JP2920702B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2920702B2
JP2920702B2 JP7823291A JP7823291A JP2920702B2 JP 2920702 B2 JP2920702 B2 JP 2920702B2 JP 7823291 A JP7823291 A JP 7823291A JP 7823291 A JP7823291 A JP 7823291A JP 2920702 B2 JP2920702 B2 JP 2920702B2
Authority
JP
Japan
Prior art keywords
light receiving
package
receiving portion
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7823291A
Other languages
Japanese (ja)
Other versions
JPH04290464A (en
Inventor
徹 石津谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7823291A priority Critical patent/JP2920702B2/en
Publication of JPH04290464A publication Critical patent/JPH04290464A/en
Application granted granted Critical
Publication of JP2920702B2 publication Critical patent/JP2920702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板の表面側に
受光部があり、半導体基板の裏面から光を入射させて、
半導体基板を透過した光を表面側の受光部で検出する光
検出素子(以下、裏面入射型光検出素子と呼ぶ)に関
し、特に裏面入射型光検出素子の冷却構造の改良に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light receiving section on the front side of a semiconductor substrate, which allows light to enter from the back side of the semiconductor substrate.
The present invention relates to a photodetector (hereinafter, referred to as a back-illuminated light-detecting element) that detects light transmitted through a semiconductor substrate by a light-receiving unit on the front surface, and particularly to an improvement in a cooling structure of the back-illuminated photodetector.

【0002】[0002]

【従来の技術】裏面入射型光検出素子の一例に、ショッ
トキー型赤外線検出素子(以下ショットキー型素子と略
称する)がある。図3に、従来のショットキー型素子の
構造を示す。図3において、Si基板101の表面に
は、波長3〜5μmの赤外線に感度を有するショットキ
ー型フォトダイオード(受光部)102が形成されてい
る。この受光部102に対し、入射光は矢印iの方向か
ら入射する。入射光iは、Si基板101では吸収され
ずに透過し(矢印jで示す)、受光部102で吸収され
光電変換されるが、入射光iのすべてが光電変換される
わけではない。一部の光は受光部102で吸収されずに
透過するが、受光部102上にSiO2 などの絶縁膜1
13を介して形成されたAl反射膜114で反射され
(矢印kで示す)、再び受光部102に到達して光電変
換される。光電変換された信号は、Si基板101の表
面に形成されたボンディングパッド111aから取り出
される。
2. Description of the Related Art An example of a back illuminated light detecting element is a Schottky infrared detecting element (hereinafter abbreviated as a Schottky element). FIG. 3 shows the structure of a conventional Schottky device. In FIG. 3, a Schottky photodiode (light receiving portion) 102 having sensitivity to infrared rays having a wavelength of 3 to 5 μm is formed on the surface of a Si substrate 101. The incident light enters the light receiving unit 102 from the direction of arrow i. The incident light i is transmitted without being absorbed by the Si substrate 101 (indicated by an arrow j), and is absorbed and photoelectrically converted by the light receiving unit 102, but not all of the incident light i is photoelectrically converted. Although a part of the light is transmitted without being absorbed by the light receiving portion 102, the insulating film 1 such as SiO 2 is formed on the light receiving portion 102.
The light is reflected by the Al reflecting film 114 formed through the light-receiving portion 13 (indicated by an arrow k), reaches the light receiving portion 102 again, and is photoelectrically converted. The photoelectrically converted signal is taken out from a bonding pad 111a formed on the surface of the Si substrate 101.

【0003】さて、このようなショットキー型素子を種
々の用途で使用するにあたっては、まず、Si基板10
1をパッケージ103に固定し、信号をパッケージ10
3外部に取り出す必要がある。さらに、ショットキー型
素子は、半導体と金属とを接触させたときに生ずるショ
ットキーバリアを利用してフォトンエネルギーの小さい
赤外線を光電変換するものであり、77K程度の低温に
保持しないと充分なS/N比が得られないため、パッケ
ージ103を冷却しなければならない。
In order to use such a Schottky device for various purposes, first, an Si substrate 10 is used.
1 is fixed to the package 103, and the signal is
3 It is necessary to take it out. Further, the Schottky element uses a Schottky barrier generated when a semiconductor and a metal are brought into contact with each other to photoelectrically convert infrared light having a small photon energy. Since the / N ratio cannot be obtained, the package 103 must be cooled.

