JPH0356818A - Rotation angle detecting device - Google Patents

Rotation angle detecting device

Info

Publication number
JPH0356818A
JPH0356818A JP19341889A JP19341889A JPH0356818A JP H0356818 A JPH0356818 A JP H0356818A JP 19341889 A JP19341889 A JP 19341889A JP 19341889 A JP19341889 A JP 19341889A JP H0356818 A JPH0356818 A JP H0356818A
Authority
JP
Japan
Prior art keywords
signal
windings
rotation angle
winding
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19341889A
Other languages
Japanese (ja)
Inventor
Saburo Kusumi
三郎 楠美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP19341889A priority Critical patent/JPH0356818A/en
Publication of JPH0356818A publication Critical patent/JPH0356818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To detect an angle of rotation with high accuracy without using any secondary winding by leading an AC signal which excites respective projection poles of respective exciting projection pole couples and a signal which includes variation in the inductance of the windings as a variable out of the mid-points of the windings. CONSTITUTION:Exciting projection pole couples A and C of the stator 3 of a resolver 1 are wound with windings LAC1 and LAC2 differentially and exciting projection pole couples B and D are wound with windings LBD1 and LBD2 differen tially. A rotor 5 is arranged in the inner peripheral space of the stator eccentrically with the rotary shaft of a motor. The windings LAC1 and LBD1 are applied with a sine wave signal VSTD from a reference signal generator OSC and the windings LAC2 and LBD2 are applied with the signal VINV generated by inverting the sine wave through OP. Then composite signals VNAC and VNBD are outputted from the mid-point NAC of the windings LAC1 and LAC2 and the mid-point NBD of the windings LBD1 and LBD2 to an R/D converter RDC. The converter RDC outputs the rotational angle signal theta dig of the rotor 5 from the signals VNAC and VNBD.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明(飄 回転機の回転角度を検出する電磁式の回転
角度検出装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to an electromagnetic rotation angle detection device for detecting the rotation angle of a rotating machine.

[従来の技術] 従来よL大 モータなどの回転機の回転角度を検出する
電磁式回転角度検出装置に(社 ステータ突極に一次巻
線(励磁巻線)を、ロータ突極に二次巻線(出力巻線)
として回転トランスを,それぞれ設けた、いわゆるブラ
シレスレゾルバや、ステータ突極に一次巻線(励磁巻線
)を設け、さらに一次巻線に直列に二次巻線(出力巻線
)を設けたノラクタンス型レゾルバが知られている。ブ
ラシレスレゾルバの場合に{上 一次巻線に加えた基準
交流電圧と電磁誘導により二次巻線に発生する霊圧との
位相差が、ロータの回転角度に応じて変化することを利
用して、リラクタンス型レゾルバの場合に(t..ロー
タの回転1こつれて変化する一次巻線のインダクタンス
によって、一次巻線に加えた基準交流信号と二次巻線の
出力信号とに位相差が生じることを利用して、それぞれ
回転機の回転軸と一体的に回転するロータの回転角度を
検出している。
[Conventional technology] L size compared to conventional electromagnetic rotation angle detection devices that detect the rotation angle of rotating machines such as motors (Company). wire (output winding)
There are so-called brushless resolvers, each equipped with a rotating transformer, and a nolactance resolver, which has a primary winding (excitation winding) on the stator salient poles, and a secondary winding (output winding) in series with the primary winding. Resolvers are known. In the case of a brushless resolver, the phase difference between the reference AC voltage applied to the primary winding and the spiritual pressure generated in the secondary winding due to electromagnetic induction changes depending on the rotation angle of the rotor. In the case of a reluctance-type resolver (t.), due to the inductance of the primary winding that changes as the rotor rotates, a phase difference occurs between the reference AC signal applied to the primary winding and the output signal of the secondary winding. is used to detect the rotation angle of the rotor, which rotates integrally with the rotating shaft of the rotating machine.

[発明が解決しようとする課題] しかし、上記の各レゾルバでは二次巻線を設けているた
め、装置が大きくなると共に重量が増して、回転機に余
分な負荷を加えるという問題が起こる。くわえて、ブラ
シレスレゾルバの場合に(よ回転トランスという可動部
分があるため、信頼性に問題がある。
[Problems to be Solved by the Invention] However, since each of the above-mentioned resolvers is provided with a secondary winding, the problem arises that the size and weight of the device increases, and an extra load is applied to the rotating machine. In addition, in the case of brushless resolvers, there is a problem with reliability because there is a moving part called a rotating transformer.

