JPH0449694B2 - - Google Patents

Info

Publication number
JPH0449694B2
JPH0449694B2 JP20452182A JP20452182A JPH0449694B2 JP H0449694 B2 JPH0449694 B2 JP H0449694B2 JP 20452182 A JP20452182 A JP 20452182A JP 20452182 A JP20452182 A JP 20452182A JP H0449694 B2 JPH0449694 B2 JP H0449694B2
Authority
JP
Japan
Prior art keywords
layer
electrochromic
short
solid
circuit prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20452182A
Other languages
Japanese (ja)
Other versions
JPS5994744A (en
Inventor
Masanori Sakamoto
Juko Nakajima
Masataka Myamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP20452182A priority Critical patent/JPS5994744A/en
Publication of JPS5994744A publication Critical patent/JPS5994744A/en
Publication of JPH0449694B2 publication Critical patent/JPH0449694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は全固体電気発色表示素子に関する。 〔従来技術とその問題点〕 WO3に代表される遷移金属酸化物を用いた電
気発色表示素子はその優れた視認性から注目され
てきている。 全固体型電気発色表示素子では、電解質に固体
電解質を用いるため溶液電解質を用いるものに比
較して素子の構造が簡単になる。漏液の問題がな
いなどの利点を有している。全固体型電気発色表
示素子は一般に第1図に示した構造を持つてい
る。 すなわちガラス基板1上に形成された透明電極2
に遷移金属酸化物よりなる電気発色層3を積層す
る。これにSiO2、MgF2、NiO、SiO等の固体電
解質層4を積層し対向電極5を設けて成る。 このように全固体型電気発色表示素子は形成が
極めて容易であるが、発明者らが実験を重ねた結
果次のような問題点があることを見出した。すな
わち、透明電極と対向電極を高々1μの厚さの酸
化物、フツ化物層をへだてて積層形成しているた
め、電極間の短絡が起こりやすい。電極間に短絡
が生じると、電気発色層、固体電解質層に電場が
印加されず、電気発色層へのイオンの注入が起こ
らず、従つて電気発色が生じない不良品の原因と
なる。 電極間の短絡の原因は、通常、電気発色層、固
体電解質層、ピンホール、割れに帰せられる。従
つて短絡を防止するには、ピンホールの原因とな
る作業室中の塵を減らすこと、具体的にはクリー
ンルーム中での作業が有効と考えられ、割れを防
ぐには、電気発色層、固体電解質層を緻密に形成
することが必要である。 しかしながらこれらの対策は次のような問題点
を持つている。まずクリーンルーム作業は、設備
に多大な投資を必要とし、かつこれを充分機能さ
せるためにはその維持管理にも労力と経費がかさ
み何よりも作業性が低下してしまう。また電気発
色表示素子の発色原理が、電気発色層と固体電解
質層との間のイオンの拡散に基いているため、電
気発色層、固体電解質層を緻密に形成すること自
体が、これらの薄膜中でのイオンの拡散を阻害す
ることになり電気発色特性の劣化すなわち、表示
コントラストの低下、応答速度の低下を惹起す
る。従つて電極短絡の問題は、全固体形ECDの
製造上、極めて大きな制約として存在していた。
かつまた、現実の文字パタンを表示する素子にお
いては電気発色層が形成されていない透明電極部
分が、大きな面積を占めるが、かかる透明電極部
分も固体電解質層をはさんで対向電極に対向する
ので、固体電解質層に生じた欠陥は直に短絡に結
びつき素子の動作を阻害する。このように薄膜積
層型全固体電気発色素子は形成容易かつ、素子厚
みも薄く極めて有望な素子ながら現実に製造する
上では大きな困難を有していた。 〔発明の目的〕 この発明は、上述した全固体型電気発色素子の
欠点ないしは問題点を解消すべくなされたもの
で、電極間短絡の生じにくい構造の全固体型電気
発色素子を提供しようとするものである。 〔発明の概要〕 本発明の全固体電気発色素子は、緻密な膜を形
成することが容易な絶縁体層を、電気発色層が積
層される透明電極上に厚さ500Å以下の膜厚で
(以下第1短絡防止層という)、かつ電気発色層が
積層されない透明電極上に厚さ500Å以上の膜厚
で(以下第2短絡防止層という)、透明電極と対
向電極の間に設けこれにより電極間の短絡を防止
するものである。 本発明の電気絶縁体は、異なる膜厚の部分を有
する一枚の膜で構成してもよいし、また第3ない
し5図に示したように複数の膜で構成することも
できる。複数膜で形成した方が一般的に言つて作
業は容易である。透明電極と対向電極間に短絡防
止層を設けることは電気発色層と固体電解質との
間のイオン交換を阻害し、電気発色特性を悪化さ
せるように推測されるが、上記第1短絡防止層が
薄く、かつ高誘電率の物質を用いることにより、
予測に反して実用上電気発色特性に殆んど影響を
与えない。 〔発明の実施例〕 以下、実施例に基づいて本発明を詳細に説明す
る。 実施例 1 第2図は、本発明の全固体電気発色素子の製造
工程を示す図であり、図を用いて説明する。ガラ
ス基板1上に形成され所望のパタンにパタン化さ
れた透明電極2上に、スパツタ法を用いて第1短
絡防止層6を500Å以下の膜厚で全面に推積させ
る(第2図B)。次にかかる第1短絡防止層上に
フオトレジスト7を塗布露光し透明電極上電気発
色層を推積させる部分のみにフオトレジスト層7
を残すべくパタン化する(第2図C)。再びスパ
ツタ法を用いてかかる基板上に第2短絡防止層8
を500Å以上の膜厚に全面形成する。しかるのち、
レジストを除去する(いわゆるリフトオフ工程)
と第2図Dの如き透明電極上で電気発色層が形成
される部分は500Å以下膜厚の絶縁膜が、形成さ
れない部分には500Å以上の膜厚の絶縁膜が夫々
形成された基板が得られる。かかる基板上に例え
ばWO3よりなる電気発色層をマスク蒸着法ある
いはフオトエツチング法でパタン化し、その上に
たとればZrO2よりなる固体電解質層と金(Au)
よりなる対向電極を蒸着あるいはスパツタ形成し
て本発明にかかる電気発色素子が得られる。それ
を第3図に断面的に示す。このようにして得られ
た全固体電気発色表示素子の特性を表1に示し
た。比較例として第1及び第2短絡防止層をもた
ない従来型の電気発色表示素子をつくり特性を比
較した。表に示されたように短絡防止層を設ける
と電極間の短絡を著しく低滅することが可能とな
る。電気発色層と固体電解質層の間に第1及び第
2短絡防止層を設けた本実施例においては、特に
第1短絡防止層の膜厚が大であると電気発色特性
を劣化させる。これは、第1短絡防止層がイオン
の拡散移動を阻害した結果とか考えられる。 表1に示した第1短絡防止層の誘電率は、スパ
ツタ形成した膜厚5000Åの薄膜の周波数1MHzに
おける値である。いずれの試料においても短絡防
止層の効果が明白に認められる。表より、第1短
絡防止層の誘電率は大であり第2短絡防止層の誘
電率は小である方が電気発色特性におよぼす影響
は少ないことがわかる。これは、短絡防止層の電
気容量が大になり分極電荷によつて電気発色層と
電解質層の間のイオンのやりとりによる電流を吸
収できるからである。逆に第2短絡防止層の誘電
率が大であると素子自体の静電容量が大になり着
消色速度が低下してしまう。 実施例 2 上述の実施例では第1短絡防止層が透明電極上
全面に設けられていたが、第1短絡防止層をパタ
ンニングして第4図に断面的に示した構造すなわ
ち電気発色層を積層する部分に限定して設けるこ
ともできる。パタン化工程が増すが電気的にはこ
れが最も好しい。 また第5図に示したように先に第2短絡防止層
を形成した後に第1短絡防止層を形成することも
可能である。 以上実施例において説明したように本発明にか
かる全固体電気発色表示素子は形成も容易で製造
歩留も高く実用上大きな利点を有するといえる。 〔発明の効果〕 本発明によれば、緻密で均一な薄膜よりなる短
絡防止層で透明電極と対向電極との間を絶縁する
ため電極短絡が生じにくい素子が得られる。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to an all-solid-state electrochromic display element. [Prior art and its problems] Electrochromic display elements using transition metal oxides represented by WO 3 have been attracting attention because of their excellent visibility. In an all-solid-state electrochromic display element, since a solid electrolyte is used as the electrolyte, the structure of the element is simpler than one using a solution electrolyte. It has advantages such as no leakage problem. An all-solid-state electrochromic display element generally has the structure shown in FIG. That is, a transparent electrode 2 formed on a glass substrate 1