【0004】以下、従来のショットキー型素子のパッケ
ージング構造と冷却構造について、図3を用いて具体的
に説明する。図3において、パッケージ103は上方が
開口されるとともに、底面にも上方の開口よりやや小さ
い窓をあけた形状をなしており、ショットキー型素子の
Si基板101は、その裏面側で接着剤によりパッケー
ジ103の底面に固定(接着面112)されている。
Hereinafter, a conventional packaging structure and a cooling structure of a Schottky device will be specifically described with reference to FIG. In FIG. 3, the package 103 has an opening at the top and a bottom with a window slightly smaller than the opening at the bottom. The Si substrate 101 of the Schottky element is bonded on its back side with an adhesive. It is fixed to the bottom surface of the package 103 (adhesion surface 112).

【0005】又、受光部102で光電変換された信号
は、Si基板101側のボンディングパッド111aの
所まできているが、この信号をパッケージ103側へ送
り込むために、ワイヤ105により、パッケージ103
側のパッド111bと接続される。パッド111bとパ
ッケージ103のリード106とはパッケージ103内
部で接続されており、信号はリード106から外部に取
り出すことができる。
The signal photoelectrically converted by the light receiving section 102 is formed at the bonding pad 111a on the Si substrate 101 side. In order to send this signal to the package 103 side, the wire 105
Side pad 111b. The pad 111b and the lead 106 of the package 103 are connected inside the package 103, and a signal can be taken out from the lead 106 to the outside.

【0006】このパッケージ103を冷却するために
は、パッケージ103の上方の開口が蓋104で閉止さ
れ、更に蓋104の外側と接触するようにコールドヘッ
ド107が配置される。
In order to cool the package 103, an opening above the package 103 is closed by a lid 104, and a cold head 107 is arranged so as to contact the outside of the lid 104.

【0007】上述したように、ショットキー型素子は、
その動作原理から、通常77K程度まで冷却して用いる
と良好なS/N比が得られるようになるが、一般に、大
気中で物質を77K程度まで冷やせば、大気中の水分な
どが凝固し、物質表面に付着してしまう。そこで、図3
に示したようなショットキー型素子を用いた半導体装置
は、通常、真空容器内に保持される。
As described above, a Schottky device is
From the principle of operation, a good S / N ratio can be obtained when the material is cooled to about 77K, but in general, when the substance is cooled to about 77K in the atmosphere, moisture in the atmosphere solidifies, It adheres to the material surface. Therefore, FIG.
A semiconductor device using a Schottky element as shown in (1) is usually held in a vacuum container.

【0008】[0008]

【発明が解決しようとする課題】しかし、前述した従来
の冷却構造においては、次のような問題がある。つま
り、従来の構造においては、図3中矢印Aで示されるが
ごとく、コールドヘッド107−蓋104−パッケージ
103−Si基板101という経路でショットキー型素
子が冷却されるが、図から明らかなように、パッケージ
103とSi基板101とは、接着面112でしか接し
ていないため、冷却効率が非常に悪い。
However, the conventional cooling structure described above has the following problems. That is, in the conventional structure, as shown by the arrow A in FIG. 3, the Schottky-type element is cooled along the route of the cold head 107, the lid 104, the package 103, and the Si substrate 101. In addition, since the package 103 and the Si substrate 101 are in contact only with the bonding surface 112, the cooling efficiency is very poor.

【0009】冷却効率が悪いと、1.センサ(光検出素
子)を使用するにあたって、センサを冷却するまでの時
間が長くなる。2.センサが発熱した際(多量の入射光
があった場合など)に、その熱が冷えるまでの間充分な
S/N比が得られない(ショットキー型素子は十分に冷
却された状態でなければ、原理的に充分なS/N比が得
られない)、などの不具合が生じてしまう。
If the cooling efficiency is poor, In using a sensor (photodetector), the time required to cool the sensor increases. 2. When the sensor generates heat (for example, when there is a large amount of incident light), a sufficient S / N ratio cannot be obtained until the heat cools down (the Schottky element must be sufficiently cooled). And a sufficient S / N ratio cannot be obtained in principle).