もちろん リラクタンス型レゾルバの場合に(上二次巻
線の代わりに電流検出用抵抗を用いて、モータの回転に
伴うインダクタンスの変化を電流の変化として検出する
ことが考えられるが、抵抗の発熱により検出信号の特性
が変化する、いわゆる温度ドリフトが起こるので、高精
度な回転角度検出に用いるには問題がある。
Of course, in the case of a reluctance type resolver (using a current detection resistor instead of the upper secondary winding), it is possible to detect changes in inductance due to the rotation of the motor as changes in current, but this is detected by the heat generated by the resistor. Since a so-called temperature drift occurs in which the characteristics of the signal change, there is a problem in using it for highly accurate rotation angle detection.

本発明1よ 二次巻線が不要であり、かつ高精度な回転
角度検出ができる回転角度検出装置を提供することを目
的としてなされら [課題を解決するための手段] 本発明の要旨とするところ{よ 巻線が差動的に巻回された励磁突極対を複数設けたステ
ータと、 上記各励磁突極対の巻線のインダクタンスを回転角度に
応じて変化させるロータと、 を備えた回転角度検出装置において、 上記各励磁突極対における二つの突極の各々を、互いに
位相の異なる交流信号により励磁する励磁手段と、 上記各励磁突極対の巻線の中点からそれぞれ出力される
上記二つの交流出力信号の合成信号に基づいて、ロータ
の回転角度信号を作成する回転角度信号作成手段と、 を備えることを特徴とする回転角度検出装置にある。
Present Invention 1 An object of the present invention is to provide a rotation angle detection device that does not require a secondary winding and is capable of highly accurate rotation angle detection [Means for Solving the Problems] Summary of the present invention A stator is provided with a plurality of excitation salient pole pairs each having windings wound differentially, and a rotor that changes the inductance of the winding of each of the excitation salient pole pairs according to the rotation angle. In the rotation angle detection device, an excitation means for exciting each of the two salient poles in each of the excitation salient pole pairs with alternating current signals having mutually different phases; A rotation angle detection device comprising: rotation angle signal generation means for generating a rotation angle signal of the rotor based on a composite signal of the above two AC output signals.

[作用] 以上のように構成された本発明の回転角度検出装置によ
れ1f. 励磁手段が、各励磁突極対における二つの突極の各々を
、互いに位相の異なる交流信号により励磁する。そこで
、ロータが回転すると、ロータの回転速度に応じた周期
で、各励磁突極対において各々の突極の巻線のインダク
タンスが変化する.つまり各巻線のインダクタンスの周
期的変化はロータの回転角度の関数で表される。この巻
線のインダクタンスの周期的変化によって、各励磁突極
対において差動的に巻回された巻線の中点から出力され
る合成信号1よ インダクタンスの変化と交流信号とを
変数として持つものとなる。この合成信号に基づいて、
回転角度信号作成手段が、ロータの回転角度信号を作成
する。
[Function] The rotation angle detection device of the present invention configured as described above allows 1f. The excitation means excites each of the two salient poles in each excitation salient pole pair with alternating current signals having mutually different phases. Therefore, when the rotor rotates, the inductance of the winding of each salient pole changes in each exciting salient pole pair at a period corresponding to the rotor's rotational speed. In other words, the periodic change in the inductance of each winding is expressed as a function of the rotation angle of the rotor. Due to periodic changes in the inductance of this winding, a composite signal 1 is output from the midpoint of the windings differentially wound in each excitation salient pole pair. A signal that has as variables a change in inductance and an AC signal. becomes. Based on this composite signal,
The rotation angle signal generation means generates a rotation angle signal of the rotor.

[実施例] 以下に本発明の一実施例を図面と共に説明する.まず、
第1図は本発明が適用されたりラクタンス型レゾルバ(
以下、単にレゾルバという)の説明図である。
[Example] An example of the present invention will be described below with reference to the drawings. first,
Figure 1 shows a lactance resolver (
FIG. 2 is an explanatory diagram of a resolver (hereinafter simply referred to as a resolver).

