JPH04505480A - ガスによる溶湯の処理方法及びそのための装置 - Google Patents

ガスによる溶湯の処理方法及びそのための装置

Info

Publication number
JPH04505480A
JPH04505480A JP2508697A JP50869790A JPH04505480A JP H04505480 A JPH04505480 A JP H04505480A JP 2508697 A JP2508697 A JP 2508697A JP 50869790 A JP50869790 A JP 50869790A JP H04505480 A JPH04505480 A JP H04505480A
Authority
JP
Japan
Prior art keywords
gas
molten metal
pressure
evaporator
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2508697A
Other languages
English (en)
Inventor
ブルンネル,ミカエル
Original Assignee
アーゲーアー アクツイエボラーグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アーゲーアー アクツイエボラーグ filed Critical アーゲーアー アクツイエボラーグ
Publication of JPH04505480A publication Critical patent/JPH04505480A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。

Description

【発明の詳細な説明】 ガスによる溶湯の処理方法及びそのための装置本発明は!転炉内での溶湯l待に 金属溶湯tのガス処理方法に関するものでありt特に!ガスと溶湯との接触を強 化しかつ一層効果的にしかつガスと溶湯との効果的混合を行う方法に関する。更 に!本発明はこのような処理方法を実施するための装置に関する。
製鋼の際にt例えば銑鉄書屑鉄又は海綿鉄は9興なる炉9転炉又は同じような装 置の中で溶融される。溶湯の炭素含有量は@湯のN鎖又は脱炭により減少されツ 特定の過程の場合には酸素ガスが溶湯へ導入される。他の理由で?ガス/粉末混 合物を溶湯へ導入することもできる。溶湯がガスで処理される大多数の過程にお いて?特に必要なことは1溶湯のできるだけ大きい部分がガスと接触するように ガスと溶湯との効果的混合を行うことである。ガス自体が!最大限にガスと溶湯 との完全な混合を行う際に役立たなければならない。
AOD過程(アルゴン酸素脱炭)によりステンレス鯛を製造する場合tガスは9 転炉内に配置された複数のノズルを介して溶湯へ導入される。これらのノズルは 蒸発器を介して!ガスが液体状態で入っている貯蔵容器に接続されている。この 貯m容器は通常I 16又は25バールの動作圧力を持つ加圧容器から成る。
圧力損失のため+ 25バールの動作圧力はノズルの低温端部において約15バ ールの最大圧力を与える。実際上書この圧力は嘗過程が最適値で実施され得ない からt約12バールも低い。ノズルの場所における転炉内診水圧は約4バールで ありう従って供給されるガス流の有効圧力差は僅か約8バールである。
8バールの大きさの圧力は、溶湯へ供給されるガスがこの溶湯の表面の方へ比較 的大きいガス泡の形で泡立つようにさせる。低い圧力のため?これらの泡はtノ ズルが位置している壁の比較的近くに生ずる。こうして聾装置は2相系!即ち不 連続な泡の形の気相及び溶湯の分離した均質塊の形の液相で動作しシこれらの2 つの相は互いに分離したままである。
本発明は?ガスをずっと高い圧力で供給することができ!それによって一層効果 的な過程を行うための一層大きい刺激と改善された条件とを与えかつ現代の技術 と関連づけられる特定の問題を除去しかつ過程を一層確実にすることが可能であ る場合に1ガスが一層良好に溶湯へ導入されかつこの溶湯と混合され得ることを 実現させることに基づいている。
現在基準とされている圧力より高い圧力!基準圧力の少なくとも2倍!なるべ( 10〜20倍の高さの圧力を使用する場合はツ溶湯中へ深く浸透しかつこの溶湯 により霧化されてl溶湯だけに包囲される審ガスと溶湯との乳濁液状の微細混合 物を含む噴流区域が得られるようにするガス噴流が生ぜしめられる。噴流区域内 の比接触表面積は非常に大きくかつこの噴流区域に接する溶融材料は噴流により 連行されかつそれと混合されすそのことは9更に溶湯中の乱流及びガスとそれと の混合を助長する。
その結果倉ガスと溶湯との効果的接触により混合過程が非常に効果的になる。
現在の技術における比較的低い圧力の使用の結果9ノズルにつち打ち効果が生じ !その結果l耐火内張りに機械的疲労及び摩耗が生ずる。
このつち打ち効果は!高い圧力が使用される場合に除去される。高い圧力はノズ ルの直径をかなり増大させる。他方またtこのことは!疲労の結果として又は何 か他の理由で欠陥が生じて!ノズルが転炉内の取付は部品からもぎ取られる場合 にツ高圧ノズルを使用する際に生ずる穴が非常に小さくなり!それによって損傷 の危険を減少させることを意味する。
明細書の前文に述べたような方法は特に9本発明により、ガスが少なくとも1つ の高圧噴流の形で溶湯へ供給されかつ噴流の圧力がこの溶湯中の噴流区域内のガ ス又は溶湯の微細混合を行うほどに大きいことを特徴としている。