【0010】更に、図3では単一の受光部が形成された
ポイントセンサの例を示しているが、多数の受光部が半
導体基板表面に配列されたイメージセンサの場合、パッ
ケージとの接着面に近い周辺部の受光部が早く冷却さ
れ、接着面に遠い中央部の受光部の冷却は遅れることと
なり、受光部によって冷却状態に違いが生じてしまう。
センサの使用開始にあたっては、冷却時間を長くとるこ
とである程度冷却状態を均一にすることが可能ではある
が、使用途中で大量の光が入射して素子が発熱したよう
な場合、受光部の位置によって温度がばらついてしま
い、検出精度の低下を招いてしまう。
FIG. 3 shows an example of a point sensor in which a single light receiving portion is formed. However, in the case of an image sensor in which a large number of light receiving portions are arranged on the surface of a semiconductor substrate, the image sensor is provided on an adhesive surface with a package. The light receiving portion in the near peripheral portion is cooled quickly, and the cooling of the light receiving portion in the central portion far from the bonding surface is delayed, so that the cooling state differs depending on the light receiving portion.
When starting to use the sensor, it is possible to make the cooling state uniform to some extent by taking a long cooling time, but if a large amount of light is incident during use and the element generates heat, the position of the light receiving section As a result, the temperature varies, and the detection accuracy is reduced.

【0011】この発明は、かかる点に鑑みてなされたも
のであり、効率良く裏面入射型光検出素子を冷却できる
構造の半導体装置を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a semiconductor device having a structure capable of efficiently cooling a back illuminated photodetector.

【0012】[0012]

【課題を解決するための手段】本発明の半導体装置は、
一方の面に受光部が形成された半導体基板と、該半導体
基板を保持するパッケージと、前記半導体基板の受光部
形成面側で前記パッケージを閉止する閉止部材とを有し
てなり、上記の課題を達成するために、前記受光部と前
記閉止部材の間に、少なくとも常温で可塑性の、即ち、
外力が加えられた際に連続的に変形する性質の熱伝導部
材が封入されたものである。
According to the present invention, there is provided a semiconductor device comprising:
A semiconductor substrate having a light receiving portion formed on one surface thereof, a package for holding the semiconductor substrate, and a closing member for closing the package on the light receiving portion forming surface side of the semiconductor substrate; In order to achieve, between the light receiving portion and the closing member, at least room temperature plastic, that is,
A heat conducting member having a property of being continuously deformed when an external force is applied is enclosed.

【0013】[0013]

【作用】裏面入射型光検知素子は、上述したように、半
導体基板の裏面から光を入射させ、基板を透過した光を
受光する構成となっているので、半導体基板裏面の広い
部分(表面側の受光部と対応する領域)に冷却部材を配
置することはできない。
As described above, the back-illuminated type photodetector has a configuration in which light is incident from the back surface of the semiconductor substrate and light transmitted through the substrate is received. The cooling member cannot be arranged in the area corresponding to the light receiving section of the above).

【0014】そこで、本発明においては、裏面入射型光
検知素子の受光部形成面とパッケージの蓋の間に熱伝導
性部材を封入することとした。これにより、裏面入射型
光検知素子は半導体基板裏面の周辺部からだけでなく、
熱伝導性部材と接する面からも冷やされることとなり、
冷却部材との接触する面積が増えため、冷却効率が向上
する。
Accordingly, in the present invention, a heat conductive member is sealed between the light receiving portion forming surface of the back illuminated type photodetector and the lid of the package. As a result, the back-illuminated type photodetector is not only from the peripheral portion of the back surface of the semiconductor substrate,
It will be cooled from the surface in contact with the heat conductive member,
Since the area in contact with the cooling member increases, the cooling efficiency improves.