図に示すよう{; レゾルバ1のステータ3の内周に{
上 90度の等間隔で4個の励磁突極A,  B、C,
  Dが設けられており、半径方向で対向する励磁突極
AとC、及び励磁突極BとCが、それぞれ対をなしてい
る(以下、励磁突極対A及びCをACa1  励磁突極
対B及びDをBD相という)。励磁突極対A及びCに(
上 それぞれ第1巻線LACI及び第2巻線しAC2が
差動に巻回さ札 励磁突極対B及びDに1上 それぞれ
第3巻線L BD 1及び第4巻線LBD2が差動に巻
回されている。
As shown in the figure {; on the inner circumference of the stator 3 of the resolver 1 {
Above: Four exciting salient poles A, B, C, at equal intervals of 90 degrees.
D is provided, and excitation salient poles A and C and excitation salient poles B and C, which face each other in the radial direction, form a pair (hereinafter, excitation salient pole pair A and C will be referred to as ACa1 excitation salient pole pair). B and D are referred to as BD phase). To the excitation salient pole pair A and C (
Above, the first winding LACI and the second winding AC2 are wound differentially. The excitation salient pole pair B and D are wound one above. The third winding L BD 1 and the fourth winding LBD2 are differentially wound. It is wrapped.

口−夕5(よ 円筒形状をなし、ステータ3の内周空間
1:,モータ(図示略)の回転軸Qに対して偏心するよ
うに配置されて、回転軸○と一体的に回転するように配
設されている。ロータ5が回転すると、ロータ5とステ
ータ3の励磁突極との間隔(友 ロータ5の回転に連れ
て変化する。
It has a cylindrical shape and is arranged eccentrically with respect to the rotation axis Q of the motor (not shown) so that it rotates integrally with the rotation axis ○. When the rotor 5 rotates, the distance between the rotor 5 and the exciting salient poles of the stator 3 changes as the rotor 5 rotates.

第2図に示すよう1:,第1巻線L AC 1及び第3
巻線L BD 1に(友 基準信号発生器○SCから出
力される正弦波信号V STDが加えら札 第2巻線L
^C2及び第4巻線LBD2にit.  正弦波が反転
増幅器OPで反転された信号(正弦波信号と位相がπだ
け異なる) ’ INVが加えられ各励磁相A,  B
、C,  Dが励磁される。そして、AC相の第1巻線
LACIと第2巻線LAC2との中点NAC、及びBD
相の第3巻線LBDIとの第4巻線LBD2中点NBD
から、それぞれ信号V STDと反転信号VINVとの
合成信号VNAC、及びVNBDが、回転角度信号作成
手段としてのR/Dコンバータ(レゾルバ/ディジタル
コンバータ)RDCに出力される。
As shown in Figure 2, 1:, the first winding L AC 1 and the third
The sine wave signal V STD output from the reference signal generator ○SC is added to the winding L BD 1.
^C2 and the fourth winding LBD2 it. A signal in which the sine wave is inverted by the inverting amplifier OP (the phase differs from the sine wave signal by π) 'INV is added to each excitation phase A, B
, C, and D are excited. Then, the midpoint NAC between the first winding LACI and the second winding LAC2 of the AC phase, and BD
Phase 3rd winding LBDI and 4th winding LBD2 midpoint NBD
A composite signal VNAC and VNBD of the signal V STD and the inverted signal VINV, respectively, are output to an R/D converter (resolver/digital converter) RDC as rotation angle signal generating means.

R/DコンバータRDCf;t,  二つの入力信号V
NACとVNBDとからロータ5の回転角度θを検出す
るもので、回転角度θと回転角度のディジタル値θdi
gとの偏差(θ−θdig )に応じた偏差信号(電圧
)を出力する乗算器RM及び同期整流器DETと、その
偏差信号を積分する積分器IGと、積分器IGの出力に
応じて発振周波数を可変する電圧制御発振器vC○と、
電圧制御発振器vC○の出力に基づいて、偏差が零にな
るように(θ=θdig )乗算器RMに補正信号をフ
ィードバック出力すると共にロータ5の回転角度θをデ
ィジタル信号θd1gとして出力するカウンタCNTと
を集積化したものである(R/Dコンバータは周知のも
のであって、たとえばアナログデバイス社のAD2S8
0、DOC社のRDC−17210などが知られている
)。
R/D converter RDCf;t, two input signals V
The rotation angle θ of the rotor 5 is detected from the NAC and VNBD, and the rotation angle θ and the digital value θdi of the rotation angle are
A multiplier RM and a synchronous rectifier DET that output a deviation signal (voltage) according to the deviation (θ - θdig) from g, an integrator IG that integrates the deviation signal, and an oscillation frequency according to the output of the integrator IG. a voltage controlled oscillator vC○ that varies the
A counter CNT feeds back a correction signal to the multiplier RM so that the deviation becomes zero (θ=θdig) based on the output of the voltage controlled oscillator vC○, and outputs the rotation angle θ of the rotor 5 as a digital signal θd1g. (The R/D converter is a well-known one, such as the AD2S8 manufactured by Analog Devices Inc.
0, DOC Corporation's RDC-17210, etc. are known).