An electrochromic layer 3 made of a transition metal oxide is laminated thereon. A solid electrolyte layer 4 of SiO 2 , MgF 2 , NiO, SiO, etc. is laminated thereon, and a counter electrode 5 is provided. As described above, the all-solid-state electrochromic display element is extremely easy to form, but as a result of repeated experiments, the inventors have found that it has the following problems. That is, since the transparent electrode and the counter electrode are formed in a laminated manner with an oxide or fluoride layer separated from each other with a thickness of at most 1 μm, short circuits between the electrodes are likely to occur. If a short circuit occurs between the electrodes, no electric field will be applied to the electrochromic layer and the solid electrolyte layer, and ion injection into the electrochromic layer will not occur, resulting in a defective product in which no electrochromic formation occurs. The causes of short circuits between electrodes are usually attributed to electrochromic layers, solid electrolyte layers, pinholes, and cracks. Therefore, in order to prevent short circuits, it is considered effective to reduce the dust in the work room that causes pinholes, specifically working in a clean room. It is necessary to form the electrolyte layer densely. However, these measures have the following problems. First of all, clean room work requires a large amount of investment in equipment, and in order to keep it functioning satisfactorily, the maintenance and management of the equipment requires a lot of effort and expense, and above all, work efficiency decreases. Furthermore, since the coloring principle of electrochromic display elements is based on the diffusion of ions between the electrochromic layer and the solid electrolyte layer, the dense formation of the electrochromic layer and the solid electrolyte layer itself results in This obstructs the diffusion of ions in the pores and causes deterioration of electrochromic properties, that is, a decrease in display contrast and a decrease in response speed. Therefore, the problem of electrode short circuits has been an extremely important constraint on the production of all-solid-state ECDs.
Furthermore, in actual elements that display character patterns, the transparent electrode portion on which the electrochromic layer is not formed occupies a large area, but this transparent electrode portion also faces the counter electrode with a solid electrolyte layer in between. , defects occurring in the solid electrolyte layer directly lead to short circuits and impede the operation of the device. As described above, the thin film laminated type all-solid-state electroluminescent element is easy to form and has a thin element thickness, and although it is an extremely promising element, it has been very difficult to actually manufacture it. [Purpose of the Invention] The present invention has been made to solve the above-mentioned drawbacks or problems of the all-solid-state electrophoretic element, and aims to provide an all-solid-state electrophoretic element with a structure that is unlikely to cause short circuits between electrodes. It is something. [Summary of the Invention] The all-solid-state electrochromic element of the present invention has an insulating layer that can easily form a dense film on a transparent electrode on which the electrochromic layer is laminated with a thickness of 500 Å or less ( A film with a thickness of 500 Å or more (hereinafter referred to as the second short-circuit prevention layer) is provided between the transparent electrode and the counter electrode on the transparent electrode on which the electrochromic layer is not laminated. This prevents short circuits between the two. The electrical insulator of the present invention may be composed of a single film having portions of different thicknesses, or may be composed of a plurality of films as shown in FIGS. 3 to 5. Generally speaking, it is easier to work if a plurality of films are formed. It is presumed that providing a short-circuit prevention layer between the transparent electrode and the counter electrode inhibits ion exchange between the electrochromic layer and the solid electrolyte and deteriorates the electrochromic properties. By using thin and high dielectric constant material,
Contrary to predictions, it has virtually no effect on electrochromic properties in practice. [Examples of the Invention] The present invention will be described in detail below based on Examples. Example 1 FIG. 2 is a diagram showing the manufacturing process of the all-solid-state electroluminescent element of the present invention, and will be explained using the drawings. A first short-circuit prevention layer 6 is deposited on the entire surface of the transparent electrode 2 formed on the glass substrate 1 and patterned into a desired pattern using a sputtering method to a thickness of 500 Å or less (FIG. 2B). . Next, a photoresist 7 is coated and exposed on the first short-circuit prevention layer, and the photoresist 7 is applied only to the portion where the electrochromic layer is to be deposited on the transparent electrode.
