WO2001042743A1 - Variable reluctance type angle detector - Google Patents

Variable reluctance type angle detector Download PDF

Info

Publication number
WO2001042743A1
WO2001042743A1 PCT/JP2000/003989 JP0003989W WO0142743A1 WO 2001042743 A1 WO2001042743 A1 WO 2001042743A1 JP 0003989 W JP0003989 W JP 0003989W WO 0142743 A1 WO0142743 A1 WO 0142743A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
output
angle detector
stator
rotor
Prior art date
Application number
PCT/JP2000/003989
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Maruyama
Takao Kano
Makoto Naruse
Original Assignee
Sumtak Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumtak Corporation filed Critical Sumtak Corporation
Publication of WO2001042743A1 publication Critical patent/WO2001042743A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors

Definitions

  • the present invention relates to a variable reluctance angle detector, and in particular, removes harmonic components, improves accuracy, and reduces cost by winding excitation windings at every other magnetic pole pitch for each magnetic pole. And new improvements to enable mechanical winding.
  • the stator 1 is a ring-shaped magnetic material having four slots 2 formed between four salient poles 3, and each salient pole (magnetic pole) 3 has a slot 2.
  • the one-phase excitation winding 4 is wound so as to be positioned in the inside.
  • a rotor 5 composed of only an iron core having no winding is rotatably provided, and the center of the rotor 5 is decentered from the center of the stator 1, so that The rotor is configured such that the gap permeance between the rotor 5 and the salient poles 3 of the stator 1 changes sinusoidally with respect to the angle ⁇ .
  • sin and cos output windings 6 and 7 are wound with every other magnetic pole pitch for each magnetic pole 3, and sin output winding 6 outputs sin wave sin output voltage 8 and cos output
  • the winding 7 outputs a cos output voltage 9 of a cos wave.
  • the exciting windings 4 are provided sequentially on each magnetic pole 3, that is, at a pitch of one slot. Therefore, as shown in FIG. 5, the excitation voltage supplied via the excitation winding 4 causes the rotation of the rotor 5 and the sin output winding 6 and the cos output winding 7 to produce the a shown in FIG. , As shown in FIG. 6, waveforms corresponding to B, c, and D are output as a + B cos output voltage 9 and c + D sin output voltage 8 as the rotor 5 rotates.
  • the conventional variable reluctance angle detector has the following problems because it is configured as described above. That is, since the change in magnetic flux crossing the output winding due to the change in the gap between the rotor and the stator is detected as a voltage output change, the output voltage changes in proportion to sin and cos S, Due to the influence of the error in the shape of the rotor, harmonic components were generated, and it was extremely difficult to improve the output accuracy. If the coil is used to remove harmonic components, the output winding can be short-winded as shown in Fig. 5.However, in this method, the exciting winding and the output winding are interleaved in each slot. Therefore, mechanical winding was very difficult.
  • a barrier pull reluctance type angle detector as disclosed in Japanese Patent Application Laid-Open No. 8-178611 has been proposed.
  • the output winding is wound so that the induced voltage distribution generated in the output winding for one phase of the output winding has a sine wave distribution. .
  • it is difficult to reduce the number of windings (amount) because the windings corresponding to the magnetic poles are wound on each magnetic pole. was difficult. Disclosure of the invention
  • An object of the present invention is to provide a variable reluctance type angle detector which is capable of removing harmonic components, improving accuracy, and mechanically winding at low cost at a low cost. The above object is achieved by the present invention described below.
  • An exciting winding 4 and n-phase output windings 6 and 7 are provided in a slot 2 of the stator 1 and are provided rotatably with respect to the stator 1.
  • the gap permeance has a shape that changes sinusoidally with respect to an angle of 0, and the gap
  • a variable reluctance type angle detector having a rotor 5 having only a configuration and no windings,
  • the exciting winding (4) is wound only on one polarity side of all the magnetic poles (3), and is generated in the one-phase output windings 6, 7 of the n-phase output windings 6, 7.
  • a variable reluctance type angle detector in which the output windings 6 and 7 are wound so that an induced voltage distribution becomes a sine wave distribution.
  • variable reluctance angle detector according to the above (1), wherein the number of poles of the exciting winding (4) is 1 to 2 of the total number of magnetic poles (3).
  • the excitation winding is wound at every other magnetic pole pitch for each magnetic pole
  • the output winding is wound at every other magnetic pole pitch for each magnetic pole.
  • the rotor is shaped so that the generated induced voltage distribution becomes a sine wave distribution and the gap between the stator and the stator changes sinusoidally with respect to the angle ⁇ . Therefore, a sin output voltage and a cos output voltage are obtained from each output winding according to the rotation of the rotor. Therefore, it is possible to reduce harmonic components included in each output voltage.
  • the winding is wound on each magnetic pole one by one, mechanical winding by a winding machine is possible.
  • FIG. 1 is a schematic configuration diagram showing a variable reluctance angle detector according to the present invention.
  • FIG. 2 is an explanatory diagram showing a winding structure of each slot in FIG.
  • FIG. 3 is a configuration diagram of a conventional angle detector.
  • FIG. 4 is an explanatory diagram showing a winding structure of each slot in FIG.
  • FIG. 5 is an explanatory view showing a conventional winding structure.
  • FIG. 6 is a waveform diagram showing the output voltage of FIG.
  • variable reluctance angle detector of the present invention has an exciting winding 4 and n-phase output windings 6 and 7 in a slot 2 of a stator 1 and is rotatably provided with respect to the stator 1.
  • a variable reluctance type angle detector having a rotor 5 having a shape in which the gap permeance between the stator 1 and the stator 1 changes sinusoidally with respect to the angle ⁇ and having no magnetic material and no winding.
  • the excitation winding 4 has all magnetic poles.
  • the excitation winding 4 is wound around only one polarity (S or N) of the magnetic poles 3, and is preferably wound so that the number of poles is 1 Z 2 which is the number of the magnetic poles 3.
  • S or N polarity
  • the number of poles is 1 Z 2 which is the number of the magnetic poles 3.
  • the stator 1 of the present invention is a hollow ring-shaped magnetic material, having a plurality of magnetic poles protruding in the center direction thereof, and having a slot around which a winding is wound between these magnetic poles. I have.
  • the excitation winding is a winding for generating a magnetic field
  • the output winding is a winding for extracting an excitation voltage generated by the excitation winding and excited by a magnetic field that is changed by the rotational movement of the rotor.
  • the exciting winding is wound every other magnetic pole.
  • the output winding is distributed so that the generated induced voltage distribution becomes a sinusoidal distribution.
