JPH0449890B2 - - Google Patents

Info

Publication number
JPH0449890B2
JPH0449890B2 JP2530585A JP2530585A JPH0449890B2 JP H0449890 B2 JPH0449890 B2 JP H0449890B2 JP 2530585 A JP2530585 A JP 2530585A JP 2530585 A JP2530585 A JP 2530585A JP H0449890 B2 JPH0449890 B2 JP H0449890B2
Authority
JP
Japan
Prior art keywords
phase
signal
frequency
signals
pulse train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2530585A
Other languages
Japanese (ja)
Other versions
JPS61186815A (en
Inventor
Tadashi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2530585A priority Critical patent/JPS61186815A/en
Publication of JPS61186815A publication Critical patent/JPS61186815A/en
Publication of JPH0449890B2 publication Critical patent/JPH0449890B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、検出精度を向上させたレゾルバ方式
位置検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resolver type position detector with improved detection accuracy.

[従来の技術] 一般に、工作機械やロボツトなどの位置決め制
御には、位置検出器として、機械的回転角の変化
に応じた周波数を有する二相パルス例信号を出力
する光学式パルスエンコーダが利用されているこ
とは周知のことである。しかしながら、光学式パ
ルスエンコーダは、機械的・熱的強度が低いので
耐環境性や機械的取付け・取扱などに問題があ
る。
[Prior Art] Generally, for positioning control of machine tools, robots, etc., an optical pulse encoder is used as a position detector, which outputs a two-phase pulse example signal having a frequency corresponding to changes in mechanical rotation angle. It is well known that However, optical pulse encoders have low mechanical and thermal strength, so there are problems with environmental resistance, mechanical installation, and handling.

従つて、機械的・熱的強度が高く、ブラシレス
の回転機で信頼度の高い電磁機器である位置検出
器としてのレゾルバが広く利用されていることは
周知のことである。このようなレゾルバを用いた
従来の代表的な位置検出器を第8図に示す。
Therefore, it is well known that resolvers are widely used as position detectors, which are electromagnetic devices that have high mechanical and thermal strength, are brushless rotating machines, and have high reliability. A typical conventional position detector using such a resolver is shown in FIG.

同図において、1は磁極対数Pのレゾルバで、
固定子に巻装された二相励磁巻線2,3と、回転
子に巻装されていて回転軸4の機械的回転角θn
変化に応じて検出信号e0を出力する検出巻線5と
を有する。6は励磁回路であつて、一定の周波数
(fHz)の二相正弦波信号ex(=cos ωt)、ey(=
sin ωt)、(ここでω=2πf、電圧値は単一値。)を
発生し、この二相正弦波信号ex,eyで励磁巻線
2,3をそれぞれ励磁する。7a,7bはいずれ
も乗算器、8a,8bはいずれもローパスフイル
タである。
In the figure, 1 is a resolver with a number of magnetic pole pairs P,
Two-phase excitation windings 2 and 3 are wound around the stator, and a detection winding is wound around the rotor and outputs a detection signal e 0 in response to changes in the mechanical rotation angle θ n of the rotating shaft 4. 5. 6 is an excitation circuit which receives two-phase sine wave signals e x (=cos ωt) and e y (=
sin ωt), (here ω=2πf, the voltage value is a single value), and the excitation windings 2 and 3 are excited with these two-phase sinusoidal signals e x and e y , respectively. Both 7a and 7b are multipliers, and 8a and 8b are both low-pass filters.

上記のような構成において、レゾルバ1の検出
巻線5から出力される検出信号e0は回転角θnの変
化に対して次式で表わされる。
In the above configuration, the detection signal e 0 output from the detection winding 5 of the resolver 1 is expressed by the following equation with respect to a change in the rotation angle θ n .

e0=cos(ωt±0) =cos(ωt±P・θn) ……(1) ここで、θは電気的位相角で、回転角θnとの関
係は次式で与えられる。
e 0 =cos(ωt±0) =cos(ωt±P· θn )...(1) Here, θ is the electrical phase angle, and the relationship with the rotation angle θn is given by the following equation.

θ=P・θn ……(2) 従つて、乗算器8,9の出力信号ex0,ey0は次
式で与えられる。
θ=P·θ n (2) Therefore, the output signals e x0 and e y0 of the multipliers 8 and 9 are given by the following equations.

ex0=ex・e0=1/2{cos(2ωt±P・θn)+cos
(±P・θn)}……(3) ey0=ey・e0=1/2{sin(2ωt±P・θn)+sin
(±P・θn)}……(4) これらの出力信号ex0,ey0は、それぞれローパ
スフイルタ8a,8bで倍調波分(2ωt)を除く
と、ローパスフイルタ8a,8bの各出力信号
Ex0,Ey0は次式で与えられる。
e x0 = e x・e 0 = 1/2 {cos (2ωt±P・θ n ) + cos
(±P・θ n )}……(3) e y0 = e y・e 0 = 1/2 {sin (2ωt±P・θ n ) + sin
(±P・θ n )}...(4) These output signals e x0 and e y0 are the respective outputs of the low-pass filters 8a and 8b after the harmonic component (2ωt) is removed by the low-pass filters 8a and 8b, respectively. signal
E x0 and E y0 are given by the following equations.

Ex0=1/2・cos(±P・θn) ……(5) Ey0=1/2・sin(±P・θn) ……(6) (5)、(6)式および(2)式より二相信号Ex0,Ey0は回
転角θnの1回転当りPサイクルの二相信号とな
る。第9図に回転角θnの変化に応じて変化する上
記の二相信号Ex0,Ey0の動作波形を示す。
E x0 = 1/2・cos (±P・θ n ) ...(5) E y0 = 1/2・sin (±P・θ n ) ...(6) Equations (5), (6) and ( From equation 2), the two-phase signals E x0 and E y0 are two-phase signals of P cycles per rotation of the rotation angle θ n . FIG. 9 shows the operating waveforms of the two-phase signals E x0 and E y0 that change according to changes in the rotation angle θ n .