【0015】従って、光検出素子を使用する際のクール
ダウンタイム(素子が常温から使用可能温度まで冷却さ
れる時間)は短くなり、又、素子が発熱したとしても、
この熱を速やかに奪い取ることができるため、常にS/
N比が良い状態で素子を使用できるようになる。
Therefore, the cool down time (time during which the element is cooled from room temperature to a usable temperature) when using the light detecting element is short, and even if the element generates heat,
Since this heat can be quickly removed, S /
The element can be used with a good N ratio.

【0016】また、受光部形成領域全体か熱伝導性部材
と接触することとなるので、光検出素子が複数の受光部
が配列されたイメージセンサである場合でも各受光部の
冷却状態を均一に保つことが可能となる。
Further, since the entire light receiving portion forming area comes into contact with the heat conductive member, even when the light detecting element is an image sensor in which a plurality of light receiving portions are arranged, the cooling state of each light receiving portion is made uniform. It is possible to keep.

【0017】さてここで、本発明において熱伝導性部材
を少なくとも常温で可塑性のものに限定しているのは、
受光部上に装填してパッケージの蓋をする際、受光部に
無理な力がかからないようにするためである。また、素
子の冷却と常温への温度上昇が繰り返される場合、半導
体基板と熱伝導部材の熱膨張係数の違いによる応力が生
じることになるが、熱伝導性部材が変形することによっ
て応力が吸収され、受光部に損傷が生じない。熱伝導性
部材としては、粘度の高い液体で、低温においても可塑
性が維持されるグリースが好ましく使用される他、素子
の冷却温度で凝固しない気体やInのような柔らかい金
属を用いることもできる。
Now, in the present invention, the heat conductive member is limited to a plastic member at least at room temperature.
This is to prevent an excessive force from being applied to the light receiving unit when the package is covered with the light receiving unit. When the cooling of the element and the temperature rise to room temperature are repeated, stress is generated due to the difference in the coefficient of thermal expansion between the semiconductor substrate and the heat conductive member. However, the stress is absorbed by the deformation of the heat conductive member. No damage is caused to the light receiving section. As the heat conductive member, grease that is a liquid having a high viscosity and maintains plasticity even at a low temperature is preferably used, and a gas that does not solidify at the cooling temperature of the element or a soft metal such as In can also be used.

【0018】[0018]

【実施例】次に、図面を用いて本発明をより具体的に説
明する。図1は本発明の第1実施例による半導体装置の
構造を示す断面図である。裏面入射型光検出素子自体の
構造とパッケージング構造は前述した図3と同様であ
り、Si基板1の表面には、ショットキー型フォトダイ
オードからなる受光部2が形成されており、受光部2上
には絶縁膜13を介しAl反射膜10が積層されてい
る。
Next, the present invention will be described more specifically with reference to the drawings. FIG. 1 is a sectional view showing a structure of a semiconductor device according to a first embodiment of the present invention. The structure of the back-illuminated type photodetector itself and the packaging structure are the same as those in FIG. 3 described above, and a light receiving unit 2 composed of a Schottky photodiode is formed on the surface of the Si substrate 1. An Al reflective film 10 is laminated on the insulating film 13 with an insulating film 13 interposed therebetween.

【0019】Si基板1は、裏面側で接着剤によりパッ
ケージ3の底面に固定(接着面12)されており、Si
基板1側のパッド11aとパッケージ3側のパッド11
bはワイヤ5で接続され、光電変換信号はパッケージ3
のリード6から外部に取り出されるようになっている。
また、パッケージ3の上方の開口は蓋4で閉止され、蓋
4の外側と接触するようにコールドヘッド7が配置され
ている。
The Si substrate 1 is fixed (adhesive surface 12) to the bottom surface of the package 3 with an adhesive on the back surface side.
Pad 11a on substrate 1 and pad 11 on package 3
b is connected by wire 5 and the photoelectric conversion signal is
The lead 6 is taken out to the outside.
The upper opening of the package 3 is closed by the lid 4, and the cold head 7 is arranged so as to be in contact with the outside of the lid 4.