ガス噴流は+ 20〜200バール穿なるべく70〜130パールの範囲内の圧 力を持つのが好ましい。
実際上の理由で1この圧力用の圧力容器を処理ガス貯m容器として使用すること は不適当である。代案は、ガスを液状で貯蔵しかつこの液状ガスを蒸発器を介し てノズルへ供給することである。しかし気化したガスの必要な圧力上昇を行うた めに実際的でない大きさの多段圧縮機のrs61Iを必要としかつ大量のエネル ギーが冷却される必要がある。
これらの問題は本発明による方法の更なる開発により解決され、この方法は、ガ スが液状で入っている貯蔵容器に接続された蒸発器から溶湯ヘガスを供給するこ と及びガス噴流内の所属のガス圧力を得るように2貯蔵容器と蒸−発器との間の 導管内tこ接続されたクライオポンプによって蒸発器の入口側圧力を増大させる ことを特徴としている。
液体を蒸発させる前に液体状態のガスの圧力を上もブるためし;クライオポンプ を使用することはν他の分野の範囲で公知である。しかしこの技術を9例えば冶 金分野の範囲で使用することはt以前に提案されていなかったしt又tこのよう な適用しこよりもたらされる重要な利点も本発明より前し;実現されな力)つた 。
例えば歌州特許出原公開第0099037号明細書はツボンプによって蒸発器の 上流の圧力を増大させる方法を教示しており!所要負荷圧力と蒸発器の下流で得 られる圧力との圧力差がクライオポンプの運転の際に利用される。負荷は、15 パールの大きさのツ比較的適度な圧力(本発明の場合も15バール)で駆動され るようになっている。
本発明により溶湯をガスで処理する際に使われる装置の特別な特徴は9以下の装 置の請求の範囲に記載されている。
本発明を添付の図面により以下に詳細に説明する。
図1は?公知技術により構成された装置を概略的に示している。
図2は9本発明により度更された同装置を概略的に示している。
図面の図1は、#Iを製造しかつ溶湯浴又は溶湯2を入れるための転炉lを概略 的に示している。この転炉は軸線3の周りに傾けられ得る。
例えば金g溶湯2を脱炭する目的で酸素ガスを供給するために使われるガス管4 は!転炉の一方の側に取り付けられた複数のノズル5に接続されており!これら のノズルのうちの1つだけが示されている。使用されるガス源は貯蔵容器6であ り!この貯蔵容器には液体状態のガスが入っておりtこの液状ガスlヨーノズル 5へ供給される前に蒸発器7で蒸発せしめられる。
貯蔵容器6内の圧力が25バールの大きさであればツノズル5の低温端部におけ る圧力は精々約15バールであり2通常。
僅か12バールである。更に、ノズルの場所における静水圧が約4バールであれ ばう有効動作圧力は優か約8/f−Jしである。
この結果、ガスは+W渦中に認められるほどの乱流を生ぜしめることなしに!比 較的大きい!不連続なガス泡の形で溶湯の表面の方へ上昇する。
図2は!本発明により変更されかつクライオポンプ9が貯蔵容器6と蒸発器7と の間の管路に組み込まれている装置を示している。これによって?ノズル5の低 温端部におけるガス圧力は!簡単なかつ費用効果的なやり方で1図1の実施例に より得られる圧力に関してかなり増大され9少なくとも2倍にされ得る。こうし て圧力は20バールを超え!おおよそ200パールにもなる。実際上の提出で+  70〜+30の大きさの圧力を選ぶことが好まれる。
上記の大きさの圧力はI溶湯2中の噴流区域lOを発生させtこの区域内に溶湯 とガスとの乳濁液状の微細混合物が得られ!この混合物は溶湯とガスとの間に最 大接触表面積を生ぜしめかつ続いて起こる乱流の結果としてガスと溶湯との非常 に効果的な混合を引き起こす。ガスと浴湯とのこの完全な混合は嘗高速で噴流区 域lOへ進む混合物がそれにより周囲の溶湯2を連行することによって行われる 。複数のこのようなノズル!例えば3つのノズルtを使用する混合9各ノズルは 9図1の実施例のノズルより深<溶湯中へ混合効果を生ぜしめ!それによって! 全体的に見て!ガスと溶湯とのずっと効果的な混合及びガスと溶湯との一層効果 的な接触を生せしめる。
本発明による菅圧力を上げるクライオポンプの使用は、ポンプと転炉との間の装 置が小さい寸法の管及びノズルを必要とするだけであり、そのことは特にt費用 の面から!本発明による高圧系を一層弯益にする。一層低い圧力において生ずる ノズルに対するつち打ち効果は!前述の個所で説明されたように!本発明を実施 する場合に除去されるから9ノズル区域内の機械応力も減少される。従ってノズ ルの小さい寸法のため!発明的なノズル又はノズル装置のいかなる欠陥も!一層 大きい直径を持つ公知のノズルを使用する場合より小さい損傷危険を伴うにすぎ ない。このことは次の例により説明される。
g5: ステンレス鰐をall!造するためのAOD転炉は液状ガス貯蔵容器と 蒸発器との間にクライオポンプを備えていたので!高圧側は120バールの圧力 において運転することができた。これによりノズルの直径を12+amから1. 75mmに縮小することができた。それによって脱炭率は13%増大された。飛 沫の形成は適度でありかつ不活性ガスの消費量は8%減少された。
本発明はう上述の個所で特にWtI4の際の金属溶湯の脱炭について説明された がツしかし発明的構想からそれることなしに!他の同じような分野の範囲で本発 明が適用されるように変更が行なえることをt当業者は理解するであろう。
補正書の写しく翻訳文)提出書 (特許法第184条の8) 平成3年11月21日