[発明が解決しようとする問題点] この種の従来の位置検出器では、レゾルバの磁
極対数Pに応じて回転角θnの1回転当りPサイク
ルの二相信号Ex0,Ey0しか得られない。即ち、位
置検出の分解能が低いので、例えばブラシレス電
動機を用いた制御系における回転位置検出にレゾ
ルバを用いようとすると、ブラシレス電動機の磁
極位置検出用および回転軸の機械的位置検出用の
2個のレゾルバを必要とする問題がある。また、
機械的位置検出の精度を高くするためには、レゾ
ルバの磁極対数Pを例えばP=16と数を多くしな
ければならないが、それには限度があるので、位
置検出の分解能を十分に上げることが出来ないと
ともに、磁極対数Pを多くするとレゾルバ本体が
大形となる欠点がある。
[Problems to be Solved by the Invention] In this type of conventional position detector, only two-phase signals E x0 and E y0 of P cycles per rotation of the rotation angle θ n can be obtained depending on the number of magnetic pole pairs P of the resolver. do not have. In other words, since the resolution of position detection is low, when trying to use a resolver to detect rotational position in a control system using a brushless motor, for example, two resolvers are required, one for detecting the magnetic pole position of the brushless motor and the other for detecting the mechanical position of the rotating shaft. I have a problem that requires a resolver. Also,
In order to increase the accuracy of mechanical position detection, the number of magnetic pole pairs P of the resolver must be increased, for example, P = 16, but there is a limit to this, so it is not possible to sufficiently increase the resolution of position detection. In addition, there is a drawback that increasing the number of magnetic pole pairs P increases the size of the resolver body.

本発明の目的は、磁極対数Pを有するレゾルバ
の検出信号を、回転角θnの1回転当り2n・P(n
は正整数)サイクルの二相信号に変換して出力す
る位置検出精度の高いレゾルバ方式位置検出器を
提供することにある。
An object of the present invention is to generate a detection signal of a resolver having a magnetic pole pair P by 2 n P (n
An object of the present invention is to provide a resolver-type position detector with high position detection accuracy that converts the signal into a two-phase signal of (positive integer) cycles and outputs the signal.

[問題点を解決するための手段] 上記の問題点を解決するための本発明の構成
を、実施例に対応する第1図〜第7図を用いて以
下に説明する。
[Means for Solving the Problems] The configuration of the present invention for solving the above problems will be explained below using FIGS. 1 to 7 corresponding to embodiments.

本発明のレゾルバ方式位置検出器は、周波数f
二相正弦波信号ex,eyと周波数2n・fのパルス列
信号E1a及び周波数2n+1・fのパルス列信号E1b
出力する励磁回路10と、磁極対数Pを有し前記
二相正弦波信号ex,eyで励磁されて検出すべき回
転体の回転角θnの変化に応じた電気的位相角θ
(=P・θn)を有する周波数f±Δfの位置検出信
号e0を出力するレゾルバ1と、前記位置検出信号
e0を受けてその位相に追尾するように位相同期動
作をして周波数2n・(f±Δf)のパルス列信号E2a
ならびに周波数2n+1・(f±Δf)のパルス列信号
E2bを出力する位相ロツクド・ループ回路20と、
前記励磁回路10からのパルス列信号E1a,E1b
受けて周波数2n・fの二相正弦波信号e11,e12
出力する第1の信号変換回路30と、前記位相ロ
ツクド・ループ回路20からのパルス列信号E2a
E2bを受けて周波数2n・(f±Δf)の二相正弦波信
号e21,e22を出力する第2の信号変換回路40
と、前記二相正弦波信号e11,e12及び二相正弦波
信号e21,e22を受けて所定の演算を行なつて前記
回転角θnの変化に応じて変化する電気的位相角
2n・P・θnを有する二相信号Ex1,Ey1を出力する
演算回路50とを具備するものである。
The resolver type position detector of the present invention has a frequency f
an excitation circuit 10 that outputs two - phase sinusoidal signals e The electrical phase angle θ corresponding to the change in the rotation angle θ n of the rotating body to be detected when excited by the phase sine wave signals e x , e y
(=P・θ n ) and a resolver 1 that outputs a position detection signal e 0 of frequency f±Δf, and the position detection signal
A pulse train signal E 2a of frequency 2n・(f±Δf) is generated by performing phase synchronization operation to track the phase of e 0 .
and a pulse train signal with frequency 2 n+1・(f±Δf)
a phase-locked loop circuit 20 that outputs E 2b ;
a first signal conversion circuit 30 that receives pulse train signals E 1a and E 1b from the excitation circuit 10 and outputs two-phase sine wave signals e 11 and e 12 with a frequency of 2n · f; and the phase-locked loop circuit. Pulse train signal E 2a from 20,
A second signal conversion circuit 40 receives E 2b and outputs two-phase sine wave signals e 21 and e 22 with a frequency of 2 n ·(f±Δf).
Then, by receiving the two-phase sine wave signals e 11 , e 12 and the two-phase sine wave signals e 21 , e 22 and performing a predetermined calculation, an electrical phase angle that changes according to a change in the rotation angle θ n is obtained.
It is equipped with an arithmetic circuit 50 that outputs two-phase signals E x1 and E y1 having 2 n ·P·θ n .