  • the rotor 5 is a deformed cylindrical or disk-shaped magnetic material, and the gap between its outer surface and each magnetic pole of the stator 1 is changed by the rotation operation, and the rotor 5 is rotated by the excitation winding and the output winding. It is formed so that an output signal corresponding to the amount of displacement can be obtained.
  • This shape may be a disk-shaped or cylindrical rotating body whose center axis is deviated from the center axis of the stator, but as will be described later, in order to remove harmonic distortion, a protrusion having a predetermined number of poles is used. It is preferable that the shape has a portion.
  • the material constituting the rotor 5 and the stator 1 is not particularly limited as long as it is a magnetic material, and it is possible to use a material used for a normal resolver. Steel sheets, soft magnetic iron, etc. are preferred, and silicon steel sheets are particularly preferred.
  • the shape of the rotor 5 can be determined by using a method for determining the shape of the rotor of a normal variable reluctance resolver.Preferably, a method described in Japanese Patent No. 2698013 is used. Use.
  • the rotor 5 is made of a magnetic material having N salient poles and does not have a winding, and the rotor is fully driven by the action of the magnetomotive force generated by the current of the exciting winding and the fluctuation of the gap tolerance due to the salient poles.
  • the spatial position of the peak value of the magnetic flux density uses the 1 ZN movement around the entire circumference.
  • the induced voltage to the output winding due to this magnetic flux density is as follows. If two phases or three phases are used, a two-phase or three-phase voltage of a sinusoidal waveform with one cycle of 1 ZN movement of the entire circumference of the rotor is used. When the line is single-phase, the sine wave voltage changes its phase by 2 ⁇ when the rotor moves 1 ZN around the entire circumference. Since the relationship between these voltages and the rotor position is the same as that of the resolver or synchro currently used, processing this output voltage with the RZD conversion means makes it possible to use an inexpensive resolver or a simple structure. Can be used as a sink.
  • the variation of the gap permeance coefficient due to ⁇ salient poles due to the rotor position 0 becomes a value proportional to cos ( ⁇ ), and the salient pole shape in which the harmonic component becomes extremely small. Can be realized.
  • variable reluctance angle detector of the present invention can be used not only for angle detection, but also for angular velocity (rotational speed) detection and rotation direction detection. It can be used not only for detecting the steering rotation angle of an automobile, but also for detecting the rotation angles of various rotating bodies.
  • a stator 1 is a ring-shaped magnetic material having 12 slots 2 formed between 12 salient poles 3, and each salient pole 3 is located in each slot 2.
  • the one-phase excitation winding 4 is wound as described above.
  • the number of poles of the exciting winding 4 is 1 Z 2 which is the number of the magnetic poles 3.
  • a rotor composed of only an iron core having no winding is rotatably provided, and the center of the rotor 5 is fixed.
  • the rotor 5 Since the eccentricity is deviated from the center of the stator 1, the rotor 5 is configured so that the gap permeance between the rotor 5 and the salient pole 3 of the stator 1 changes in a sinusoidal manner with respect to the angle 0. ing. Note that the rotor 5 is not limited to the eccentric configuration, and has the same function when it is concentric and deformed into a concave and convex shape instead of a circle.
  • sin output windings 6 and cos that are wound at a slot pitch of 1 in each slot 2 (electrical windings are sequentially inserted into each slot without slot skipping) with an electrical angle of 90 ° different from each other in the two phases.
  • the output winding 7 has a distributed winding (not shown in FIG. 1) such that the induced voltage distribution becomes a sinusoidal distribution as shown in FIG. ) Also has a sinusoidal distribution).
  • the number of turns of each of the output windings 6 and 7 is an evening number proportional to sin 0 (cos O) and its polarity (forward or reverse winding) is defined by each slot of sin output voltage 8 and cos output voltage 9 It is determined in consideration of the polarity of the magnetic flux induced by the exciting winding 4 so as to match the polarity at the two positions. That is, as shown in FIG. 2, when the exciting winding 4 is positive (N) and the output windings 6 and 7 are positive, the output is positive, and the exciting winding 4 is positive (N) and the output windings 6 and 7 are positive.
  • the configuration in Fig. 1 described above shows the case of two-phase output IX (X is a multiple of the axis). However, it is noted that n-phase output and multi-pole output type (2X or more) are also possible. In addition, the number of slots other than 12 is not limited to the above-mentioned case of 12 slots.
  • the configuration in Fig. 1 shows the case of 1-phase excitation / n-phase (2-phase) output, but the excitation side and output side are reversed, and n-phase (2-phase) excitation Z 1-phase output It is also possible.
  • the output winding of the present invention is preferably a distributed winding.
  • Table 1 shows a specific configuration example of such a distributed winding.
  • the distributed winding shown in Table 1 is obtained by winding a winding around a stator as shown in Fig. 1, and in this example, the number of magnetic poles is 12.
  • the excitation coil is wound only on the magnetic pole part forming the N pole, and not wound on the magnetic pole forming the S pole.
  • each output of the output coil generates an excitation voltage corresponding to the number of turns, and these are superimposed on each other to obtain a sinusoidal output waveform.
  • the output windings are provided at one slot pitch and the number of turns (amount) has a sine wave distribution. Volume), which is half that of conventional models, which can achieve weight reduction and significant cost reduction. Also, harmonic components included in the output voltage (induced voltage) can be reduced. For this reason, the angle detection accuracy can be improved (the error is 1 Z2 to 15) as compared with the conventional configuration. In addition, since this sine wave distribution is formed by one-slot pitch distribution winding, automation using mechanical winding by a winding machine can be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The variable reluctance type angle detector is such that for the purpose of providing a variable reluctance type angle detector that is light in weight and low in cost and makes it possible to eliminate harmonics and to improve accuracy and makes mechanical winding possible, and in order to achieve this purpose, the angle detector has an exciting winding (4) and n-phase output windings (6, 7) in the slots (2) of a stator (1), and a rotor (5) disposed for rotation relative to the stator (1), having a shape such that the permeance of the gap between the rotor and the stator (1) changes in a sinusoidal manner relative to an angle (υ)?), and having only magnetic members and no winding, wherein the number of poles of the exciting winding (4) is 1/2 of the number of magnetic poles (3) and the output windings (6, 7) are wound such that the distribution of the induced voltage generated in the output windings (6, 7) corresponding to one phase of the n-phase output windings (6, 7) is a sinewave distribution.