Claims (1)

  1. 【特許請求の範囲】 1 少なくとも1つの高圧噴流の形でガスを溶湯へ供給しかつこの溶湯中の噴流 区域内のガスと溶湯との微細混合を行うほどに高い圧力を選ぶことを特徴とする ,転炉内において溶湯,特に金属浴湯をガスで処理する際に,ガスと溶湯との効 果的混合を行うようにガスと溶湯との接触を強化しかつ一層効果的にする方法。 2 20〜200バール,なるべく70〜130バールの範囲内の圧力を使用す ることを特徴とする,請求項に記載の方法。 3 ガスが液体状態で入つている貯蔵容器に接続された蒸発器からガスを溶湯へ 供給し,貯蔵容器と蒸発器との間に延ひる管路の中に組み込まれた,いわゆるク ライオポンプによつて蒸発器への入口側圧力を増大させることにより噴流中の所 望ガス圧力を得るξとを特徴とする,請求項1又は2に記載の方法。 4 装置が,溶湯(2)の中へ射出しかつ少なくとも1つの高圧噴流の形でガス を供給するために使われる少なくとも1つのノズル(5)を含んでおり,更に, 溶湯(2)中の噴流区域(10)内のガスと溶湯との微細混合を行うほどに高い 値のガス圧力を生ぜしめるための手段(9)を含んでいることを特徴とする,ガ スと溶湯との接触を強化しかつ一層効果的にしかつガスとこの溶湯との効果的混 合を行うように,転炉(1)内において溶湯,特に金属溶湯(2)をガスで処理 する際に使用される装置。 5 ノズル(5)が,ガスが液体状態で入つている貯蔵容器(6)と接続された 蒸発器(7)に接続されており,いわゆるクライオポンプ(9)が貯蔵容器(6 )と蒸発器(7)との間に延びる管路の中に組み込まれていることを特徴とする ,請求項4に記載の装置。 6 クライオポンプ(9)が,ノズル(5)へ供給されるガス圧力が20〜20 0バール,なるべく70〜130バールの大きさであるように,蒸発器(7)へ の入口側圧力を増大させるために使われることを特徴とする,請求項5に記載の 装置。
JP2508697A 1989-05-29 1990-05-22 ガスによる溶湯の処理方法及びそのための装置 Pending JPH04505480A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8901915-2 1989-05-29
SE8901915A SE463876B (sv) 1989-05-29 1989-05-29 Saett vid behandling av en smaelta med gas samt anordning foer saadan behandling