[発明の作用] 本発明は上記の手段において、磁極対数Pのレ
ゾルバ1から回転体の回転角θnの変化に応じた位
相角P・θnを有する周波数f±Δfの位置検出信
号e0が出力され、この信号に応じて位相ロツク
ド・ループ回路20から周波数2n・(f±Δf)の
パルス列信号E2a及び周波数2n+1・(f±Δf)のパ
ルス列信号E2bが出力される。これらのパルス列
信号は第2の信号変換回路40を介して周波数
2n・(f±Δf)の二相正弦波信号e12,e22に変換
される。
[Operation of the Invention] In the above means, the present invention provides a position detection signal e 0 with a frequency f±Δf having a phase angle P·θ n corresponding to a change in the rotation angle θ n of the rotating body from the resolver 1 with the number of magnetic pole pairs P. In response to this signal, the phase-locked loop circuit 20 outputs a pulse train signal E 2a with a frequency of 2 n ·(f±Δf) and a pulse train signal E 2b with a frequency of 2 n+1 ·(f±Δf). Ru. These pulse train signals are passed through the second signal conversion circuit 40 to
2 n ·(f±Δf) two-phase sine wave signals e 12 and e 22 .

他方、励磁回路10からの周波数2n・fのパル
ス列信号1a及び周波数2n+1・fのパルス列信号E1b
は、第1の信号変換回路30を介して周波数2n
fの二相正弦波信号e11,e12に変換される。
On the other hand, a pulse train signal 1a with a frequency of 2 n ·f and a pulse train signal E 1b with a frequency of 2 n+1 ·f from the excitation circuit 10
is converted to a frequency 2n· through the first signal conversion circuit 30.
f into two-phase sine wave signals e 11 and e 12 .

そして、二相正弦波信号e21,e22および二相正
弦波信号e11,e12に基づいて演算回路50から回
転角θnの変化に応じて変化する電気的位相角2n
P・θnを有する二相信号Ex1,Ey1が出力される。
この二相信号Ex1,Ey1は、回転角θnの1回転当り
2n・Pサイクルの変化をするので、この二相信号
に基づいて位置検出を行えば、磁極対数Pのレゾ
ルバ1による検出精度が2n倍に向上する。これに
より、精度向上のため多極で大形のレゾルバや2
個のレゾルバを用いるなどの必要がなくなる。
Then, based on the two-phase sine wave signals e 21 , e 22 and the two-phase sine wave signals e 11 , e 12 , the arithmetic circuit 50 outputs an electrical phase angle 2 n · that changes in accordance with a change in the rotation angle θ n .
Two-phase signals E x1 and E y1 having P·θ n are output.
These two-phase signals E x1 and E y1 are generated per rotation of the rotation angle θ n .
Since the change occurs in 2 n ·P cycles, if the position is detected based on this two-phase signal, the detection accuracy of the magnetic pole pair P by the resolver 1 will be improved by 2 n times. This allows for multi-pole, large resolvers and two
There is no need to use multiple resolvers.

[実施例] 以下、図面に基づいて本発明の実施例を説明す
る。第1図は本発明の一実施例を示したもので、
同図の第8図と対応する同一部分(レゾルバ部)
には同一符号を付してある。
[Example] Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 shows an embodiment of the present invention.
The same part (resolver part) corresponding to Fig. 8 of the same figure
are given the same reference numerals.

10は周波数fの二相正弦波信号ex,eyの外
に、周波数2n・fのパルス列信号E1a、および周
波数2n+1・fのパルス列信号E1bを出力する励磁
回路、20はレゾルバ1からの周波数f±Δfの
検出信号e0の電気的位相に追尾するように位相同
期動作をして、周波数2n・(f±Δf)のパルス列
信号E2a、および周波数2n+1・(f±Δf)のパルス
列信号E2bを出力する位相ロツクド・ループ回路
(以下、PLL回路と称す)である。30は前記励
磁回路10からのパルス列信号E1a,E1bを入力信
号として、周波数2n・fの二相正弦波信号e11
e12を出力する第1の信号変換回路、40は前記
のPLL回路20から出力されるパルス列信号E2a
E2bを入力信号として、周波数2n・(f±Δf)の二
相正弦波信号e21,e22を出力する第2の信号変換
回路、50は前記第1の信号変換回路30からの
二相正弦波信号e11,e12と前記第2の信号変換回
路40からの二相正弦波信号e21,e22とを入力信
号として、回転角θnの1回転の変化に応じて2n
Pサイクルの二相信号Ex1,Ey1を出力する演算回
路である。
10 is an excitation circuit that outputs a pulse train signal E 1a with a frequency of 2 n ·f and a pulse train signal E 1b with a frequency of 2 n+1 ·f in addition to the two-phase sine wave signals e x and e y of the frequency f; 20 performs a phase synchronization operation so as to track the electrical phase of the detection signal e 0 of frequency f±Δf from resolver 1, and generates a pulse train signal E 2a of frequency 2 n ·(f±Δf), and a pulse train signal E 2a of frequency 2 n+ This is a phase-locked loop circuit (hereinafter referred to as a PLL circuit) that outputs a pulse train signal E2b of 1. (f±Δf). 30 uses the pulse train signals E 1a and E 1b from the excitation circuit 10 as input signals, and generates two-phase sine wave signals e 11 and 30 with a frequency of 2n ·f.
a first signal conversion circuit that outputs e 12 ; 40 is a pulse train signal E 2a output from the PLL circuit 20;
A second signal conversion circuit outputs two-phase sine wave signals e 21 and e 22 with a frequency of 2 n ·(f±Δf) using E 2b as an input signal; Using the phase sine wave signals e 11 , e 12 and the two-phase sine wave signals e 21 , e 22 from the second signal conversion circuit 40 as input signals , 2 n
This is an arithmetic circuit that outputs P-cycle two-phase signals E x1 and E y1 .

