JPH0450607A - Method for measuring extension of pipe line - Google Patents

Method for measuring extension of pipe line

Info

Publication number
JPH0450607A
JPH0450607A JP15469090A JP15469090A JPH0450607A JP H0450607 A JPH0450607 A JP H0450607A JP 15469090 A JP15469090 A JP 15469090A JP 15469090 A JP15469090 A JP 15469090A JP H0450607 A JPH0450607 A JP H0450607A
Authority
JP
Japan
Prior art keywords
sound
pipe
measurement
reception
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15469090A
Other languages
Japanese (ja)
Inventor
Eiji Yamaguchi
英次 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIBU GAS KK
Original Assignee
SEIBU GAS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIBU GAS KK filed Critical SEIBU GAS KK
Priority to JP15469090A priority Critical patent/JPH0450607A/en
Publication of JPH0450607A publication Critical patent/JPH0450607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To measure not only the shortest extension but also an extension of another path by transmitting a second sound while reception following first reception of a first sound, for example second reception, is being noticed. CONSTITUTION:First, a transmitter/receiver 2 at a measurement starting point A supplies a first sound f1 into a pipe 1 and this is received by a transmitter/ receiver 3 at a measurement ending point B. Then at the measurement ending point B, the transmitter/receiver 3 supplies a second sound f2 into the pipe 1 a constant time period after the first sound f1 was first received by the transmitter/receiver 3, and this is received by the transmitter/receiver 2 at the measurement starting point A. When the second sound f2 is received at the measurement starting point A, an extension of the pipe is calculated by the following equation based on time required from transmission of the first sound f1 until the reception of the second sound f2 at the measurement starting point A, time required from the reception of the first sound f1 until transmission of the second sound f2 at the measurement ending point B and sound speed in fluid flowing in the pipe (gas in this case).

Description

【発明の詳細な説明】 (産業上の利用分野) 本考案は管路、例えばガス管、水道管等の延長を測定す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for measuring the length of a pipe, such as a gas pipe, a water pipe, etc.

(従来の技術) 従来、ガス管、水道管等、地下埋設の管は露出していな
いため、直接的に計る方法は限られており、例えば管内
部に線材を押し込み通してその線材の長さを計る方法及
び管内に軽量な紐を風のカによって流して通し、その紐
の長さを図る方法が採用されている。
(Conventional technology) Conventionally, underground pipes such as gas pipes and water pipes are not exposed, so there are limited methods for directly measuring the length of the wire, such as pushing a wire inside the pipe and measuring the length of the wire. Two methods have been adopted: one method is to measure the length of a lightweight string by passing it through the pipe using the force of the wind.

(発明が解決しようとする課題) しかし乍ら、地下埋設管がガス管等の場合、前者の方法
にあっては管内部の気体を外部に出さないようにするた
めには特殊な治具が必要となり、また後者の方法にあっ
ては内部の気体を一旦外部に排出してから作業を行なわ
なければならない。
(Problem to be solved by the invention) However, if the underground pipe is a gas pipe, the former method requires a special jig to prevent the gas inside the pipe from coming out. In the latter method, the gas inside must be discharged to the outside before the work is carried out.

本発明は従来技術が有する上記問題点に鑑みてなされた
もので、その目的とする処は、内部の気体を排出せず、
しかも、特殊な治具も使わずに簡易に埋設管路の延長を
計測し得る方法を提供せんとするものである。
The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to eliminate the internal gas from being discharged.
Furthermore, the present invention aims to provide a method that can easily measure the length of a buried pipe without using any special jig.

(課題を解決するための手段) 上記目的を達成するために本発明の埋設管路の延長測定
方法では、管路の測定始点箇所から管内に第1の音を発
信流入させ、測定終点箇所で上記第1の音を受信した後
、該終点箇所から管内に第2の音を発信流入させてこの
第2の音を上記始点箇所で受信し、測定始点箇所で第1
の音を発信してから第2の音を受信するまでに要した時
間と、終点箇所で第1の音を受信してから第2の音を発
信するまでに要した時間とから、始点箇所、終点箇所間
を音が伝播するの要した往復時間の平均を求め、この平
均時間と、管路内を流動する流体内での音速とにより管
路の延長を求めるものである。
(Means for Solving the Problems) In order to achieve the above object, in the buried pipe extension measurement method of the present invention, a first sound is emitted and flows into the pipe from the measurement start point of the pipe, and at the measurement end point. After receiving the first sound, a second sound is emitted and flows into the pipe from the end point, the second sound is received at the start point, and the first sound is received at the measurement start point.
From the time required from transmitting the sound to receiving the second sound, and the time required from receiving the first sound to transmitting the second sound at the end point, the starting point is determined. , the average round trip time required for the sound to propagate between the end points is determined, and the length of the pipeline is determined based on this average time and the speed of sound in the fluid flowing within the pipeline.