Publications (1)

Publication Number Publication Date
JPH04505480A true JPH04505480A (ja) 1992-09-24

Family

ID=20376091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2508697A Pending JPH04505480A (ja) 1989-05-29 1990-05-22 ガスによる溶湯の処理方法及びそのための装置

Country Status (7)

Country Link
US (1) US5211743A (ja)
EP (1) EP0474759A1 (ja)
JP (1) JPH04505480A (ja)
BR (1) BR9007404A (ja)
FI (1) FI915606A0 (ja)
SE (1) SE463876B (ja)
WO (1) WO1990015160A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679132A (en) * 1995-06-07 1997-10-21 Molten Metal Technology, Inc. Method and system for injection of a vaporizable material into a molten bath
US6062239A (en) * 1998-06-30 2000-05-16 Semitool, Inc. Cross flow centrifugal processor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2467413A (en) * 1946-02-15 1949-04-19 William A Wildhack Liquid oxygen pumping system
DE2820555A1 (de) * 1978-05-11 1979-11-15 Basf Ag Verfahren zur behandlung von roheisen- und stahlschmelzen bzw. legierungen
FR2473064A1 (fr) * 1980-01-02 1981-07-10 Siderurgie Fse Inst Rech Procede de brassage pneumatique d'un bain de metal en fusion
DE3224608A1 (de) * 1982-07-01 1984-01-05 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zur druckgasversorgung
US4627243A (en) * 1985-09-26 1986-12-09 Union Carbide Corporation Gas supply system for variable demand application
GB8824216D0 (en) * 1988-10-15 1988-11-23 Boc Group Plc Air separation

Also Published As

Publication number Publication date
SE8901915L (sv) 1990-11-30
EP0474759A1 (en) 1992-03-18
SE8901915D0 (sv) 1989-05-29
WO1990015160A1 (en) 1990-12-13
US5211743A (en) 1993-05-18
FI915606A0 (fi) 1991-11-28
SE463876B (sv) 1991-02-04
BR9007404A (pt) 1992-05-12

Similar Documents

Publication Publication Date Title
US6514310B2 (en) Process for injection of a gas with the aid of a nozzle
US3791813A (en) Method for injecting a gaseous reacting agent into a bath of molten metal
US3194539A (en) Mixing apparatus
DE69720729T2 (de) Von oben einsetzbare einspritzlanze
CA1096633A (en) Continuous stream treatment of ductile iron
US3898078A (en) Method and apparatus for injecting refining oxygen in steelmaking processes
JPH04505480A (ja) ガスによる溶湯の処理方法及びそのための装置
JPH0339411A (ja) 溶銑の連続製錬方法
JPS646243B2 (ja)
AU2021387682B2 (en) Method for treating molten metals and/or slags in metallurgical baths and metallurgical plant for treating molten metals
US3245840A (en) Abrasive material and method of making same
Jezierski Pneumatic injection of ferroalloys into liquid cast iron
Rohde et al. Current state, capabilities and further developments of the CSP technology
SU863658A1 (ru) Топливокислородна фурма
JPS59145717A (ja) 鋳鉄,特にクロム鋳鉄を脱炭するための安定した超音速流を噴出する酸素噴射ノズル
Schempp Metallurgical Method
GB1571484A (en) Process for melting metal in a vertical shaft furnace
NL1009522C2 (nl) Werkwijze en inrichting voor de thermische behandeling van een ruwmateriaal.
JPS6326169B2 (ja)
JPH04325622A (ja) 極低炭素鋼の製造方法
Liu Decarburization of ultra-low carbon steel by vacuum levitation
JPH03287714A (ja) 溶融金属の精錬法
Wei et al. Hydraulic modeling study on characteristics of fluid flow and mixing in AOD bath with rotating gas jets
Drobyshevskii et al. Ladle treatment of low alloy steel with pulsed nitrogen jet through a submersible tuyere
JPH0435522B2 (ja)