第1図の位置検出器において、レゾルバ1の検
出信号e0と回転角θnとは前記(1)式で示す関係にあ
るが、回転角θnが回転数Nnで変化しているとき
の検出信号e0の変化状態は次の(7)式で与えられ
る。
In the position detector shown in Fig. 1, the detection signal e 0 of the resolver 1 and the rotation angle θ n have the relationship shown in equation (1) above, but when the rotation angle θ n changes with the rotation speed N n The state of change of the detection signal e 0 is given by the following equation (7).

e0=cos[2π(f±Δf)t±θn0] ……(7) ここでΔf=(Nn/60)・P ……(8) θn0は回転角θnの初期条件、 符号(±)は回転角θnの回転方向に関する符号
で、レゾルバの回転磁界と反対の回転方向のとき
(+)、レゾルバの回転磁界と同一の回転方向のと
きは(−)である。
e 0 = cos[2π(f±Δf)t±θ n0 ] ...(7) Here, Δf = (N n /60)・P ...(8) θ n0 is the initial condition of the rotation angle θ n , sign (±) is a sign related to the rotation direction of the rotation angle θ n , and is (+) when the rotation direction is opposite to the rotating magnetic field of the resolver, and (-) when the rotation direction is the same as the rotating magnetic field of the resolver.

(8)式に示すように、周波数Δfは回転数Nnに比
例して大きくなり、Nn=0のときはΔf=0とな
り、回転角θn0の位相を検出信号e0が持つことに
なる。
As shown in equation (8), the frequency Δf increases in proportion to the rotational speed N n , and when N n = 0, Δf = 0, which means that the detection signal e 0 has the phase of the rotation angle θ n0 . Become.

次に、前述した励磁回路10の具体例構成例を
第2図を参照して説明する。この励磁回路10
は、図示のように一定周波数K・f(例えば10M
Hz)のパルス列信号を出力する発振器11と、該
パルス列信号を計数して0〜nビツトのデジタル
値を周期T0で繰り返すデジタル信号D1を出力す
るとともに、周期T0/2nを有するパルス列信号
E1aと、周期T0/2n+1を有するパルス列信号E1b
を出力する2進数の計数回路12と、メモリー内
に各々正弦波又は余弦波のデジタル値が予めメモ
リーされていて、前記デジタル信号D1がアドレ
ス信号として入力された際に、該アドレス信号に
応じてそれぞれ正弦波デジタル信号D2a又は余弦
波デジタル信号D2bを出力するメモリー回路1
3,14と、前記デジタル信号D2a,D2bのそれ
ぞれをデジタル・アナログ変換して相互に二相正
弦波関係をもつ正弦波信号ex,eyを出力するデジ
タル・アナログ変換器(以下D/A変換器と称す
る。)15,16とからなつている。
Next, a specific example of the configuration of the above-mentioned excitation circuit 10 will be explained with reference to FIG. 2. This excitation circuit 10
is a constant frequency K・f (for example, 10M
Hz), an oscillator 11 that outputs a pulse train signal of 100 Hz), and an oscillator 11 that counts the pulse train signal and outputs a digital signal D1 that repeats a digital value of 0 to n bits with a period T0, and a pulse train that has a period T0 / 2n . signal
E 1a and a pulse train signal E 1b having a period T 0 /2 n+1 . Memory circuit 1 that outputs a sine wave digital signal D 2a or a cosine wave digital signal D 2b , respectively, in accordance with the address signal when the digital signal D 1 is input as an address signal.
3 and 14, and a digital- to -analog converter (hereinafter referred to as D /A converter) 15 and 16.

第3図a〜dは、前記のデジタル信号D1、二
相正弦波信号ex,ey、およびパルス列信号E1a
E1b等の相関関係を示し、第3図e,fは後述す
る信号変換回路30の具体例におけるパルス列信
号Ep3および二相正弦波信号e11,e12の関係を示す
図で、それぞれの横軸は時間tを縦軸はデジタル
値又は電圧値を表わす。
3a to 3d show the digital signal D 1 , the two-phase sinusoidal signals e x , ey , and the pulse train signals E 1a ,
E 1b etc., and FIGS. 3e and 3f are diagrams showing the relationship between the pulse train signal E p3 and the two-phase sine wave signals e 11 and e 12 in a specific example of the signal conversion circuit 30, which will be described later. The horizontal axis represents time t, and the vertical axis represents digital value or voltage value.

第3図a〜dにおいて、デジタル信号D1は周
期T0間で零からデジタル値Daに到達し周期T0
にこれを繰り返し、二相正弦波信号ex,eyは互い
に90度位相ずれをもち周期T0(周波数f)をもつ
ている。従つて、デジタル信号D1が二相正弦波
信号ex,eyの位相状態を表わしている。また、パ
ルス列信号E1a,E1bは、それぞれ第3図c、第3
図dに図示の周期(図では2n=2の場合を示して
いる)で繰り返し出力される。
In Figures 3 a to d, the digital signal D 1 reaches the digital value D a from zero during period T 0 and repeats this every period T 0 , and the two-phase sine wave signals e x and e y are at 90 degrees to each other. It has a phase shift and a period T 0 (frequency f). Therefore, the digital signal D 1 represents the phase state of the two-phase sinusoidal signals e x and e y . Furthermore, the pulse train signals E 1a and E 1b are shown in Fig. 3c and Fig. 3, respectively.
The signal is repeatedly output at the period shown in FIG. d (the figure shows the case of 2 n =2).