なお、本実施例で(上 基準信号発生器○SCと反転増
幅器OPとが励磁手段に相当する。
In this embodiment, the reference signal generator ○SC and the inverting amplifier OP correspond to the excitation means.

つぎ]:.励磁信号VSTD,  VINV ト中点N
AC、NBDからの出力信号VNAC,VNBDとの関
係について説明する。
next]:. Excitation signal VSTD, VINV midpoint N
The relationship between the output signals VNAC and VNBD from AC and NBD will be explained.

第1巻線LACI,  第3巻線LBDIに加えられる
正弦波信号V STDを、 V STD= V OX sinωt 第2巻線LAC2、第4巻線LBD2に加えられる反転
信号V INVを、 V INV= − V OX sinωt各巻線LAC
I、LAC2、LBDI,  LBD2のインダクタン
スをQ^、QC,  QB,QDとすると、AC相の中
点NACの電位VNAC+よ 次式で表される。
The sine wave signal V STD applied to the first winding LACI and the third winding LBDI, V STD= V OX sinωt The inverted signal V INV applied to the second winding LAC2 and fourth winding LBD2, V INV= - V OX sinωt each winding LAC
If the inductances of I, LAC2, LBDI, and LBD2 are Q^, QC, QB, and QD, they are expressed by the following equation based on the potential VNAC+ of the midpoint NAC of the AC phase.

1 インダクタンスQA.l2ct&  第3図に示すよう
1:% オフセット分QOとロータ5の回転による周期
的変化分11a(θ)(θ(上 ロータ5の回転角のと
の合成分であるから、インダクタンスは次式で表される
。ただし、Qロはステータ3及びロータ5の機械構造、
材質により定まる定数であり、各巻線LACI,  L
AC2、 LBDI,  LBD2でほぼ等しい。
1 Inductance QA. l2ct & As shown in Fig. 3, the inductance is the composite component of the 1:% offset QO and the periodic change due to the rotation of the rotor 5, 11a(θ) (θ(upper). However, Qro is the mechanical structure of the stator 3 and rotor 5,
It is a constant determined by the material, and each winding LACI, L
AC2, LBDI, and LBD2 are almost equal.

QA=Q(θ)=QrJ+Qa(.θ)QC:Q (θ
一π)  = Q O+(l a (θ−π)Qa(θ
)を三角関数で近似すれ(f,Q A= Q O+ Q
 aX sinθ−(2)Q C= Q O+ Q a
X sin (θ−π)=l20  12aXsinθ
・(3)(2)式及び(3)式を、(1)式に代入する
と、次式を得る。
QA=Q(θ)=QrJ+Qa(.θ)QC:Q(θ
1π) = Q O+(l a (θ−π)Qa(θ
) by trigonometric functions (f, Q A= Q O+ Q
aX sinθ−(2)Q C= Q O+ Q a
X sin (θ−π)=l20 12aXsinθ
- (3) By substituting equations (2) and (3) into equation (1), the following equation is obtained.

V N AC= (−Q a/ Q O) X sin
θX sinωt−(4)同様にして V N BD= (−Q a/ Q O) X cos
θX sinωt −・(5)を得る。
V N AC= (-Q a/ Q O) X sin
θX sinωt-(4) Similarly, V N BD= (-Q a/Q O) X cos
θX sin ωt −·(5) is obtained.