(Figure 2C). A second short-circuit prevention layer 8 is formed on the substrate using the sputtering method again.
is formed over the entire surface to a thickness of 500 Å or more. Afterwards,
Remove the resist (so-called lift-off process)
Then, as shown in FIG. 2D, a substrate is obtained in which an insulating film with a thickness of 500 Å or less is formed on the transparent electrode where the electrochromic layer is formed, and an insulating film with a thickness of 500 Å or more is formed on the part where the electrochromic layer is not formed. It will be done. On such a substrate, an electrochromic layer made of, for example, WO 3 is patterned by mask evaporation or photoetching, and then a solid electrolyte layer made of ZrO 2 and gold (Au) are formed on top of it.
The electroluminescent element according to the present invention can be obtained by vapor-depositing or sputtering a counter electrode consisting of the following. It is shown in cross section in FIG. Table 1 shows the characteristics of the all-solid-state electrochromic display element thus obtained. As a comparative example, a conventional electrochromic display element without the first and second short-circuit prevention layers was made and its characteristics were compared. As shown in the table, providing a short-circuit prevention layer makes it possible to significantly reduce short-circuits between electrodes. In this embodiment, in which the first and second short-circuit prevention layers are provided between the electrochromic layer and the solid electrolyte layer, particularly if the first short-circuit prevention layer is too thick, the electrochromic characteristics deteriorate. This may be due to the fact that the first short-circuit prevention layer inhibits the diffusion and movement of ions. The dielectric constant of the first short-circuit prevention layer shown in Table 1 is a value at a frequency of 1 MHz of a thin film formed by sputtering and having a thickness of 5000 Å. The effect of the short-circuit prevention layer is clearly recognized in all samples. From the table, it can be seen that the higher the dielectric constant of the first short-circuit prevention layer and the lower the dielectric constant of the second short-circuit prevention layer, the less influence it has on the electrochromic properties. This is because the short-circuit prevention layer has a large capacitance and can absorb current due to exchange of ions between the electrochromic layer and the electrolyte layer due to polarized charges. On the other hand, if the dielectric constant of the second short-circuit prevention layer is high, the capacitance of the element itself will be large and the coloring/fading speed will be reduced. Example 2 In the above-mentioned example, the first short-circuit prevention layer was provided on the entire surface of the transparent electrode, but the first short-circuit prevention layer was patterned to have the structure shown cross-sectionally in FIG. 4, that is, an electrochromic layer. It can also be provided only in the parts to be laminated. Although the patterning process is increased, this is the most preferable electrically. Further, as shown in FIG. 5, it is also possible to form the first short-circuit prevention layer after first forming the second short-circuit prevention layer. As explained above in the Examples, the all-solid-state electrochromic display element according to the present invention can be said to have great practical advantages because it is easy to form and has a high manufacturing yield. [Effects of the Invention] According to the present invention, since the transparent electrode and the counter electrode are insulated by the short-circuit prevention layer made of a dense and uniform thin film, an element in which electrode short-circuits are less likely to occur can be obtained. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は全固体電気発色表示素子の従来例の断
面模式図、第2図は本発明にかかる全固体電気発
色表示素子の製造工程を示す模式図、第3図〜第
5図は本発明にかかる全固体電気発色表示素子の
断面模式図である。 1……ガラス基板、2……透明電極、3……電
気発色層、4……固体電解質、5……対向電極、
6……第1短絡防止層、7……フオトレジストパ
タン、8……第2短絡防止層。
Fig. 1 is a schematic cross-sectional view of a conventional example of an all-solid-state electrochromic display element, Fig. 2 is a schematic diagram showing the manufacturing process of an all-solid-state electrochromic display element according to the present invention, and Figs. 3 to 5 are in accordance with the present invention. 1 is a schematic cross-sectional view of an all-solid-state electrochromic display element according to the present invention. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2... Transparent electrode, 3... Electrochromic layer, 4... Solid electrolyte, 5... Counter electrode,
6... First short circuit prevention layer, 7... Photoresist pattern, 8... Second short circuit prevention layer.