Description

明細書 バ 型角度検出器 技術分野  Description B-type angle detector Technical field
本発明は、 バリアブルリラクタンス型角度検出器に関し、 特に、 励磁卷線を各 磁極に対して 1つおきの磁極ピッチで巻回することにより、 高調波成分の除去、 精度の向上、 コス卜の低減および機械巻きを可能とするための新規な改良に関す る。 背景技術  The present invention relates to a variable reluctance angle detector, and in particular, removes harmonic components, improves accuracy, and reduces cost by winding excitation windings at every other magnetic pole pitch for each magnetic pole. And new improvements to enable mechanical winding. Background art
従来のこの種の角度検出器としては、 図 3〜 5に示すレゾルバを挙げることが できる。 すなわち、 図 3において、 固定子 1は、 4個の突極 3間に形成された 4 個のスロット 2を有する輪状の磁性体であり、 各突極 (磁極) 3には、 各スロッ ト 2内に位置するように 1相の励磁巻線 4が巻回されている。 この固定子 1の中 心位置には、 巻線を有しない鉄心のみよりなる回転子 5が回転自在に設けられ、 この回転子 5の中心が固定子 1の中心とずれて偏心しているため、 この回転子 5 と固定子 1の突極 3との間のギャップパーミアンスは角度 Θに対して正弦波状に 変化するように前記回転子は構成されている。  Conventional examples of this type of angle detector include the resolvers shown in Figs. That is, in FIG. 3, the stator 1 is a ring-shaped magnetic material having four slots 2 formed between four salient poles 3, and each salient pole (magnetic pole) 3 has a slot 2. The one-phase excitation winding 4 is wound so as to be positioned in the inside. At the center position of the stator 1, a rotor 5 composed of only an iron core having no winding is rotatably provided, and the center of the rotor 5 is decentered from the center of the stator 1, so that The rotor is configured such that the gap permeance between the rotor 5 and the salient poles 3 of the stator 1 changes sinusoidally with respect to the angle Θ.
また、 sin, cos出力巻線 6, 7が各磁極 3に対して各々 1つおきの磁極ピッ チで巻かれ、 sin出力巻線 6からは sin波の sin出力電圧 8が出力され、 cos出力 巻線 7からは cos波の cos出力電圧 9が出力される。 なお、 図 4に示すように、 前記励磁巻線 4は各磁極 3に順次すなわち 1スロットピッチで設けられている。 従って、 図 5に示すように、 励磁巻線 4を介して供給された励磁電圧により、 回 転子 5の回転と共に、 sin出力巻線 6及び cos出力巻線 7からは、 図 3に示す a, B, c , Dに応じた波形を、 図 6に示すように、 回転子 5の回転に応じて、 a + Bの cos出力電圧 9及び c + Dの sin出力電圧 8が出力される。 In addition, sin and cos output windings 6 and 7 are wound with every other magnetic pole pitch for each magnetic pole 3, and sin output winding 6 outputs sin wave sin output voltage 8 and cos output The winding 7 outputs a cos output voltage 9 of a cos wave. As shown in FIG. 4, the exciting windings 4 are provided sequentially on each magnetic pole 3, that is, at a pitch of one slot. Therefore, as shown in FIG. 5, the excitation voltage supplied via the excitation winding 4 causes the rotation of the rotor 5 and the sin output winding 6 and the cos output winding 7 to produce the a shown in FIG. , As shown in FIG. 6, waveforms corresponding to B, c, and D are output as a + B cos output voltage 9 and c + D sin output voltage 8 as the rotor 5 rotates.
従来のバリアブルリラクタンス型角度検出器は、 以上のように構成されている ため、 次のような課題が存在していた。 すなわち、 回転子と固定子間のギャップ の変化によって出力巻線をクロスする磁束の変化量を電圧の出力変化として検出 しているため、 出力電圧は sin 及び cos Sに比例して変化するが、 この回転子 の形状の誤差分の影響を受け、 高調波成分が発生し、 出力精度を向上させること が極めて困難であった。 また、 コイルで高調波成分を除去するとすれば図 5に示 すように出力巻線を短節巻きにする手段がとれるがこの方法は励磁巻線と出力巻 線が各スロットに飛越し巻きであるため、 機械巻が非常に困難であった。  The conventional variable reluctance angle detector has the following problems because it is configured as described above. That is, since the change in magnetic flux crossing the output winding due to the change in the gap between the rotor and the stator is detected as a voltage output change, the output voltage changes in proportion to sin and cos S, Due to the influence of the error in the shape of the rotor, harmonic components were generated, and it was extremely difficult to improve the output accuracy. If the coil is used to remove harmonic components, the output winding can be short-winded as shown in Fig. 5.However, in this method, the exciting winding and the output winding are interleaved in each slot. Therefore, mechanical winding was very difficult.
このような問題を解決するために、 例えば、 特開平 8— 1 7 8 6 1 1号公報に 示されるようなバリアプルリラクタンス型角度検出器が提案されている。 この文 献に記載されているバリアブルリラクタンス型角度検出器は、 出力巻線の 1相分 の出力巻線に発生する誘起電圧分布が正弦波分布となるように前記出力巻線を巻 回している。 し力 ^しな力 ら、 励磁巻線は各磁極にその磁極に対応した卷線が巻回 されることとなるので、 巻線数 (量) を減らすことは困難であり、 製造コストの 低減を困難なものにしていた。 発明の開示  In order to solve such a problem, for example, a barrier pull reluctance type angle detector as disclosed in Japanese Patent Application Laid-Open No. 8-178611 has been proposed. In the variable reluctance angle detector described in this document, the output winding is wound so that the induced voltage distribution generated in the output winding for one phase of the output winding has a sine wave distribution. . As a result, it is difficult to reduce the number of windings (amount) because the windings corresponding to the magnetic poles are wound on each magnetic pole. Was difficult. Disclosure of the invention
本発明の目的は、 軽量かつ低コストで高調波成分の除去、 精度の向上及び機械 巻きを可能としたバリアブルリラクタンス型角度検出器を提供することである。 上記目的は、 下記の本発明により達成される。  SUMMARY OF THE INVENTION An object of the present invention is to provide a variable reluctance type angle detector which is capable of removing harmonic components, improving accuracy, and mechanically winding at low cost at a low cost. The above object is achieved by the present invention described below.
( 1 ) 固定子 1のスロット 2内に励磁巻線 4と n相の出力巻線 6 , 7を有し、 前記固定子 1に対して回転自在に設けられ、 前記固定子 1との間のギャップパ ーミアンスが角度 0に対して正弦波状に変化する形状を有すると共に磁性部材の みで巻線を有しない構成の回転子 5を有するバリアブルリラクタンス型角度検出 器であって、 (1) An exciting winding 4 and n-phase output windings 6 and 7 are provided in a slot 2 of the stator 1 and are provided rotatably with respect to the stator 1. The gap permeance has a shape that changes sinusoidally with respect to an angle of 0, and the gap A variable reluctance type angle detector having a rotor 5 having only a configuration and no windings,
前記励磁巻線 (4 ) は全磁極 (3 ) のうち一方の極性の側にのみ巻回され、 前記 n相の出力巻線 6, 7の 1相分の出力巻線 6, 7に発生する誘起電圧分布 が正弦波分布となるように前記出力巻線 6 , 7が巻かれているバリアブルリラク タンス型角度検出器。  The exciting winding (4) is wound only on one polarity side of all the magnetic poles (3), and is generated in the one-phase output windings 6, 7 of the n-phase output windings 6, 7. A variable reluctance type angle detector in which the output windings 6 and 7 are wound so that an induced voltage distribution becomes a sine wave distribution.
( 2 ) 前記励磁巻線 (4 ) の極数は全磁極 (3 ) の数の 1ノ2である上記 ( 1 ) のバリアブルリラクタンス型角度検出器。  (2) The variable reluctance angle detector according to the above (1), wherein the number of poles of the exciting winding (4) is 1 to 2 of the total number of magnetic poles (3).
( 3 ) 前記励磁巻線 4を出力用に、 前記出力巻線 6, 7を励磁用とすること により、 n相励磁 Z 1相出力を構成する上記 1のバリアブルリラクタンス型角度 検出 ^5。 作用  (3) The variable reluctance type angle detection ^ 5 of the above-mentioned 1, wherein the excitation winding 4 is used for output and the output windings 6 and 7 are used for excitation, thereby forming an n-phase excitation Z 1-phase output. Action
本発明によるバリアブルリラクタンス型角度検出器においては、 励磁巻線が各 磁極に対して 1つおきの磁極ピッチで巻かれ、 出力巻線は、 各磁極に対して 1磁 極ピッチで巻かれている。 そして、 発生する誘起電圧分布が正弦波分布となるよ うに分布巻きにされ、 かつ固定子との間のギヤップパーミァンスが角度 Θに対し て正弦波状に変化する形状の回転子が回動自在に設けられているため、 各出力卷 線からは回転子の回転に応じて sin出力電圧及び cos出力電圧が得られる。 従つ て、 この各出力電圧に含まれる高調波成分を低減させることができる。 また、 各 磁極に 1磁極ごとに卷線を巻くため、 巻線機による機械巻きが可能である。 図面の簡単な説明  In the variable reluctance angle detector according to the present invention, the excitation winding is wound at every other magnetic pole pitch for each magnetic pole, and the output winding is wound at every other magnetic pole pitch for each magnetic pole. . The rotor is shaped so that the generated induced voltage distribution becomes a sine wave distribution and the gap between the stator and the stator changes sinusoidally with respect to the angle Θ. Therefore, a sin output voltage and a cos output voltage are obtained from each output winding according to the rotation of the rotor. Therefore, it is possible to reduce harmonic components included in each output voltage. In addition, since the winding is wound on each magnetic pole one by one, mechanical winding by a winding machine is possible. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明によるバリアブルリラクタンス型角度検出器を示す概略構成図で ある。 図 2は図 1の各スロットの卷線構造を示す説明図である。 FIG. 1 is a schematic configuration diagram showing a variable reluctance angle detector according to the present invention. FIG. 2 is an explanatory diagram showing a winding structure of each slot in FIG.
図 3は従来の角度検出器の構成図である。  FIG. 3 is a configuration diagram of a conventional angle detector.
図 4は図 3の各スロットの卷線構造を示す説明図である。  FIG. 4 is an explanatory diagram showing a winding structure of each slot in FIG.
図 5は従来の巻線構造を示す説明図である。  FIG. 5 is an explanatory view showing a conventional winding structure.
図 6は図 3の出力電圧を示す波形図である。  FIG. 6 is a waveform diagram showing the output voltage of FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明のバリアブルリラクタンス型角度検出器は、 固定子 1のスロット 2内に 励磁巻線 4と n相の出力巻線 6, 7を有し、 前記固定子 1に対して回転自在に設 けられ、 前記固定子 1との間のギャップパーミアンスが角度 Θに対して正弦波状 に変化する形状を有すると共に磁性部材のみで巻線を有しない構成の回転子 5を 有するバリアブルリラクタンス型角度検出器であって、 前記励磁巻線 4は全磁極 The variable reluctance angle detector of the present invention has an exciting winding 4 and n-phase output windings 6 and 7 in a slot 2 of a stator 1 and is rotatably provided with respect to the stator 1. A variable reluctance type angle detector having a rotor 5 having a shape in which the gap permeance between the stator 1 and the stator 1 changes sinusoidally with respect to the angle Θ and having no magnetic material and no winding. And the excitation winding 4 has all magnetic poles.
3のうち一方の極性の側にのみ巻回され、 前記 n相の出力巻線 6, 7の 1相分の 出力巻線 6, 7に発生する誘起電圧分布が正弦波分布となるように前記出力巻線 6, 7が巻かれているものである。 3 so that the induced voltage distribution generated in the output windings 6 and 7 for one phase of the n-phase output windings 6 and 7 becomes a sine wave distribution. Output windings 6 and 7 are wound.