(4)志(5)式から、AC相の中点NACからの出力
VNACI1  入力信号( V STD= V OX
 sinωt ) テ、インダクタンスの変化(sin
θ)を変調した信号であり、BD相の中点NBDからの
出力VNBDI社AC相の中点NACからの出力VNA
Cより位相がπ/2遅れた信号であることが判る。これ
らの信号VNAC% VNBDI;J:R/DDン/(
一タRDCに入力さ札 回転角度θと回転角度のディジ
タル値θdgとの偏差(θ一θdig )が零となるよ
うにフィードバック制御されることで、正確なロータ5
の回転角度信号θdigを得る。
(4) From formula (5), the output VNACI1 input signal from the midpoint NAC of the AC phase (V STD = V OX
sinωt ) Te, change in inductance (sin
θ), which is the output from the midpoint NBD of the BD phase VNBDI's output from the midpoint NAC of the AC phase VNA
It can be seen that this is a signal whose phase is delayed by π/2 from that of C. These signals VNAC% VNBDI; J:R/DDn/(
By performing feedback control so that the deviation (θ - θdig) between the rotation angle θ input to the rotor RDC and the digital value θdg of the rotation angle becomes zero, an accurate rotor 5
A rotation angle signal θdig is obtained.

上記したように本実施例のレゾルバ11上  二次巻線
を用いずにロータ5の回転角度θを検出することができ
るので、ブラシ、回転トランスなどの可動部分が不要に
なり、それにともなって装置の信頼性が向上すると共に
 装置を小型軽量にできる. また 電流検出用抵抗を用いないので温度ドリフトがな
い。つまり、二次巻線の代わりに電流検出用抵抗を用い
る従来のレゾルバで(友 抵抗の発熱や周囲温度の変化
により検出信号の特性が変化するという問題があるが、
本実施例でf社 温度によって出力信号VNAC,  
VNBDが変動することはない。
As described above, since the rotation angle θ of the rotor 5 can be detected without using the secondary winding on the resolver 11 of this embodiment, movable parts such as brushes and rotary transformers are not required, and accordingly, the device This not only improves the reliability of the device, but also allows the device to be made smaller and lighter. Also, since no current detection resistor is used, there is no temperature drift. In other words, with conventional resolvers that use a current detection resistor instead of a secondary winding (although there is a problem that the characteristics of the detection signal change due to heat generation of the companion resistor and changes in ambient temperature),
In this embodiment, the output signal VNAC,
VNBD does not change.

なお、本実施例でf飄 R/DコンバータRDC二より
レゾルバ1から出力されるアナログ信号からディジタル
の回転角度信号θd1gを作成したが、このほかに励磁
信号と出力信号との位相差をクロックパルスでカウント
する周知の位相制御方式の回路によって回転角度検出信
号を得るようにしてもよいウ この場合に{よ 第4図に示すように、AC相の第1巻
線LACIには余弦波信号V ac= V OX co
sωtが、第2巻線LAC2にはその反転信号V in
ac=− V OX cosωtが、BD相の第3巻線
LBD1には正弦波信号V bd= V OX sin
ωtが、第4巻線LBD2に1よ その反転信号V i
nbd= − V OX sinωtが加えらね AC
相の中点NACから出力VNACI;ILV N AC
= ( Q a/ Q O) XcosθXsinωt
8D相の中点からの出力V N BDfよV N BD
= ( Q a/ Q O) X sinθXcosw
tとなる。そして、これらの出力電圧の差を、差動増幅
器○P1が出力する。
In this example, the digital rotation angle signal θd1g was created from the analog signal output from the resolver 1 from the R/D converter RDC2, but in addition to this, the phase difference between the excitation signal and the output signal was calculated using a clock pulse. The rotation angle detection signal may be obtained by a circuit using a well-known phase control method that counts at ac= V OX co
sωt, and the second winding LAC2 has its inverted signal V in
ac = - V OX cos ωt, and the third winding LBD1 of the BD phase has a sine wave signal V bd = V OX sin
ωt is the inverted signal V i of 1 to the fourth winding LBD2.
nbd=-V OX sinωt is not added AC
Output VNACI from phase midpoint NAC; ILV N AC
= (Q a/Q O) XcosθXsinωt
Output from midpoint of 8D phase V N BDf yo V N BD
= (Q a/Q O) X sinθXcosw
It becomes t. Then, the differential amplifier ○P1 outputs the difference between these output voltages.

V NBD−V NAC= ( Q a/ Q O) 
X(sinθcosωt−cosθsinωt)= (
 Q a/ Q O) Xsin (ωt −0)つま
り、出力信号(上 基準信号となる正弦波信号V bd
= V OX sinωtがロータ5の回転角度θだけ
位相がずれた信号である。この出力信号を周知の偏差カ
ウンタに入力して位相差θをクロックパルスでカウント
することで正確なディジタル回転角度信号を得ることが
できる。
VNBD-VNAC= (Qa/QO)
X(sinθcosωt−cosθsinωt)=(
Q a/Q O)
= V OX sin ωt is a signal whose phase is shifted by the rotation angle θ of the rotor 5. By inputting this output signal into a well-known deviation counter and counting the phase difference θ using clock pulses, an accurate digital rotation angle signal can be obtained.