第4図はPLL回路20の具体的構成例を示し
たものである。このPLL回路20は図示のよう
に、レゾルバ1の検出信号e0と、後述する帰還ア
ナログ正弦波回路e0aとの位相差を検出し、その
位相差に比例した直流信号Edを出力する位相検
出器21と、該直流信号Edを入力信号として比
例・積分動作特性をもつて増幅された直流信号
E0を出力する増幅器22と、該直流信号E0を入
力としてその電圧値に比例した周波数K(f±
Δf)を有するパルス列信号Evを出力する電圧制
御発振器23と、該パルス列信号Evを計数して
前記検出信号e0の周期T1に相当する周期でデジ
タル値を繰り返して、そのデジタル値が検出信号
e0の位相を示すデジタル信号D3を出力するとと
もに、周期T1に対して周期T1/2nのパルス列信
号E2a及び周期T1/2n+1のパルス列信号E2bを出力
する2進数の計数回路24と、メモリー内に正弦
波デジタル値が予めメモリーされていて、前記デ
ジタル信号D3をアドレス入力信号とし該アドレ
ス入力信号に応じて正弦波デジタル信号D4を出
力するメモリー回路25と、該正弦波デジタル信
号D4を入力信号とし該デジタル信号D4をデジタ
ル・アナログ変換して、周期T1、周波数f±Δf
を有するアナログ量の帰還正弦波信号e0aを出力
するD/A変換器26とからなつている。
FIG. 4 shows a specific example of the configuration of the PLL circuit 20. As shown in the figure, this PLL circuit 20 detects a phase difference between a detection signal e 0 of the resolver 1 and a feedback analog sine wave circuit e 0a described later, and outputs a DC signal E d proportional to the phase difference. A detector 21 and a DC signal amplified with proportional/integral operating characteristics using the DC signal E d as an input signal.
An amplifier 22 that outputs E 0 and a frequency K (f±
A voltage-controlled oscillator 23 outputs a pulse train signal E v having a pulse train signal E v ), and a voltage-controlled oscillator 23 that outputs a pulse train signal E v having a pulse train signal E v and repeats a digital value at a period corresponding to the period T 1 of the detection signal e 0 to obtain the digital value. detection signal
2 which outputs a digital signal D 3 indicating the phase of e 0 , and also outputs a pulse train signal E 2a with a period T 1 / 2 n and a pulse train signal E 2b with a period T 1 /2 n+1 with respect to the period T 1. A base number counting circuit 24 and a memory circuit 25 in which a sine wave digital value is stored in advance in memory, and which uses the digital signal D 3 as an address input signal and outputs a sine wave digital signal D 4 in accordance with the address input signal. Then, using the sine wave digital signal D 4 as an input signal, converting the digital signal D 4 from digital to analog, the period T 1 and the frequency f±Δf
and a D/A converter 26 which outputs an analog feedback sine wave signal e0a .

上記のPLL回路20においては検出信号e0が入
力されると、位相検出器21で帰還アナログ正弦
波信号e0aとの位相差を検出し、その位相差が零
になるようにPLL回路20の各部が動作して、
帰還アナログ正弦波信号e0aが検出信号e0に位相
同期する動作を行う。従つて、デジタル信号D3
は検出信号e0の位相を示すデジタル値をもつこと
になる。
In the PLL circuit 20 described above, when the detection signal e 0 is input, the phase detector 21 detects the phase difference with the feedback analog sine wave signal e 0a , and the PLL circuit 20 adjusts the phase difference so that the phase difference becomes zero. Each part works,
The feedback analog sine wave signal e 0a performs an operation in phase synchronization with the detection signal e 0 . Therefore, the digital signal D 3
has a digital value indicating the phase of the detection signal e0 .

第5図a〜dは、前述のデジタル信号D3、検
出信号e0、帰還アナログ正弦波信号e0a、及びパ
ルス列信号E2a,E2b等の相関関係を示し、また第
5図e,fは後述する信号変換回路40の具体例
におけるパルス列信号Ep4および二相正弦波信号
e21,e22の関係を示すもので、それぞれの横軸は
時間tを、縦軸はデジタル値または電圧値を示
す。第5図a,bにおいて、曲線イ(実線)は回
転軸4の回転が或る点で停つている状態(回転角
θnがある一定値となる)下で、信号e0,e0aは周
期T1(周波数f)をもつことを示し、また曲線口
(破線)はレゾルバ1の回転磁界の回転方向と反
対方向に回転軸4が或る回転速度で回転している
状態下で、信号e0,e0aは周期T2(周波数f±Δf)
をもつことを示し、更に曲線ハ(一点鎖線)はレ
ゾルバ1の回転磁界の回転方向と同じ方向に回転
軸4が或る回転速度で回転している状態下で、信
号e0,e0aは周期T3(周波数f−Δf)をもつことを
示している。
Figures 5 a to d show the correlations among the digital signal D 3 , the detection signal e 0 , the feedback analog sine wave signal e 0a , and the pulse train signals E 2a , E 2b , etc., and Figures 5 e, f are a pulse train signal E p4 and a two-phase sine wave signal in a specific example of the signal conversion circuit 40, which will be described later.
It shows the relationship between e 21 and e 22 , where the horizontal axis shows time t and the vertical axis shows the digital value or voltage value. In Figures 5a and 5b, curve A (solid line) indicates that the rotation of the rotating shaft 4 is stopped at a certain point (the rotation angle θ n is a certain constant value), and the signals e 0 and e 0a are The curved line (dashed line) indicates that the signal has a period T 1 (frequency f) under the condition that the rotating shaft 4 is rotating at a certain rotational speed in the opposite direction to the rotating direction of the rotating magnetic field of the resolver 1. e 0 and e 0a are period T 2 (frequency f±Δf)
Furthermore, curve C (dotted chain line) shows that under the condition that the rotating shaft 4 is rotating at a certain rotational speed in the same direction as the rotating direction of the rotating magnetic field of the resolver 1, the signals e 0 and e 0a are It is shown that it has a period T 3 (frequency f - Δf).

なお、第5図c〜fの信号波形図は、回転軸4
の回転が或る点で停つている状態のみについて示
してある。
Note that the signal waveform diagrams in FIGS.
Only the state in which the rotation of is stopped at a certain point is shown.