このように、 励磁卷線 4を磁極 3のうち一方の極性 (Sまたは N ) にのみ巻回 し、 好ましくはその極数が磁極 3の数の 1 Z 2となるように巻回することで、 換 言すれば、 一つおきの磁極に卷線を巻回することにより、 約半分程度の巻線量で、 全ての磁極に励磁卷線を巻回したのと略同等の効果が得られる。  As described above, the excitation winding 4 is wound around only one polarity (S or N) of the magnetic poles 3, and is preferably wound so that the number of poles is 1 Z 2 which is the number of the magnetic poles 3. In other words, by winding the winding around every other magnetic pole, an effect approximately equivalent to winding the excitation winding around all the magnetic poles can be obtained with a winding amount of about half.
本発明の固定子 1は、 中空輪状の磁性体であって、 その中心方向には突出した 複数の磁極を有し、 これらの磁極間に巻線が巻回されるスロットを有する構成と なっている。  The stator 1 of the present invention is a hollow ring-shaped magnetic material, having a plurality of magnetic poles protruding in the center direction thereof, and having a slot around which a winding is wound between these magnetic poles. I have.
このような固定子の磁極には、 励磁巻線と出力巻線とが巻回される。 励磁巻線 は磁界発生用の巻線であり、 出力巻線はこの励磁巻線により発生し、 回転子の回 転移動によって変化する磁界により励起される励起電圧を取り出す巻線である。 本発明では、 励磁巻線を 1つの磁極おきに巻回する。 また、 出力卷線は発生する 誘起電圧分布が正弦波分布となるように分布巻きにする。 そして、 この励磁巻線 に励磁電圧を加えると、 巻線が巻回された磁極に、 例えば N極が表れるように巻 回すると、 励磁巻線が巻回されていない磁極には S極が表れる。 このため、 全て の磁極に励磁巻線を巻回したのと同等の効果が得られ、 しかも、 巻線数は略半分 近くまで減らすことができるので、 製造コストと重量を大幅に低減することがで さる。 An excitation winding and an output winding are wound around the magnetic poles of such a stator. The excitation winding is a winding for generating a magnetic field, and the output winding is a winding for extracting an excitation voltage generated by the excitation winding and excited by a magnetic field that is changed by the rotational movement of the rotor. In the present invention, the exciting winding is wound every other magnetic pole. The output winding is distributed so that the generated induced voltage distribution becomes a sinusoidal distribution. When an exciting voltage is applied to this exciting winding, if the winding is wound so that the N pole appears on the wound magnetic pole, for example, an S pole appears on the magnetic pole on which the exciting winding is not wound. . As a result, the same effect as when exciting coils are wound on all magnetic poles can be obtained, and the number of windings can be reduced to almost half, so that manufacturing cost and weight can be significantly reduced. In monkey.
回転子 5は、 変形した円筒ないし円盤状の磁性体であって、 その外側面と、 固 定子 1の各磁極とのギャップが回転動作により変化し、 励磁巻線、 出力巻線によ り回転変位量に応じた出力信号が得られるように形成されている。 この形状は、 その中心軸が固定子の中心軸とずれた円盤状、 あるいは円筒状の回転体としても よいが、 後述のように、 高調波歪を除去するために、 所定の極数の突部を有する 形状とすることが好ましい。  The rotor 5 is a deformed cylindrical or disk-shaped magnetic material, and the gap between its outer surface and each magnetic pole of the stator 1 is changed by the rotation operation, and the rotor 5 is rotated by the excitation winding and the output winding. It is formed so that an output signal corresponding to the amount of displacement can be obtained. This shape may be a disk-shaped or cylindrical rotating body whose center axis is deviated from the center axis of the stator, but as will be described later, in order to remove harmonic distortion, a protrusion having a predetermined number of poles is used. It is preferable that the shape has a portion.
回転子 5、 固定子 1を構成する材料としては、 磁性材料であれば特に限定され るものではなく、 通常のレゾルバに使用されている材料を用いることが可能であ るが、 なかでもケィ素鋼板、 電磁軟鉄等が好ましく、 特にケィ素鋼板が好ましい。 次に、 回転子 5のより詳細な形状について説明する。 回転子 5の形状は、 通常 のバリアブルリラクタンス型レゾルバの回転子の形状を決定する手法を用いるこ とができるカ^ 好ましくは、 特許第 2 6 9 8 0 1 3号に記載されている手法を用 いる。  The material constituting the rotor 5 and the stator 1 is not particularly limited as long as it is a magnetic material, and it is possible to use a material used for a normal resolver. Steel sheets, soft magnetic iron, etc. are preferred, and silicon steel sheets are particularly preferred. Next, a more detailed shape of the rotor 5 will be described. The shape of the rotor 5 can be determined by using a method for determining the shape of the rotor of a normal variable reluctance resolver.Preferably, a method described in Japanese Patent No. 2698013 is used. Use.
回転子 5は N個の突極を有する磁性材で巻線を設けない構造において、 励磁巻 線の電流によって生ずる起磁力と突極によるギヤップパ一ミアンスの変動との作 用で、 回転子が全円周の 1 ZN動くときに、 その磁束密度のピーク値の空間的位 置は全円周の 1 ZN動くことを利用する。  The rotor 5 is made of a magnetic material having N salient poles and does not have a winding, and the rotor is fully driven by the action of the magnetomotive force generated by the current of the exciting winding and the fluctuation of the gap tolerance due to the salient poles. When moving 1 ZN around the circumference, the spatial position of the peak value of the magnetic flux density uses the 1 ZN movement around the entire circumference.
この磁束密度による出力巻線への誘導電圧は、 励磁巻線を単相とし、 出力巻線 を 2相または 3相とした場合には、 回転子の全円周の 1 ZNの動きを 1周期とす る正弦波形の 2相または 3相電圧となり、 励磁巻線を 2相とし、 出力巻線を単相 とした場合には、 回転子が全円周の 1 Z N動くときに位相が 2 π変化する正弦波 電圧となる。 これらの電圧と回転子位置との関係は、 現在使用されているレゾル バあるいはシンクロの場合と同一であるので、 この出力電圧を R ZD変換手段で 処理することによって、 構造簡単で安価なレゾルバあるいはシンク口として使用 することができる。 The induced voltage to the output winding due to this magnetic flux density is as follows. If two phases or three phases are used, a two-phase or three-phase voltage of a sinusoidal waveform with one cycle of 1 ZN movement of the entire circumference of the rotor is used. When the line is single-phase, the sine wave voltage changes its phase by 2π when the rotor moves 1 ZN around the entire circumference. Since the relationship between these voltages and the rotor position is the same as that of the resolver or synchro currently used, processing this output voltage with the RZD conversion means makes it possible to use an inexpensive resolver or a simple structure. Can be used as a sink.
この方式においては、 誤差の原因となる出力巻線の誘導電圧に含まれる高調波 成分を最小にすることが重要である。 本発明では、 Ν個の突極によるギャップパ ーミアンス係数の回転子位置 0による変動が c o s (Ν に比例する値となり、 これに対する高調波成分が極めて小さくなるような突極形状とすることによって、 これを実現できる。  In this method, it is important to minimize the harmonic components contained in the induced voltage in the output winding, which cause errors. In the present invention, the variation of the gap permeance coefficient due to Ν salient poles due to the rotor position 0 becomes a value proportional to cos (Ν), and the salient pole shape in which the harmonic component becomes extremely small. Can be realized.
本発明のバリアブルリラクタンス型角度検出器は、 角度検出のみならず、 角速 度 (回転速度) の検出や回転方向の検出に用いることができる。 その用途も自動 車のステアリング回転角検出のみならず、 種々の回転体の回転角検出に用いるこ とができる。  INDUSTRIAL APPLICABILITY The variable reluctance angle detector of the present invention can be used not only for angle detection, but also for angular velocity (rotational speed) detection and rotation direction detection. It can be used not only for detecting the steering rotation angle of an automobile, but also for detecting the rotation angles of various rotating bodies.
実施例 Example
ぐ実施例 1 > Example 1>
以下、 図面と共に本発明によるバリアブルリラクタンス型角度検出器の好適な 実施例について詳細に説明する。 なお、 従来例と同一又は同等部分には同一符号 を付して説明する。 図 1において固定子 1は、 1 2個の突極 3間に各々形成され た 1 2個のスロット 2を有する輪状の磁性材であり、 各突極 3には、 各スロット 2内に位置するように 1相の励磁巻線 4が巻回されている。 なお、 この励磁巻線 4の極数は磁極 3の数の 1 Z 2である。 この固定子 1の中心位置には、 卷線を有 しない鉄心のみよりなる回転子が回転自在に設けられ、 この回転子 5の中心が固 定子 1の中心とずれて偏心しているため、 この回転子 5と固定子 1の突極 3との 間のギヤップパーミアンスは角度 0に対して正弦波状に変化するように前記回転 子 5は構成されている。 なお、 この回転子 5は、 偏心構成に限らず、 同心で形状 が円でなく変形して凹凸形等とした場合も同じ作用を有するものである。 Hereinafter, preferred embodiments of a variable reluctance angle detector according to the present invention will be described in detail with reference to the drawings. The same or equivalent parts as those in the conventional example will be described with the same reference numerals. In FIG. 1, a stator 1 is a ring-shaped magnetic material having 12 slots 2 formed between 12 salient poles 3, and each salient pole 3 is located in each slot 2. The one-phase excitation winding 4 is wound as described above. The number of poles of the exciting winding 4 is 1 Z 2 which is the number of the magnetic poles 3. At the center position of the stator 1, a rotor composed of only an iron core having no winding is rotatably provided, and the center of the rotor 5 is fixed. Since the eccentricity is deviated from the center of the stator 1, the rotor 5 is configured so that the gap permeance between the rotor 5 and the salient pole 3 of the stator 1 changes in a sinusoidal manner with respect to the angle 0. ing. Note that the rotor 5 is not limited to the eccentric configuration, and has the same function when it is concentric and deformed into a concave and convex shape instead of a circle.
また、 2相で互いに電気角が 9 0 ° 異なって各スロット 2に 1スロットピッチ (スロット飛びを伴うことなく、 各スロットに順次巻線を入れる状態) で巻かれ た sin出力巻線 6及び cos出力巻線 7は、 図 1には示していないが図 2で示され る状態のように、 その誘起電圧分布が各々正弦波分布となるように分布巻き (そ の巻線の巻き数 (量) も正弦波分布状となる) で構成されている。 前記各出力巻 線 6 , 7の巻数は、 sin 0 ( cos O ) に比例した夕一ン数でかつその極性 (正巻 又は逆巻) は、 sin出力電圧 8と cos出力電圧 9の各スロット 2位置での極性に 合うように、 励磁巻線 4によって誘起される磁束の極性を考慮しつつ決定する。 すなわち、 図 2に示すように、 励磁巻線 4が正極 (N ) で出力巻線 6, 7が正 巻の場合は正相出力、 励磁巻線 4が正極 (N ) で出力卷線 6, 7が逆巻の場合は 逆相出力、 励起磁巻線 4が逆極 (S ) で出力巻線 6 , 7が正巻の場合は逆相出力、 励磁巻線 4が逆極 (S ) で出力巻線 6 , 7が逆巻の場合は正相出力となる巻線構 造を前提として、 sin出力電圧 8及び cos出力電圧 9が sin状及び cos状となるよ うに各出力巻線 6, 7の極性 (正巻が逆巻) を決める。  In addition, sin output windings 6 and cos that are wound at a slot pitch of 1 in each slot 2 (electrical windings are sequentially inserted into each slot without slot skipping) with an electrical angle of 90 ° different from each other in the two phases. The output winding 7 has a distributed winding (not shown in FIG. 1) such that the induced voltage distribution becomes a sinusoidal distribution as shown in FIG. ) Also has a sinusoidal distribution). The number of turns of each of the output windings 6 and 7 is an evening number proportional to sin 0 (cos O) and its polarity (forward or reverse winding) is defined by each slot of sin output voltage 8 and cos output voltage 9 It is determined in consideration of the polarity of the magnetic flux induced by the exciting winding 4 so as to match the polarity at the two positions. That is, as shown in FIG. 2, when the exciting winding 4 is positive (N) and the output windings 6 and 7 are positive, the output is positive, and the exciting winding 4 is positive (N) and the output windings 6 and 7 are positive. When 7 is reverse winding, the output is negative phase, when the excitation winding 4 is reverse polarity (S) and the output windings 6 and 7 are positive, the output is negative phase, and when the excitation winding 4 is reverse polarity (S), When the output windings 6 and 7 are reverse winding, the output windings 6 and 7 are set so that the sin output voltage 8 and the cos output voltage 9 become sin-shaped and cos-shaped, assuming a winding structure that outputs positive phase. Determine the polarity of 7 (positive winding is reverse winding).
なお、 前述の図 1の構成は、 2相出力の I X ( Xは軸倍角) の場合を示してい るが、 n相出力及び多極出力型 (2 X以上) も可能であることは述べるまでもな く、 前述の 1 2スロットの場合に限ることなく、 1 2以外の何れのスロット数も 可能である。 また、 図 1の構成は、 1相励磁/ n相 (2相) 出力の場合を示して いるが、 励磁側と出力側を逆とし、 n相 (2相) 励磁 Z 1相出力とすることも可 能である。  The configuration in Fig. 1 described above shows the case of two-phase output IX (X is a multiple of the axis). However, it is noted that n-phase output and multi-pole output type (2X or more) are also possible. In addition, the number of slots other than 12 is not limited to the above-mentioned case of 12 slots. The configuration in Fig. 1 shows the case of 1-phase excitation / n-phase (2-phase) output, but the excitation side and output side are reversed, and n-phase (2-phase) excitation Z 1-phase output It is also possible.
<実施例 2 > 本発明の出力巻線は分布巻とすることが好ましい。 このような分布巻の具体的 な構成例を以下の表 1に示す。 表 1に示す分布巻は、 図 1に示すような固定子に 巻線を巻回したものであって、 この例では磁極数が 1 2となっている。 <Example 2> The output winding of the present invention is preferably a distributed winding. Table 1 below shows a specific configuration example of such a distributed winding. The distributed winding shown in Table 1 is obtained by winding a winding around a stator as shown in Fig. 1, and in this example, the number of magnetic poles is 12.
角度 0 30 60 90 120 150 180 210 240 270 300 330 磁極 1 2 3 4 5 6 7 8 9 10 11 12 励磁コイル 極性 N (S) N (S) N (S) N (S) N (S) N (S) 巻数 45 45 45 45 45 45 出力コイル A 極性 N S N S N S N S N S N S 卷数 71 26 97 71 26 97 71 26 97 71 26 97 出力コイル B 極性 S S N S S N S S N S S N 巻数 71 97 26 71 97 26 71 97 26 71 97 26 表 1中、 Nは正極、 Sは逆極 Angle 0 30 60 90 120 150 180 210 240 270 300 330 Magnetic pole 1 2 3 4 5 6 7 8 9 10 11 12 Excitation coil Polarity N (S) N (S) N (S) N (S) N (S) N (S) Number of turns 45 45 45 45 45 45 Output coil A polarity NSNSNSNSNSNS Number of turns 71 26 97 71 26 97 71 26 97 71 26 97 Output coil B polarity SSNSSNSSNSSN Number of turns 71 97 26 71 97 26 71 97 26 71 97 26 Table 1 , N is positive pole, S is reverse pole
表 1において励磁コイルは N極を形成する磁極部分にのみ巻回され、 S極を形 成する磁極には巻回されていない。 また、 出力コイルの各出力は、 その巻数に応 じた励磁電圧が発生し、 これらがそれぞれ重ね合わされて正弦波状の出力波形が 得られる。 In Table 1, the excitation coil is wound only on the magnetic pole part forming the N pole, and not wound on the magnetic pole forming the S pole. In addition, each output of the output coil generates an excitation voltage corresponding to the number of turns, and these are superimposed on each other to obtain a sinusoidal output waveform.
このような分布巻の励磁コイル (2 0 Ω ) に 1 0 kHz、 7 V (rms) を加えたと ころ、 各出力コイルから、 それぞれ 2 V (rms) の正弦波状の出力電圧が得られ た。 なお、 このときの出力コイル A, Bはそれぞれ 4 0 Ωであり、 得られた出力 波形は 2サイクルで歪みの少ない sin、 cos波形であった。 効果  When 10 kHz and 7 V (rms) were applied to such a distributed winding excitation coil (20 Ω), a sinusoidal output voltage of 2 V (rms) was obtained from each output coil. The output coils A and B at this time were 40 Ω, respectively, and the obtained output waveform was a sin and cos waveform with little distortion in two cycles. Effect
以上のように、 本発明のバリアブルリラクタンス型角度検出器は、 出力巻線を 1スロットピッチでかつ巻数 (量) が正弦波分布となるように設けられているた め、 励磁巻線の数 (量) が従来の半分で済み、 軽量化と大幅なコストダウンを実 現できる。 また、 出力電圧 (誘起電圧) に含まれている高調波成分を低減させる ことができる。 このため、 従来構成に比べて角度検出精度を改善 (誤差を 1 Z 2 〜 1 5 ) することができる。 また、 この正弦波分布を 1スロットピッチの分布 巻きにより作っているため、 巻線機による機械巻を用いた自動化が達成できる。  As described above, in the variable reluctance angle detector of the present invention, the output windings are provided at one slot pitch and the number of turns (amount) has a sine wave distribution. Volume), which is half that of conventional models, which can achieve weight reduction and significant cost reduction. Also, harmonic components included in the output voltage (induced voltage) can be reduced. For this reason, the angle detection accuracy can be improved (the error is 1 Z2 to 15) as compared with the conventional configuration. In addition, since this sine wave distribution is formed by one-slot pitch distribution winding, automation using mechanical winding by a winding machine can be achieved.

Claims

請求の範囲 The scope of the claims
1. 固定子 (1) のスロット (2) 内に励磁巻線 (4) と n相の出力巻線 (6, 7) を有し、 1. The stator (1) has an excitation winding (4) and an n-phase output winding (6, 7) in the slot (2).
前記固定子 (1) に対して回転自在に設けられ、 前記固定子 (1) との間のギ ャップパーミアンスが角度 0に対して正弦波状に変化する形状を有すると共に磁 性部材のみで卷線を有しない構成の回転子 (5) を有するバリアブルリラクタン ス型角度検出器であって、  It is provided rotatably with respect to the stator (1), has a shape in which the gap permeance with the stator (1) changes sinusoidally with respect to an angle of 0, and uses only a magnetic member. A variable reluctance angle detector having a rotor (5) having no winding,
前記励磁卷線 (4) は全磁極 (3) のうち一方の極性の側にのみ巻回され、 前記 n相の出力巻線 (6, 7) の 1相分の出力巻線 (6, 7) に発生する誘起 電圧分布が正弦波分布となるように前記出力巻線 (6, 7) が巻かれているバリ ァブルリラクタンス型角度検出器。  The exciting winding (4) is wound only on one polarity side of all the magnetic poles (3), and one phase output winding (6, 7) of the n-phase output winding (6, 7) is provided. A variable reluctance type angle detector in which the output windings (6, 7) are wound so that the induced voltage distribution generated in (2) becomes a sine wave distribution.
2. 前記励磁巻線 (4) の極数は全磁極 (3) の数の 1 2である請求項第 1項のバリァブルリラクタンス型角度検出器。  2. The variable reluctance type angle detector according to claim 1, wherein the number of poles of said exciting winding (4) is 12 of the number of all magnetic poles (3).
3. 前記励磁巻線 (4) を出力用に、 前記出力巻線 (6, 7) を励磁用とす ることにより、 n相励磁 /1相出力を構成する請求項:  3. An n-phase excitation / 1-phase output is constituted by using the excitation winding (4) for output and the output winding (6, 7) for excitation.
ス型角度検出器。 Angle detector.
PCT/JP2000/003989 1999-12-07 2000-06-19 Variable reluctance type angle detector WO2001042743A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/347416 1999-12-07
JP34741699A JP3429464B2 (en) 1999-12-07 1999-12-07 Variable reluctance angle detector

Publications (1)

Publication Number Publication Date
WO2001042743A1 true WO2001042743A1 (en) 2001-06-14

Family

ID=18390086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003989 WO2001042743A1 (en) 1999-12-07 2000-06-19 Variable reluctance type angle detector

Country Status (2)

Country Link
JP (1) JP3429464B2 (en)
WO (1) WO2001042743A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816912B2 (en) 2006-07-05 2010-10-19 Tamagawa Seiki Kabushiki Kaisha Angle detector including distinct magnetic stator portions
CN109459069A (en) * 2018-12-17 2019-03-12 焦明 Difference absolute type round induction synchrometer and its angle-measuring method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199826B2 (en) * 2003-02-19 2008-12-24 ミネベア株式会社 Variable reluctance angle detector using iron core winding and method of manufacturing the iron core winding
JP4521700B2 (en) * 2005-04-13 2010-08-11 康雄 飯島 Variable reluctance angle detector
WO2007029678A1 (en) * 2005-09-05 2007-03-15 Japan Aviation Electronics Industry Limited Resolver
JP4790478B2 (en) * 2006-04-19 2011-10-12 康雄 飯島 Variable reluctance angle detector
DE102009021444A1 (en) * 2009-05-15 2010-11-25 Tyco Electronics Belgium Ec Bvba Magnetoelectronic angle sensor, in particular reluctance resolver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241831A (en) * 1993-02-20 1994-09-02 Harmonic Drive Syst Ind Co Ltd Position detector
EP0877464A2 (en) * 1997-05-09 1998-11-11 Kollmorgen Corporation Variable reluctance resolver to digital converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241831A (en) * 1993-02-20 1994-09-02 Harmonic Drive Syst Ind Co Ltd Position detector
EP0877464A2 (en) * 1997-05-09 1998-11-11 Kollmorgen Corporation Variable reluctance resolver to digital converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816912B2 (en) 2006-07-05 2010-10-19 Tamagawa Seiki Kabushiki Kaisha Angle detector including distinct magnetic stator portions
CN109459069A (en) * 2018-12-17 2019-03-12 焦明 Difference absolute type round induction synchrometer and its angle-measuring method
CN109459069B (en) * 2018-12-17 2023-11-07 焦明 Differential absolute type circular induction synchronizer and angle measurement method thereof

Also Published As

Publication number Publication date
JP3429464B2 (en) 2003-07-22
JP2001165706A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
JP3182493B2 (en) Variable reluctance angle detector
JP2698013B2 (en) Position detection device
US7009389B2 (en) Rotation angle detection device
JP4181380B2 (en) Rotation angle detector and rotating electric machine
JP4692923B2 (en) Resolver device and motor device equipped with resolver device
JP5892196B2 (en) Resolver device, motor and actuator
JPH04169816A (en) Resolver device
JP4397788B2 (en) Rotation angle detector
WO2007029678A1 (en) Resolver
WO2001042743A1 (en) Variable reluctance type angle detector
JP2624747B2 (en) Resolver
JP2000258187A (en) Device for detecting zero location of variable reluctance-type resolver
JP2001314069A (en) Board resolver
JP5075022B2 (en) Variable reluctance resolver
JPH11118521A (en) Vr type resolver and resolver signal processing circuit
WO2001071288A1 (en) Torsional quantity measuring device
JP3406291B2 (en) Core structure of rotation detector
JP3100841B2 (en) Rotational position detecting device and method
JP2002119032A (en) Iron core structure of rotation detector
JP2001165703A (en) Winding type rotation detector
JPH0526942Y2 (en)
JPH0640467Y2 (en) Brushless speed generator
JPH1089911A (en) Motor incorporated with detection part of rotary angle
JP2698013C (en)
JPS61116961A (en) Brushless motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWW Wipo information: withdrawn in national office

Ref document number: 2000939098

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2000939098

Country of ref document: EP

122 Ep: pct application non-entry in european phase