このように本発明は位相制御方式によっても正確にロー
タ5の回転角度を検出することができる。
In this way, the present invention can accurately detect the rotation angle of the rotor 5 also by the phase control method.

また、本実施例で1友 第1巻線L1^C及び第3巻線
L BD 1と第2巻線LAC2及び第4巻線LBD2
とにそれぞれ異なる励磁信号を加えたが、第1巻線L 
I AC及び第3巻線LBDIのみに励磁信号を加え、
第2巻線LAC2及び第4巻線LBD2の一端は接地す
るようにしてもよい。
In addition, in this embodiment, one friend is the first winding L1^C, the third winding LBD1, the second winding LAC2, and the fourth winding LBD2.
Different excitation signals were applied to each of the first winding L
Add excitation signal only to I AC and third winding LBDI,
One ends of the second winding LAC2 and the fourth winding LBD2 may be grounded.

この場合に(友 第5図に示すようl:,AC相の第1
巻線し^C1に正弦波信号V ac= V OX si
nωtを、第2巻線LAC2ニハ余弦波信号V bd=
 V OX cosωtを加えると、差動増幅器の出力
として、出力信号V OUT= si n (ωt−θ
)を得る。この出力を周知の偏差カウンタに入力して位
相差θをクロツクパルスでカウントすることで正確なデ
ィジタル回転角度信号を得ることができる。
In this case, as shown in Figure 5, the first AC phase
Wind the wire and apply a sine wave signal to C1 V ac = V OX si
nωt, second winding LAC2 niha cosine wave signal V bd=
When V OX cos ωt is added, the output signal V OUT= sin (ωt−θ
). By inputting this output into a well-known deviation counter and counting the phase difference θ using clock pulses, an accurate digital rotation angle signal can be obtained.

この片側励磁のときに{表 反転増幅器が不要となりよ
り装置構成が簡単となる。
When this one-sided excitation is used, an inverting amplifier is not required, which simplifies the device configuration.

さら{ミ 本実施例では第1巻線LIAC及び第3巻線
LBDIと第2巻線LAC2及び第4巻線LBD2との
それぞれに加える信号は互いの位相差がπであったが、
その位相差はπに限られないのはもちろんである。
Furthermore, in this embodiment, the signals applied to the first winding LIAC, the third winding LBDI, the second winding LAC2, and the fourth winding LBD2 have a phase difference of π,
Of course, the phase difference is not limited to π.

また、本実施例で{友 ロータ5は円筒状のものを偏心
させて配設したレゾルバ1であったが、このほかに ロ
ータに歯形に整形した多極レゾルバであってもよい。こ
の場合にはインダクタンスの変化周期が速くなるので励
磁信号の周波数を高くすればよい。
Further, in this embodiment, the rotor 5 is the resolver 1 in which a cylindrical member is arranged eccentrically, but it may also be a multipolar resolver in which the rotor is shaped into a tooth shape. In this case, since the inductance change period becomes faster, the frequency of the excitation signal may be increased.

[発明の効果コ 以上説明したよう1:.本発明にょれlf,  各励磁
突極対の各々の突極を励磁する交流信号と巻線のインダ
クタンスの変化とを変数として持つ信号を、巻線の中点
から取り出すので、二次巻線や電流検出信号を用いずに
正確1こ回転角度を検出することができる。したがって
、装置を小型化軽量化できると共1:,温度変化による
検出誤差をなくすことができる.
[Effects of the invention As explained above 1:. According to the present invention, since a signal having as variables an AC signal that excites each salient pole of each excitation salient pole pair and a change in the inductance of the winding is extracted from the midpoint of the winding, the secondary winding and It is possible to accurately detect one rotation angle without using a current detection signal. Therefore, the device can be made smaller and lighter, and detection errors due to temperature changes can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例のレゾルバの説明は 第2図はレゾルバ
の電気回路は 第3図はインダクタンスの変化を表す説
明は 第4図は他の実施例を表す電気回路は 第5図は
他の実施例を表す電気回路図である。 1・・・リラクタンス型レゾルバ 3・・・ステータ  5・・・ロータ A,  B,  C,  D・・・励磁突極LACI・
・・第1巻線      LAC2・・・第2巻線LB
DI・・・第3巻!i       LBD2・・・第
4巻線○SC・・・基準信号発生器 RDC・・・R/Dコンパ タ
Figure 1 is an explanation of the resolver of the embodiment. Figure 2 is the electric circuit of the resolver. Figure 3 is an explanation of changes in inductance. Figure 4 is the electric circuit of another example. Figure 5 is the electric circuit of the resolver. FIG. 2 is an electrical circuit diagram showing an example. 1... Reluctance type resolver 3... Stator 5... Rotor A, B, C, D... Exciting salient pole LACI・
...First winding LAC2...Second winding LB
DI... Volume 3! i LBD2...Fourth winding ○SC...Reference signal generator RDC...R/D converter