Claims (1)

【特許請求の範囲】[Claims] 1 透明電極を所定の形にパタンニングした基板
上に少くとも一層の電気発色層と少くとも一層の
固体電解質層を積層形成した上に対向電極を設け
てなる全固体電気発色表示素子において、透明電
極上の電気発色層が積層される部分の膜厚500Å
以下であつてかつ電気発色層が積層されない部分
の膜厚が500Å以上である電気絶縁性の膜を該透
明電極上に形成したことを特徴とする全固体電気
発色表示素子。
1. In an all-solid-state electrochromic display element, which is formed by laminating at least one electrochromic layer and at least one solid electrolyte layer on a substrate patterned with transparent electrodes in a predetermined shape, and on which a counter electrode is provided, a transparent Film thickness of the part where the electrochromic layer is laminated on the electrode is 500 Å
1. An all-solid-state electrochromic display element, characterized in that an electrically insulating film having a thickness of 500 Å or more in a portion where the electrochromic layer is not laminated is formed on the transparent electrode.
JP20452182A 1982-11-24 1982-11-24 Whole solid-state electrochromic display element Granted JPS5994744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20452182A JPS5994744A (en) 1982-11-24 1982-11-24 Whole solid-state electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20452182A JPS5994744A (en) 1982-11-24 1982-11-24 Whole solid-state electrochromic display element