第6図は信号変換回路30(または40)の具
体的構成例を示したものである。この信号変換回
路30(または40)は、排他的論理和回路31
と、インバータ回路32,33と、増幅回路3
4,35と、抵抗器R1〜R9と、コンデンサC1
C4とを図示のように接続して構成されている。
信号変換回路40の入力信号E2a,E2b及び出力信
号e21,e22はそれぞれ図の()内に示してある。
この信号変換回路30(または40)は、前述の
パルス列信号E1a,E1b(またはE2a,E2b)を受け
て第3図e〔または第5図e〕に示すように、パ
ルス列信号E1a(またはE2a)と二相信号関係をも
つパルス列信号Ep3(またはEp4)に波形変換する。
そして、このパルス列信号E1a,Ep3(またはE2a
Ep4)を波形整形・増幅して第3図f〔または第5
図f〕に示すような二相正弦波信号e11,e12(ま
たはe21,e22)を出力する。この二相正弦波信号
e11,e12(またはe21,e22)はそれぞれ次式で与え
られる。(それぞれの電圧値は単一値とす。) e11=sin ωnt ……(9) e12=cos ωot ……(10) e21=sin(ωot±θo) ……(11) e22=cos(ωot±θo) ……(12) ここで ωo=2π・2n・f ……(13) θo=2n・P・θn ……(14) 次に、演算回路50の具体的構成例は、第1図
に示すように接続された乗算器51〜54と減算
器55,56とからなつている。乗算器51〜5
4から出力される信号e51〜e54はそれぞれ次式で
与えられる。
FIG. 6 shows a specific example of the configuration of the signal conversion circuit 30 (or 40). This signal conversion circuit 30 (or 40) includes an exclusive OR circuit 31
, inverter circuits 32 and 33, and amplifier circuit 3
4, 35, resistors R 1 to R 9 , and capacitors C 1 to
C4 is connected as shown in the figure.
Input signals E 2a , E 2b and output signals e 21 , e 22 of the signal conversion circuit 40 are respectively shown in parentheses in the figure.
This signal conversion circuit 30 (or 40) receives the aforementioned pulse train signals E 1a , E 1b (or E 2a , E 2b ) and converts the pulse train signal E as shown in FIG. 3 e [or FIG. 5 e]. The waveform is converted into a pulse train signal E p3 (or E p4 ) having a two-phase signal relationship with 1a (or E 2a ).
Then, these pulse train signals E 1a , E p3 (or E 2a ,
E p4 ) is waveform-shaped and amplified to
Two-phase sine wave signals e 11 , e 12 (or e 21 , e 22 ) as shown in Figure f] are output. This two-phase sine wave signal
e 11 and e 12 (or e 21 and e 22 ) are each given by the following equations. (Each voltage value is a single value.) e 11 = sin ωnt ...(9) e 12 = cos ω o t ...(10) e 21 = sin(ω o t±θ o ) ...( 11) e 22 = cos (ω o t±θ o ) ...(12) where ω o =2π・2 n・f ...(13) θ o =2 n・P・θ n ...(14) Next, a specific example of the configuration of the arithmetic circuit 50 consists of multipliers 51 to 54 and subtractors 55 and 56 connected as shown in FIG. Multipliers 51-5
The signals e 51 to e 54 output from 4 are given by the following equations, respectively.

e51=e11×e21=1/2{cos (2ωot±θo)−cos(±θo)} ……(15) e52=e12×e22=1/2{cos (2ωot±θo)+cos(±θo)} ……(16) e53=e12×e21=1/2{sin (2ωot±θo)+sin(±θo)} ……(17) e54=e11×e22=1/2{sin (2ωot±θo)−sin(±θo)} ……(18) 減算器55,56の各出力信号Ex1,Ey1はそれ
ぞれ次式で与えられる。
e 51 = e 11 × e 21 = 1/2 {cos (2ω o t±θ o ) − cos (±θ o )} ...(15) e 52 = e 12 × e 22 = 1/2 { cos ( 2ω o t±θ o ) + cos (±θ o )} ...(16) e 53 = e 12 × e 21 = 1/2 {sin (2ω o t±θ o ) + sin (±θ o )} ... (17) e 54 = e 11 × e 22 = 1/2 {sin (2ω o t±θ o ) − sin (±θ o )} ...(18) Each output signal E x1 of the subtracters 55 and 56, E y1 is given by the following formula.

Ex1=e52−e51=cos(±θo) ……(19) Ey1=e53−e54=sin(±θo) ……(20) (19)、(20)および(14)の各式からわかるよ
うに、回転角θnの1回転の変化に対応して、二相
信号Ex1,Ey1は2n・Pサイクルの変化を示す。第
7図は2n・P=4の場合の二相信号Ex1,Ey1の信
号波形図を示す。
E x1 = e 52 −e 51 = cos (±θ o ) ……(19) E y1 = e 53 −e 54 = sin (±θ o ) ……(20) (19), (20) and (14 ), the two-phase signals E x1 and E y1 show a change of 2 n ·P cycles in response to a change of the rotation angle θ n of one rotation. FIG. 7 shows a signal waveform diagram of two-phase signals E x1 and E y1 when 2 n ·P=4.