(作 用) 以上のように構成した本発明の管路延長測定方法によれ
ば、管内への音の送、受信部をマイクロフォンとスピー
カで構成するので、音の送受信装置を管に例えばバルブ
を介して取り付け、測定時にバルブを開放することによ
り、管内部の気体を放8せさずに管路の延長を測定する
ことができる。
(Function) According to the pipe length measurement method of the present invention configured as described above, the sound transmitting and receiving part into the pipe is composed of a microphone and a speaker. By attaching the tube through the tube and opening the valve during measurement, the length of the tube can be measured without releasing the gas inside the tube.

(実施例) 以下、本発明の実施の一例を図に基づいて説明する。(Example) Hereinafter, an example of implementation of the present invention will be described based on the drawings.

図中1は例えばガス管等の地下埋設管であり、金談埋設
管1の所望の箇所A(以下測定始点箇所Aと言う)から
所望の位置B(以下測定終点箇所Bと言う)迄の管路延
長を測定しようとする場合、測定始点箇所Aと測定終点
箇所Bに夫々送受信装置2,3を取りつけ、先ず測定始
点箇所Aの送受信装置2により管1内に第1の音f1を
流入させ、これを測定終点箇所Bの送受信装置3で受信
する。
1 in the figure is an underground pipe such as a gas pipe, for example, from a desired point A (hereinafter referred to as measurement start point A) to a desired position B (hereinafter referred to as measurement end point B) of the buried pipe 1. When trying to measure the length of a pipe, the transmitter/receiver devices 2 and 3 are installed at the measurement start point A and the measurement end point B, respectively, and first, the first sound f1 flows into the pipe 1 by the transmitter/receiver device 2 at the measurement start point A. This is received by the transmitting/receiving device 3 at the measurement end point B.

続いて測定終点箇所Bでは上記第1の音f1を送受信装
置3が最初に受信した時から一定時間後に該送受信装置
3により管1内に第2の音f2を流入させ、これを測定
始点箇所Aの送受信装置2で受信する。
Subsequently, at the measurement end point B, after a certain period of time from when the transmitting/receiving device 3 first receives the first sound f1, the transmitting/receiving device 3 causes a second sound f2 to flow into the pipe 1, and this is transferred to the measurement starting point. A's transmitting/receiving device 2 receives it.

測定始点箇所Aでは第2の音f2を最初に受信すると、
測定始点箇所Aで第1の音f1発信から第2の音f2受
信までに要した時間、測定終点箇所Bで第1の音f1受
信から第2の音f2発信までに要した時間、管1内を流
動する流体(この場合はガス)内での音速に基づいて次
式により管路の延長を求める。
When the second sound f2 is first received at the measurement starting point A,
The time required from the transmission of the first sound f1 to the reception of the second sound f2 at the measurement start point A, the time required from the reception of the first sound f1 to the transmission of the second sound f2 at the measurement end point B, the tube 1 The length of the pipe is calculated using the following formula based on the speed of sound in the fluid (gas in this case) flowing inside.

T = t r + t 2 + t 3A=v@t tl+j2:管路内を音が伝播するのに要した時間(往
復) t3 ;測定終点箇所Bにおいて第1の音f1を受信し
てから第2の音f2 を発信するまでに要した時間 T;測定始点箇所Aで第1の音f、を発信してから第2
の音f2を受信する までに要した時間 t;管路内を音が伝播するのに要した往復時間の平均 V;管路内の流体内における音速 l;管路の延長 尚、前記測定始点箇所Aの送受信装置2は例えば送受信
装置として従来周知の発振部2a、発信用及び受信用増
幅部2b、2CN入力検6部2d、スピーカ2!、マイ
クロフォン2(等を備える他、第1の音f1発信から第
2の音f2受信までの時間をカウントするタイマ21i
、前記演算式により管路延長を演算する演算部2h、演
算部2hが演算した値を表示する表示部2j等を備えて
おり、また測定終点箇所Bの送受信装置3は始点箇所A
の送受信装置2と同様発振部3a、発信用及び受信用増
幅部3b、 3cs入力入力部8tl、スピーカ3e、
マイクロフォン31等を備える他、例えば第1の音f1
受信から時間をカウントするタイマ3g、第1の音f1
受信から所定時間経過後に発振部3aを作動させると共
に周波数を変調させる制御部3j等を備えている。
T = tr + t 2 + t 3A = v@t tl + j2: Time required for sound to propagate in the pipe (round trip) t3; The time T required to emit the second sound f2; from the time the first sound f was emitted at the measurement starting point A to the second sound f2;
time t required to receive the sound f2; average V of the round trip time required for the sound to propagate in the pipe; sound speed l in the fluid in the pipe; extension of the pipe; and the measurement starting point. The transmitting/receiving device 2 at location A includes, for example, a conventionally known oscillating section 2a, a transmitting and receiving amplifier section 2b, a 2CN input detection section 2d, a speaker 2! , a microphone 2 (etc.), and a timer 21i that counts the time from the transmission of the first sound f1 to the reception of the second sound f2.
, a calculation section 2h that calculates the pipeline extension using the above-mentioned calculation formula, a display section 2j that displays the value calculated by the calculation section 2h, etc., and the transmitting/receiving device 3 at the measurement end point B is connected to the starting point A.
Similar to the transmitting/receiving device 2, it includes an oscillating section 3a, a transmitting and receiving amplifier section 3b, a 3cs input input section 8tl, a speaker 3e,
In addition to being equipped with a microphone 31 etc., for example, the first sound f1
Timer 3g that counts time from reception, first sound f1
It is provided with a control section 3j, etc., which activates the oscillating section 3a and modulates the frequency after a predetermined period of time has elapsed from reception.

これら送受信装置2.3は夫々測定始点箇所A1測定終
点箇所Bにおいて管1にバルブ4.5を介して取りつけ
る。
These transmitting/receiving devices 2.3 are attached to the pipe 1 via valves 4.5 at a measurement start point A and a measurement end point B, respectively.

上記バルブ4.5は測定時にのみ開放する。The valve 4.5 is opened only during measurement.

以上説明した実施例では、測定終点箇所Bにおいて第1
の音f1を最初に受信した時を基準にしてその所定時間
後に第2の音を発信し、測定始点箇所Aにおいても第2
の音f2を最初に受信した時を基準にして音の始点終点
間の往復伝播速度を求めたが、測定終点箇所Bにおいて
第1の音f。
In the embodiment described above, the first
A second sound is emitted a predetermined time after the first sound f1 is received, and the second sound is also emitted at the measurement starting point A.
The round-trip propagation velocity between the start and end points of the sound was determined based on the time when the sound f2 was first received.

を二度目に受信したとき、あるいは二度目、四度目を受
信したときを基準にして、第2の音f2を発信し、それ
に合わせて測定始点箇所Aにおいても第2の音f2を二
度目、あるいは二度目、四度目に受信した時を基準にし
て、第1の音f1を発信してから第2の音f2を受信す
るまでに要した時間を求めてもよいし、その全てについ
て夫々、あるいは最初と二番目等特定の音について夫々
往復に要した時間を求めても良い。
The second sound f2 is transmitted based on the second reception, or the second or fourth reception, and accordingly, the second sound f2 is transmitted at the measurement starting point A for the second time. Alternatively, the time required from transmitting the first sound f1 to receiving the second sound f2 may be calculated based on the second and fourth times the sound is received. Alternatively, the time required for a round trip for specific sounds such as the first and second sounds may be determined.

このようにすることにより、測定始点箇所A1測定終点
箇所8間の最短の経路延長以外にも別の経路の延長も測
定することが可能になる。
By doing so, it becomes possible to measure the extension of another route in addition to the shortest route extension between the measurement start point A1 and the measurement end point 8.

例えば第5図において、測定始点箇所Aで発信した第1
の音f1は最短経路aを経由して測定終了箇所Bに達す
る場合と、上記最短経路a以外の第2の経路すを経由し
て測定終点箇所Bに達する場合とでは当然時間差があり
、測定終点箇所Bでは最短経路aを経由して来たf□が
先ず最初に受信され、それから若干の時間的遅れをもっ
て第2の経路すを経由して来たflがもう一度受信され
る。
For example, in Fig. 5, the first signal transmitted at measurement starting point A
Naturally, there is a time difference between when the sound f1 reaches the measurement end point B via the shortest route a and when it reaches the measurement end point B via a second route other than the shortest route a. At the end point B, f□ that has come via the shortest route a is first received, and then, with a slight time delay, fl that has come via the second route is received again.

そこで、測定終点箇所Bでは測定始点箇所Aで発信した
第1の音f1を最初に受信した時と2回目に受信したと
きの2度について夫々受信から所定時間後に第2の音f
2を発信するようになし、−力測定始点箇所Aでは、上
記測定終点箇所Bで2度発信された第2音f2を夫々受
信し、1度目のf2を受信した時と2度目のf2を受信
したときの2度について、夫々第1の音f□を発信して
から策2の音f2を受信するまでの時間を求めるように
すれば、測定始点箇所A1測定終点箇所8間の最短経路
aの延長と、第2の経路すの延長を夫々測定することが
できる。
Therefore, at the measurement end point B, the second sound f is emitted twice after a predetermined period of time after receiving the first sound f1 emitted at the measurement start point A.
- At the force measurement starting point A, the second sound f2 transmitted twice at the measurement end point B is received, and when the first f2 is received and the second f2 is If we calculate the time from transmitting the first sound f□ to receiving the second sound f2 for each of the two degrees received, we can find the shortest route between the measurement start point A1 and the measurement end point 8. The extension of a and the extension of the second path can be measured respectively.

(効 果) 本発明は上記のように構成したから下記するような効果
を奏することができる。
(Effects) Since the present invention is constructed as described above, the following effects can be achieved.

(1)  管内へ音を流入させるスピーカ、管内を伝播
した音を受信するマイクロフォンをバルブを介して管に
取りつけ、測定時にバルブを開放するようになすことに
より、管内部の流体を外部へ放出させることなく、管路
の延長を測定することができる。
(1) A speaker that allows sound to flow into the pipe and a microphone that receives the sound propagated inside the pipe are attached to the pipe via a valve, and the valve is opened during measurement to release the fluid inside the pipe to the outside. The length of the conduit can be measured without

(2)  管内の流体の流れにより音の伝播速度が変動
するが、往復の伝播時間の平均を求めることにより、管
内の流体の流れの影響を相殺するので、管内に流速があ
っても経時的な変動が少なければ、管路延長を測定する
ことができる。
(2) The propagation speed of sound varies depending on the flow of fluid in the pipe, but by calculating the average round trip propagation time, the influence of the flow of fluid in the pipe is canceled out, so even if there is a flow velocity in the pipe, the sound propagation speed changes over time. If the fluctuations are small, the pipe length can be measured.

(3)  測定終点箇所で第1の音の最初の受信に基づ
いて第2の音を発信するだけでなく、第1の音の最初の
受信以降の受信、例えば2回目の受信にも着目して第2
の音を発信するようになすことにより、最短延長の他、
別の経路の延長も測定することができる。
(3) In addition to emitting the second sound based on the first reception of the first sound at the measurement end point, we also pay attention to the reception after the first reception of the first sound, for example, the second reception. second
In addition to the shortest extension, by transmitting the sound of
Other path lengths can also be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す管路延長測定方法の概
念図、第2図は始点位置に設置する送受信装置の一例を
示す機能ブロック図、第3図は終点位置に設置する送受
信装置の一例を示す機能ブロック図、第4図はタイムチ
ャート、第5図は最短経路と第2経路夫々の延長を測定
する場合の概念図である。 A:測定始点箇所 B:測定終点箇所 1:管
Fig. 1 is a conceptual diagram of a pipe length measurement method showing an embodiment of the present invention, Fig. 2 is a functional block diagram showing an example of a transmitting/receiving device installed at a starting point position, and Fig. 3 is a transmitting/receiving device installed at an end point position. FIG. 4 is a functional block diagram showing an example of the device, FIG. 4 is a time chart, and FIG. 5 is a conceptual diagram when measuring the extensions of the shortest route and the second route. A: Measurement start point B: Measurement end point 1: Pipe

Claims (1)

【特許請求の範囲】[Claims] 管路の測定始点箇所から管内に第1の音を発信流入させ
、測定終点箇所で上記第1の音を受信した後、該終点箇
所から管内に第2の音を発信流入させてこの第2の音を
上記始点箇所で受信し、測定始点箇所で第1の音を発信
してから第2の音を受信するまでに要した時間と、終点
箇所で第1の音を受信してから第2の音を発信するまで
に要した時間と、管路内を流動する流体内での音速とに
より管路の延長を求めることを特徴とする管路延長測定
方法。
A first sound is emitted and flowed into the pipe from the measurement start point of the pipe, and after the first sound is received at the measurement end point, a second sound is emitted and flowed into the pipe from the end point. The time required to receive the sound at the above-mentioned starting point, emit the first sound at the measurement start point and receive the second sound, and the time required to receive the second sound after receiving the first sound at the end point. 2. A method for measuring the length of a pipe line, characterized in that the length of the pipe line is determined based on the time required to emit the sound and the speed of sound in the fluid flowing in the pipe line.
JP15469090A 1990-06-12 1990-06-12 Method for measuring extension of pipe line Pending JPH0450607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15469090A JPH0450607A (en) 1990-06-12 1990-06-12 Method for measuring extension of pipe line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15469090A JPH0450607A (en) 1990-06-12 1990-06-12 Method for measuring extension of pipe line

Publications (1)

Publication Number Publication Date
JPH0450607A true JPH0450607A (en) 1992-02-19

Family

ID=15589806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15469090A Pending JPH0450607A (en) 1990-06-12 1990-06-12 Method for measuring extension of pipe line

Country Status (1)

Country Link
JP (1) JPH0450607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007168845A (en) * 2005-12-21 2007-07-05 Taisei Lamick Co Ltd Heat-sealing edge for use of heat-sealing roll, and heat-sealing roll using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166480A (en) * 1980-03-20 1981-12-21 Damiaa Mirosurabu Jikashitsupu Physical parameter measuring method and apparatus
JPS5972014A (en) * 1982-10-18 1984-04-23 Asahi Kosan Kk Measuring method of length of buried piping
JPS6478184A (en) * 1987-06-24 1989-03-23 Nippon Kokan Kk Method and device for deriving length of tubular body by utilizing acoustic wave

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166480A (en) * 1980-03-20 1981-12-21 Damiaa Mirosurabu Jikashitsupu Physical parameter measuring method and apparatus
JPS5972014A (en) * 1982-10-18 1984-04-23 Asahi Kosan Kk Measuring method of length of buried piping
JPS6478184A (en) * 1987-06-24 1989-03-23 Nippon Kokan Kk Method and device for deriving length of tubular body by utilizing acoustic wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007168845A (en) * 2005-12-21 2007-07-05 Taisei Lamick Co Ltd Heat-sealing edge for use of heat-sealing roll, and heat-sealing roll using the same

Similar Documents

Publication Publication Date Title
SE9403632L (en) Method of measurement in a fluid using sing-around technology, device for sing-around-type measuring instruments and sing-around-type measuring instruments
CA2393727A1 (en) Simultaneous determination of multiphase flowrates and concentrations
JP2008134267A (en) Ultrasonic flow measurement method
CN104198003A (en) Ultrasonic flowmeter
WO2018045754A1 (en) Fluid velocity measuring method, fluid metering method and flowmeter
WO2006076998A3 (en) Device for determining and/or monitoring a volume flow and/or a mass flow
JPH0450607A (en) Method for measuring extension of pipe line
KR940015464A (en) Flow rate measuring device
JPH1048009A (en) Ultrasound temperature current meter
JP5113354B2 (en) Ultrasonic flow meter
JPH11201812A (en) Method for measuring sound velocity in fluid piping
KR100321074B1 (en) Measuring method of distance between sensors of ultrasonic flowmeter
US20220268609A1 (en) Ultrasonic Flowmeter and Method for Determining the Velocity of a Flowing Medium
JPS5852488Y2 (en) Flow rate measurement device using correlation technology
JPH071168B2 (en) A method for investigating in-pipe conditions using reflected sound waves
JPH07139982A (en) Ultrasonic flowmeter
JPS635219A (en) Method for measuring flow velocity by ultrasonic wave
KR20030031518A (en) Ultrasonic measurement method of flow speed in a small pipe by using cylindrical piezoelectric transducers
JP2803942B2 (en) Ultrasonic flow velocity flow meter for water pipes, etc.
KR100317954B1 (en) Ultrasonic Flow Measurement Method Using Variable Delay
KR100460258B1 (en) Ultrasonic wave flow measuring method & device
JP2004045425A (en) Flow rate measuring device
JP2010025680A (en) Ultrasonic flowmeter
JP3113128B2 (en) A method for detecting pipe joints using acoustic waves.
JPS5972014A (en) Measuring method of length of buried piping