Claims (1)

【特許請求の範囲】 巻線が差動的に巻回された励磁突極対を複数設けたステ
ータと、 上記各励磁突極対の巻線のインダクタンスを回転角度に
応じて変化させるロータと、 を備えた回転角度検出装置において、 上記各励磁突極対における二つの突極の各々を、互いに
位相の異なる交流信号により励磁する励磁手段と、 上記各励磁突極対の巻線の中点からそれぞれ出力される
上記二つの交流出力信号の合成信号に基づいて、ロータ
の回転角度信号を作成する回転角度信号作成手段と、 を備えることを特徴とする回転角度検出装置。
[Scope of Claims] A stator having a plurality of excitation salient pole pairs each having windings wound differentially; a rotor that changes the inductance of the winding of each of the excitation salient pole pairs according to the rotation angle; A rotation angle detection device comprising: excitation means for exciting each of the two salient poles in each of the excitation salient pole pairs with alternating current signals having mutually different phases; A rotation angle detection device comprising: rotation angle signal generation means for generating a rotor rotation angle signal based on a composite signal of the two output AC output signals.
JP19341889A 1989-07-26 1989-07-26 Rotation angle detecting device Pending JPH0356818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19341889A JPH0356818A (en) 1989-07-26 1989-07-26 Rotation angle detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19341889A JPH0356818A (en) 1989-07-26 1989-07-26 Rotation angle detecting device

Publications (1)

Publication Number Publication Date
JPH0356818A true JPH0356818A (en) 1991-03-12

Family

ID=16307637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19341889A Pending JPH0356818A (en) 1989-07-26 1989-07-26 Rotation angle detecting device

Country Status (1)

Country Link
JP (1) JPH0356818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107238A (en) * 2000-09-29 2002-04-10 Tadatoshi Goto Load sensor
DE102011054864A1 (en) 2010-10-27 2012-05-03 Omron Automotive Electronics Co., Ltd. Turning angle detector
JP2013152251A (en) * 1999-03-15 2013-08-08 Amitec:Kk Rotational type position detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152251A (en) * 1999-03-15 2013-08-08 Amitec:Kk Rotational type position detection device
JP2002107238A (en) * 2000-09-29 2002-04-10 Tadatoshi Goto Load sensor
DE102011054864A1 (en) 2010-10-27 2012-05-03 Omron Automotive Electronics Co., Ltd. Turning angle detector

Similar Documents

Publication Publication Date Title
CA1286385C (en) Variable reluctance position transducer
JPS6243426B2 (en)
JP2558159B2 (en) Two-phase signal generator and two-phase signal generation method
JP2001235307A (en) Rotary type position detecting apparatus
JPH04169816A (en) Resolver device
JP2001183169A (en) Position detector
JP2624747B2 (en) Resolver
JPH0356818A (en) Rotation angle detecting device
JPH0131126B2 (en)
JPH11118521A (en) Vr type resolver and resolver signal processing circuit
JP2680435B2 (en) Rotation angle detector
JPH01140018A (en) Position and speed detector
WO2001042743A1 (en) Variable reluctance type angle detector
JP2556383B2 (en) Magnetic resolver
JP2554472B2 (en) Rotation position detector
US3222660A (en) Magnetic position encoder
JPH0817562B2 (en) Reluctance resolver
JPH07104178B2 (en) Rotation angle detector
JPH0125287Y2 (en)
JPH0346515A (en) Magnetic resolver
JPH0861978A (en) Rotating position detecting device and its method
JPH09318304A (en) Position detector
JP5237210B2 (en) Position detection device
JP2518556Y2 (en) Phase type position detector
JPS645202Y2 (en)