以上説明したように本実施例においては、磁極
対数Pのレゾルバ1に対して励磁回路10から励
磁周波数fの二相正弦波信号ex,eyを加えるとと
もに、該励磁回路10から周波数2o・fのパルス
列信号E1aと周波数2n+1・fのパルス列信号E1b
を出力させて、該両パルス列信号を第1の信号変
換回路30で周波数2n・fの二相正弦波信号e11
e12に変換する。また、レゾルバ1の検出信号e0
を受けてPLL回路20から出力される周波数2n
(f±Δf)のパルス列信号E2aと周波数2n+1・(f
±Δf)のパルス列信号E2bとを、第2の信号変換
回路40で周波数2n・(f±Δf)の二相正弦波信
号e21,e22に変換する。そして、前記の二相正弦
波信号e11,e12およびe21,e22を用いて演算回路
50で信号演算を行う。この結果、演算回路50
から出力される二相信号Ex1,Ey1は、回転角θn
1回転の変化に対応して2n・Pサイクルの変化を
する信号となる。
As explained above, in this embodiment, two-phase sine wave signals e x and e y of excitation frequency f are applied from the excitation circuit 10 to the resolver 1 with the number of magnetic pole pairs P, and at the same time, the excitation circuit 10 applies the two-phase sine wave signals e x and e y of the excitation frequency f・Output the pulse train signal E 1a of f and the pulse train signal E 1b of frequency 2 n+1 ·f, and convert both pulse train signals into a two-phase sine wave signal of frequency 2 n ·f by the first signal conversion circuit 30. e11 ,
Convert to e 12 . In addition, the detection signal e 0 of resolver 1
The frequency 2 n · which is output from the PLL circuit 20 in response to the
(f±Δf) pulse train signal E 2a and frequency 2 n+1・(f
The second signal conversion circuit 40 converts the pulse train signal E 2b of ±Δf) into two-phase sine wave signals e 21 and e 22 of frequency 2 n ·(f±Δf). Then, the arithmetic circuit 50 performs signal calculation using the two-phase sine wave signals e 11 , e 12 and e 21 , e 22 . As a result, the arithmetic circuit 50
The two-phase signals E x1 and E y1 outputted from the two-phase signal E x1 and E y1 are signals that change by 2 n ·P cycles in response to a change in the rotation angle θ n of one rotation.

本実施例において、P=2のレゾルバ1を用
い、励磁周波数f=2KHz、2n=256(2n・f=
512KHz)としたとき、回転角θnの1回転当りの
変化に対応して2n・P=256×2=512サイクルの
二相信号Ex1,Ey1を得ることができた。また、信
号変換回路30,40と演算回路50とに相当す
る回路を別にもう1組設けて、2n=2(2n・f=
4KHz)としたとき、2n・P=2×2=4サイク
ルの二相信号を得て、磁極対数4の同期電動機の
磁極位置を検出する二相信号とすることができ
た。即ち、レゾルバを大形化することなく1個の
レゾルバで、回転角θnの変化に対応した位置信号
としての二相信号Ex1,Ey1と、ブラシレス電動機
の磁極位置検出用二相信号とを得ることができ
る。
In this example, the resolver 1 with P=2 is used, the excitation frequency f=2KHz, and 2n =256 ( 2n・f=
512KHz), it was possible to obtain two-phase signals E x1 and E y1 of 2 n ·P=256×2=512 cycles corresponding to the change in rotation angle θ n per rotation. In addition, another set of circuits corresponding to the signal conversion circuits 30 and 40 and the arithmetic circuit 50 is provided, and 2 n = 2 (2 n f =
4KHz), a two-phase signal of 2 n P = 2 x 2 = 4 cycles was obtained, and the two-phase signal could be used to detect the magnetic pole position of a synchronous motor with 4 magnetic pole pairs. In other words, one resolver can generate two-phase signals E x1 and E y1 as position signals corresponding to changes in the rotation angle θ n and two-phase signals for detecting the magnetic pole position of a brushless motor, without increasing the size of the resolver. can be obtained.

また、P=16のレゾルバを用い、励磁周波数f
=2KHz、2n=256(2nf=512KHz)としたとき、
回転角θnの1回転当りの変化に対応して、2n・P
=256×16=4096サイクルの二相信号Ex1,Ey1
得ることができる。
Also, using a resolver with P = 16, the excitation frequency f
= 2KHz, 2 n = 256 (2 n f = 512KHz),
Corresponding to the change in rotation angle θ n per rotation, 2 n・P
Two-phase signals E x1 and E y1 of =256×16=4096 cycles can be obtained.

[発明の効果] 以上説明したように本発明に係るレゾルバ方式
位置検出器は、磁極対数Pのレゾルバから出力さ
れる回転角θnの変化に応じた位相角P・θnを有す
る位置検出信号に基づき、PLL回路、信号変換
回路、及び演算回路等を用いて、回転角θnの変化
に応じて変化する位相角2n・P・θnを有する二相
信号を得るようにしたので、レゾルバを多極の大
形にしたり2個用いるなどの要なく、磁極対数P
のレゾルバの位置検出精度を2n倍に向上させるこ
とができて、実用上極めて有効である。
[Effects of the Invention] As explained above, the resolver type position detector according to the present invention generates a position detection signal having a phase angle P·θ n corresponding to a change in the rotation angle θ n output from the resolver with the number of magnetic pole pairs P. Based on this, we used a PLL circuit, a signal conversion circuit, an arithmetic circuit, etc. to obtain a two-phase signal with a phase angle of 2n , P, and θn that changes according to changes in the rotation angle θn . There is no need to make the resolver large with multiple poles or use two resolvers, and the number of magnetic poles is P.
It is possible to improve the position detection accuracy of the resolver by 2n times, which is extremely effective in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロツク図、第
2図は第1図の実施例における励磁回路の構成例
を示すブロツク図、第3図a〜fは第1図及び第
2図の回路の動作を説明するための信号波形図、
第4図は第1図の実施例におけるPLL回路の構
成例を示すブロツク図、第5図は第1図及び第4
図の回路の動作を説明するための信号波形図、第
6図は第1図の実施例における信号変換回路の構
成例を示すブロツク図、第7図は第1図の実施例
の最終出力信号を示す信号波形図、第8図は従来
のレゾルバ方式位置検出器の一例を示すブロツク
図、第9図は第8図の位置検出器の動作を説明す
るための信号波形図である。 1……レゾルバ、10……励磁回路、20……
位相ロツクド・ループ回路(PLL回路)、30…
…第1の信号変換回路、40……第2の信号変換
回路、50……演算回路。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing an example of the configuration of an excitation circuit in the embodiment of FIG. 1, and FIGS. Signal waveform diagram to explain circuit operation,
FIG. 4 is a block diagram showing an example of the configuration of the PLL circuit in the embodiment of FIG. 1, and FIG.
6 is a block diagram showing a configuration example of the signal conversion circuit in the embodiment of FIG. 1, and FIG. 7 is a final output signal of the embodiment of FIG. 1. FIG. 8 is a block diagram showing an example of a conventional resolver type position detector, and FIG. 9 is a signal waveform diagram for explaining the operation of the position detector shown in FIG. 1... Resolver, 10... Excitation circuit, 20...
Phase locked loop circuit (PLL circuit), 30...
...First signal conversion circuit, 40...Second signal conversion circuit, 50...Arithmetic circuit.