Publications (2)

Publication Number Publication Date
JPS5994744A JPS5994744A (en) 1984-05-31
JPH0449694B2 true JPH0449694B2 (en) 1992-08-12

Family

ID=16491905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20452182A Granted JPS5994744A (en) 1982-11-24 1982-11-24 Whole solid-state electrochromic display element

Country Status (1)

Country Link
JP (1) JPS5994744A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522917Y2 (en) * 1986-05-21 1993-06-11
US5176604A (en) * 1991-03-29 1993-01-05 K. K. Sakamurakikai Seisakusho Tool replacement for a multi-stage press machine
US8432603B2 (en) 2009-03-31 2013-04-30 View, Inc. Electrochromic devices
US9958750B2 (en) 2010-11-08 2018-05-01 View, Inc. Electrochromic window fabrication methods
US11865632B2 (en) 2011-12-12 2024-01-09 View, Inc. Thin-film devices and fabrication
US10802371B2 (en) 2011-12-12 2020-10-13 View, Inc. Thin-film devices and fabrication
US10295880B2 (en) 2011-12-12 2019-05-21 View, Inc. Narrow pre-deposition laser deletion
WO2016004373A1 (en) * 2014-07-03 2016-01-07 View, Inc. Narrow pre-deposition laser deletion
EP3919974A1 (en) 2011-12-12 2021-12-08 View, Inc. Thin-film devices and fabrication
US20210394489A1 (en) 2011-12-12 2021-12-23 View, Inc. Thin-film devices and fabrication

Also Published As

Publication number Publication date
JPS5994744A (en) 1984-05-31

Similar Documents

Publication Publication Date Title
JPH0449694B2 (en)
US5756367A (en) Method of making a spacer based antifuse structure for low capacitance and high reliability
JP3498190B2 (en) Manufacturing method of thin film laminated electrode
JP3076483B2 (en) Method for manufacturing metal wiring board and method for manufacturing thin film diode array
JP2002025854A (en) Thin-film capacitor
US3586533A (en) Thin film structures
JP2002116881A (en) Touch panel and method for manufacturing the same
JPH028400Y2 (en)
JP2739453B2 (en) Capacitor with fuse function and method of manufacturing the same
KR100661161B1 (en) Organic electro luminescent emitting device and the method for manufacturing the same
JPH01271728A (en) Liquid crystal display device
JPS61134786A (en) Display unit
JP3382156B2 (en) Active matrix substrate manufacturing method
JPH0846284A (en) Semiconductor laser pellet
JPH08227743A (en) Metal electrode for oxide superconductor
JP2976904B2 (en) Superconducting field effect element and method for producing the same
JPS61121471A (en) Manufacture of thin film integrating device
JPH11112045A (en) Method for forming fine pattern and fabrication of electronic device utilizing it
JPS6377150A (en) Manufacture of tft matrix
JPH10133235A (en) Wiring board and its production
JPS59198775A (en) Solar battery
JPS5998536A (en) Manufacture of semiconductor device
JPH02275417A (en) Thin film transistor for display element
JPH0273332A (en) Manufacture of liquid crystal display device
JPS603154A (en) Amplifying gate type thyristor