【0020】以上の構成は前述した図3の構成と同様で
あるが、本実施例では、蓋4と受光部形成面との間に熱
伝導性部材としてグリース8を封入している。
The above configuration is the same as the configuration of FIG. 3 described above, but in this embodiment, grease 8 is sealed as a heat conductive member between the lid 4 and the light receiving portion forming surface.

【0021】熱伝導性部材としてグリース8を用いる場
合の半導体装置の組み立て方は次のようである。まず、
従来と同様にして、Si基板1をパッケージ3の底面に
接着する。その後、受光部形成面にグリース8を塗布
し、グリース8の表面側(素子と接しない側)を、パッ
ケージ3の上面9より高くなるように盛る(グリース8
は極めて粘度が高いため、このように盛りあげることが
可能である)。この状態で、パッケージ3に蓋4をすれ
ば、パッケージ3の上面9より上に出ているグリース8
が蓋4によって押しつぶされ、蓋4と密着する。しかる
後コールドヘッド7を蓋4の外面に接触させれば、図1
の半導体装置が得られる。
The method of assembling the semiconductor device when grease 8 is used as the heat conductive member is as follows. First,
The Si substrate 1 is bonded to the bottom of the package 3 in the same manner as in the related art. Thereafter, grease 8 is applied to the light receiving portion forming surface, and the surface side (the side not in contact with the element) of the grease 8 is piled up so as to be higher than the upper surface 9 of the package 3 (grease 8).
Is extremely high in viscosity and can thus be exaggerated). In this state, if the lid 4 is placed on the package 3, the grease 8 protruding above the upper surface 9 of the package 3
Are crushed by the lid 4 and come into close contact with the lid 4. After that, if the cold head 7 is brought into contact with the outer surface of the lid 4, FIG.
Is obtained.

【0022】本第1実施例によれば、コールドヘッド7
と素子間の熱の出入は、蓋4、グリース8を介して行な
われる。この時、コールドヘッド7−蓋4間、蓋4−グ
リース間、グリース8−素子間はそれぞれ互いに広い面
積で接触しているため、熱伝導効率は極めて高い。ま
た、グリース8は高粘度の液体であるため、蓋4をする
際、素子に無理な力を加えることなく組み立てることが
できる。
According to the first embodiment, the cold head 7
Heat flows between the device and the element through the lid 4 and the grease 8. At this time, since the cold head 7 and the lid 4, the lid 4 and the grease, and the grease 8 and the element are in contact with each other in a large area, the heat conduction efficiency is extremely high. In addition, since the grease 8 is a high-viscosity liquid, the grease 8 can be assembled without applying excessive force to the element when the cover 4 is closed.

【0023】図1の例では、熱伝導部材として用いてい
るが、グリース8のかわりに、In柱などのやわらかい
金属を蓋と素子との間に導入しても良い。In柱は、グ
リースと異なり液体ではないが、非常にやわらかい固体
であるので素子に無理な力を加えることなく封入するこ
とができるとともに、受光部形成面と蓋4の双方に対し
て広い面積で密着させることができる。
In the example shown in FIG. 1, the grease 8 is used as the heat conducting member. Instead of the grease 8, a soft metal such as an In column may be introduced between the lid and the element. The In column is not a liquid unlike grease, but is a very soft solid, so that it can be sealed without applying excessive force to the element, and has a large area with respect to both the light receiving portion forming surface and the lid 4. Can be in close contact.

【0024】この他、グリース8のかわりに、素子の冷
却温度(ショットキー型素子の場合は77Kに冷却す
る)では凝固しない気体(例えばHe等がある)を封じ
込めてもよい。気体を封じ込めた場合は、気体分子が熱
伝導媒体となり、素子の冷却効率が向上するとともに、
組み立てる時に素子に無理な力も加えなくてすむ。
In addition, instead of the grease 8, a gas (for example, He or the like) that does not solidify at the element cooling temperature (cooling to 77K in the case of a Schottky element) may be contained. When gas is confined, gas molecules become a heat transfer medium, improving the cooling efficiency of the element and
There is no need to apply excessive force to the element when assembling.

【0025】さて、これまでは、素子内に1つの受光部
しかない光検出素子(ポイントセンサ)を冷却する構造
について述べた。しかし、本発明は、1つの光検知素子
内に複数の受光部がある、例えばイメージセンサに対し
ても適用することができる。その場合の実施例を図2に
示す。
Heretofore, a structure for cooling a light detecting element (point sensor) having only one light receiving portion in the element has been described. However, the present invention can also be applied to, for example, an image sensor in which a plurality of light receiving units are provided in one light detecting element. FIG. 2 shows an embodiment in that case.

【0026】図2において、受光部とAl反射膜以外の
構成は図1と同じであるので、同一部材には図1と共通
の符号つけ、重複する説明は省略する。本実施例では、
Si基板1表面には、複数の受光部2aが一定のピッチ
で配列されており、各受光部2a上には絶縁膜13を介
してAl反射膜10aが設けられている。このAl反射
膜10aも受光部2aと1対1対応するように複数あ
り、各受光部2a上に配列されている。
In FIG. 2, since the structure other than the light receiving portion and the Al reflection film is the same as that of FIG. 1, the same members are denoted by the same reference numerals as those in FIG. 1, and duplicate description is omitted. In this embodiment,
A plurality of light receiving portions 2a are arranged at a constant pitch on the surface of the Si substrate 1, and an Al reflecting film 10a is provided on each light receiving portion 2a via an insulating film 13. There are also a plurality of Al reflection films 10a so as to correspond one-to-one with the light receiving portions 2a, and are arranged on each light receiving portion 2a.

【0027】Si基板1は、図1と同様な構造でパッケ
ージ3内に保持されており、受光部形成面とパッケージ
3の蓋4との間には熱伝導部材としてグリース8が封入
されている。
The Si substrate 1 is held in a package 3 with a structure similar to that of FIG. 1, and grease 8 is sealed as a heat conductive member between the light receiving portion forming surface and the lid 4 of the package 3. .

【0028】図2のような複数の受光部をもつ素子を従
来の冷却構造で冷却しようとすると、素子は、Si基板
1とパッケージ3の接触面12からのみ冷却されること
になるので、接触面12と各受光部2aとの距離の差に
応じて冷却時間に時間差を生じていた。しかし、本実施
例では、グリース8を介して矢印iの方向から各受光部
2aが均一に冷却されるため、各受光部間の温度ムラが
生じることがない。
When an element having a plurality of light receiving portions as shown in FIG. 2 is to be cooled by a conventional cooling structure, the element is cooled only from the contact surface 12 between the Si substrate 1 and the package 3. The cooling time has a time difference depending on the difference in the distance between the surface 12 and each light receiving unit 2a. However, in this embodiment, since each light receiving portion 2a is uniformly cooled from the direction of arrow i via the grease 8, temperature unevenness between the light receiving portions does not occur.

【0029】[0029]

【発明の効果】以上のように、本発明の半導体装置は、
裏面入射型光検出素子の受光部とパッケージの蓋の間に
可塑性の熱伝導部材を封入する構成をとっているので、
素子の冷却効率を向上させることができ、クールダウン
タイムを短縮するとともに、優れたS/N比を確保する
ことが可能である。また、熱伝導部材が可塑性であるの
で、素子に無理な力を加えることなく、容易に組み立て
ができるという利点も有する。更に、素子が複数の受光
部をもつイメージセンサである場合には、各受光部間の
温度ムラを除去することができ、本発明の実用的価値は
非常に大きいものである。
As described above, the semiconductor device of the present invention has the following features.
Since a plastic heat conductive member is sealed between the light receiving part of the back-illuminated type photodetector and the lid of the package,
The cooling efficiency of the element can be improved, the cool down time can be shortened, and an excellent S / N ratio can be secured. In addition, since the heat conducting member is plastic, there is an advantage that the device can be easily assembled without applying excessive force to the element. Further, in the case where the element is an image sensor having a plurality of light receiving sections, it is possible to eliminate temperature unevenness between the respective light receiving sections, and the practical value of the present invention is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例による半導体装置の断面図
である。
FIG. 1 is a sectional view of a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第2実施例による半導体装置の断面図
である。
FIG. 2 is a sectional view of a semiconductor device according to a second embodiment of the present invention.