Claims (1)

【特許請求の範囲】 1 周波数fの二相正弦波信号ex,eyと周波数
2n・f(nは正整数)のパルス列信号E1a及び周波
数2n+1・fのパルス列信号E1bを出力する励磁回
路と、 磁極対数Pを有し前記二相正弦波信号ex,ey
励磁されて検出すべき回転体の回転角θnの変化に
応じた電気的位相角θ(=P・θn)を有する周波
数f±Δfの位置検出信号e0を出力するレゾルバ
と、 前記位置検出信号e0を受けてその位相に追尾す
るように位相同期動作をして周波数2n・(f±
Δf)のパルス列信号E2a及び周波数2n+1・(f±
Δf)のパルス列信号E2bを出力する位相ロツク
ド・ループ回路と、 前記励磁回路からのパルス列信号E1a,E1bを受
けて周波数2n・fの二相正弦波信号e11,e12を出
力する第1の信号変換回路と、 前記位相ロツクド・ループ回路からのパルス列
信号E2a,E2bを受けて周波数2n・(f±Δf)の二
相正弦波信号e21,e22を出力する第2の信号変換
回路と、 前記二相正弦波信号e11,e12及び二相正弦波信
号e21,e22を受けて所定の演算を行なつて前記回
転角θnの変化に応じて変化する電気的位相角2n
P・θnを有する二相信号Ex1,Ey1を出力する演算
回路とを具備することを特徴とするレゾルバ方式
位置検出器。
[Claims] 1. Two-phase sine wave signals e x , e y with frequency f and frequency
an excitation circuit that outputs a pulse train signal E 1a with a frequency of 2 f (n is a positive integer) and a pulse train signal E 1b with a frequency of 2 n+1 ·f ; A resolver that outputs a position detection signal e 0 of a frequency f±Δf having an electrical phase angle θ (=P・θ n ) corresponding to a change in the rotation angle θ n of the rotating body to be detected by being excited by e y. , receives the position detection signal e 0 and performs a phase synchronization operation to track the phase of the position detection signal e 0 to obtain a frequency of 2 n (f±
Δf) pulse train signal E 2a and frequency 2 n+1・(f±
A phase-locked loop circuit outputs a pulse train signal E 2b of Δf), and receives pulse train signals E 1a and E 1b from the excitation circuit and outputs two-phase sine wave signals e 11 and e 12 of a frequency of 2 n ·f. a first signal conversion circuit that receives the pulse train signals E 2a and E 2b from the phase-locked loop circuit and outputs two-phase sine wave signals e 21 and e 22 with a frequency of 2 n ·(f±Δf). a second signal conversion circuit; receiving the two-phase sine wave signals e 11 , e 12 and the two-phase sine wave signals e 21 , e 22 and performing a predetermined calculation according to the change in the rotation angle θ n; Varying electrical phase angle 2 n
A resolver type position detector comprising: an arithmetic circuit that outputs two-phase signals E x1 and E y1 having P·θ n .
JP2530585A 1985-02-14 1985-02-14 Resolver system position detector Granted JPS61186815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2530585A JPS61186815A (en) 1985-02-14 1985-02-14 Resolver system position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2530585A JPS61186815A (en) 1985-02-14 1985-02-14 Resolver system position detector

Publications (2)

Publication Number Publication Date
JPS61186815A JPS61186815A (en) 1986-08-20
JPH0449890B2 true JPH0449890B2 (en) 1992-08-12

Family

ID=12162300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2530585A Granted JPS61186815A (en) 1985-02-14 1985-02-14 Resolver system position detector

Country Status (1)

Country Link
JP (1) JPS61186815A (en)

Also Published As

Publication number Publication date
JPS61186815A (en) 1986-08-20

Similar Documents

Publication Publication Date Title
JP4294558B2 (en) Angle detection signal processor
US4991429A (en) Torque angle and peak current detector for synchronous motors
JPH04307306A (en) Angle position sensor for revolving shaft
Attaianese et al. A low cost resolver-to-digital converter
JP6961209B2 (en) Digital conversion method for analog signals
JP3667465B2 (en) Method and apparatus for detecting position of linear stepping motor
JPH0449890B2 (en)
JPS5917781B2 (en) Rotation speed detection method using multipolar resolver
JPH11118521A (en) Vr type resolver and resolver signal processing circuit
JP2006292434A (en) Angle detection signal processing device
JP3100841B2 (en) Rotational position detecting device and method
JPH0449892B2 (en)
JPH05133764A (en) Position sensing device
JPH0414734B2 (en)
EP3901583A1 (en) Resolver interface systems and methods
JPH0125287Y2 (en)
JP2010014410A (en) Rotational position detecting apparatus of rotator
JPS63218818A (en) Resolver type rotation angle detector
JPH0356818A (en) Rotation angle detecting device
JPH0342325Y2 (en)
JPS58182559A (en) Detecting apparatus of speed of revolution using resolver
JPS61182579A (en) Resolver speed detection system
JPS60187864A (en) Rotational speed and its position detector using resolver
JPH0511458Y2 (en)
JPH0419510A (en) Rotational angle detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees