) cooler frost detector
JP2920702B2 (en) Semiconductor device
JPS6322631B2 (en)
CN218731409U (en) Power module's buffering damping device
JPH0629698Y2 (en) Infrared detector
JPS58171637A (en) Cooling type photoelectric converter
JP2002111081A (en) Peltier module
JP2508751Y2 (en) Insulated box
JPS6317260Y2 (en)
JP3546491B2 (en) Fluid cooling device using thermoelectric conversion element
JP2564217Y2 (en) Rotating machine with detector
JPS6240969A (en) Heat transmission binding method between heat transmission members
CN112649145A (en) Sensor with long-acting heat dissipation chip
JPH03152381A (en) Very low temperature cooling device
JPH09196532A (en) Electronic refrigerator