【図3】従来の半導体装置の断面図である。FIG. 3 is a cross-sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2,2a 受光部 3 パッケージ 4 パッケージの蓋 5 ワイヤ 6 リード 7 コールドヘッド 8 グリース 9 パッケージの上面 10 Al反射膜 11a,11b パッド 12 接着面 13 絶縁膜 DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2, 2a Light receiving part 3 Package 4 Package lid 5 Wire 6 Lead 7 Cold head 8 Grease 9 Top surface of package 10 Al reflection film 11a, 11b Pad 12 Adhesive surface 13 Insulating film

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一方の面に受光部が形成された半導体基
板と、該半導体基板を保持するパッケージと、前記半導
体基板の受光部形成面側で前記パッケージを閉止する閉
止部材とを有する半導体装置において、前記受光部と前
記閉止部材の間に、少なくとも常温で可塑性の熱伝導部
材が封入されたことを特徴とする半導体装置。
1. A semiconductor device comprising: a semiconductor substrate having a light receiving portion formed on one surface; a package for holding the semiconductor substrate; and a closing member for closing the package on the light receiving portion forming surface side of the semiconductor substrate. 2. The semiconductor device according to claim 1, wherein a heat conducting member that is plastic at least at room temperature is sealed between the light receiving portion and the closing member.
【請求項2】 前記半導体基板表面に複数の受光部が配
列されたことを特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein a plurality of light receiving sections are arranged on the surface of the semiconductor substrate.
JP7823291A 1991-03-19 1991-03-19 Semiconductor device Expired - Fee Related JP2920702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7823291A JP2920702B2 (en) 1991-03-19 1991-03-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7823291A JP2920702B2 (en) 1991-03-19 1991-03-19 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH04290464A JPH04290464A (en) 1992-10-15
JP2920702B2 true JP2920702B2 (en) 1999-07-19

Family

ID=13656302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7823291A Expired - Fee Related JP2920702B2 (en) 1991-03-19 1991-03-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2920702B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970005712B1 (en) * 1994-01-11 1997-04-19 삼성전자 주식회사 High heat sink package
JP2004134578A (en) 2002-10-10 2004-04-30 Hamamatsu Photonics Kk Photodetector and its manufacturing process
RU2512074C1 (en) * 2010-06-01 2014-04-10 Боли Медиа Коммуникейшнз (Шэньчжэнь) Ко., Лтд. Multispectral light-sensitive device and method of making said device

Also Published As

Publication number Publication date
JPH04290464A (en) 1992-10-15

Similar Documents

Publication Publication Date Title
KR102091040B1 (en) Thermal infrared sensor array in wafer-level package
JP3514681B2 (en) Infrared detector
WO2005083374A1 (en) Infrared sensor and method of producing the same
US4118249A (en) Modular assembly of a photovoltaic solar energy receiver
JP2000205944A (en) Thermal infrared array sensor for detecting plurality of infrared wavelength band
US8664510B2 (en) Infrared absorber and thermal infrared detector
JP2006214758A (en) Infrared detector
JPH11326037A (en) Vacuum package for infrared detector and its manufacture
JPH01295449A (en) Cooling type solid-state image sensing device
US5006711A (en) Multielement infrared detector for thermal imaging
US20140267756A1 (en) Microbolometer supported by glass substrate
JP2920702B2 (en) Semiconductor device
JP3339276B2 (en) Infrared detector
JPH11258038A (en) Infrared ray sensor
JP2001174323A (en) Infrared ray detecting device
US20050109940A1 (en) Radiation sensor
JP2000321125A (en) Infrared sensor element
JP5558189B2 (en) Infrared sensor and manufacturing method thereof
JPH0249124A (en) Thermopile
JPH10115556A (en) Infrared detector
JPH06137943A (en) Thermal infrared sensor
JPH11258041A (en) Thermopile type infrared ray sensor
JP3121424B2 (en) Semiconductor photodetector
WO2024105713A1 (en) Thermal infrared detector and method for manufacturing thermal infrared detector
JP3657701B2 (en) Photodetector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990323

LAPS Cancellation because of no payment of annual fees