JPH0448649A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH0448649A JPH0448649A JP2155792A JP15579290A JPH0448649A JP H0448649 A JPH0448649 A JP H0448649A JP 2155792 A JP2155792 A JP 2155792A JP 15579290 A JP15579290 A JP 15579290A JP H0448649 A JPH0448649 A JP H0448649A
- Authority
- JP
- Japan
- Prior art keywords
- film
- conductive film
- layer
- capacitor
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 230000001590 oxidative effect Effects 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 22
- 239000011229 interlayer Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 4
- 239000003990 capacitor Substances 0.000 abstract description 19
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 12
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 10
- 229920005591 polysilicon Polymers 0.000 abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 6
- 238000000059 patterning Methods 0.000 abstract description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 4
- 239000011574 phosphorus Substances 0.000 abstract description 4
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 238000005530 etching Methods 0.000 abstract description 2
- 238000009825 accumulation Methods 0.000 abstract 3
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 230000015654 memory Effects 0.000 description 6
- 238000002955 isolation Methods 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 2
- 229910005091 Si3N Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
DI?AM (ダイナミックランダムアクセスメモリ)
の記憶セルのキャパシタの製造方法に関し。[Detailed Description of the Invention] [Summary] DI? AM (Dynamic Random Access Memory)
The present invention relates to a method for manufacturing a capacitor for a memory cell.
現状の簡単なスタック構造のまま、容量を増大させ、ソ
フトエラーの低減を目的とし。The aim is to increase capacity and reduce soft errors while maintaining the current simple stack structure.
層間絶縁膜(20)が表面に被着形成された半導体基板
(11)表面に、該半導体基板(11)表面を露出させ
るようにコンタクト窓を開口する工程と1次いで、非酸
化性雰囲気中で、該コンタクト窓を通して該半導体基板
(11)表面から該層間絶縁膜(2o)表面に延在する
ように第1層目導電膜(16A)を形成する工程と2次
いで、引き続いて非酸化性雰囲気中で、該第1層目導電
膜(16A)表面から該第1層目導電膜 (16A)が
形成されない該層間絶縁膜(20)表面にまで延在する
ように第2層目導電膜(16B)を形成する工程と1次
いで、該第2層目導電膜(16B)表面に誘電体膜(1
7)を形成する工程と。A step of opening a contact window on the surface of the semiconductor substrate (11) on which the interlayer insulating film (20) is deposited so as to expose the surface of the semiconductor substrate (11); , forming a first layer conductive film (16A) extending from the surface of the semiconductor substrate (11) to the surface of the interlayer insulating film (2o) through the contact window; Inside, a second conductive film (16A) is formed so as to extend from the surface of the first conductive film (16A) to the surface of the interlayer insulating film (20) on which the first conductive film (16A) is not formed. 16B) Next, a dielectric film (16B) is formed on the surface of the second layer conductive film (16B).
7) forming.
次いで、該誘電体膜(17)表面に、該第2層目導電W
i!(16B)と電気的に接触しないように導電膜(1
日)を形成する工程とを有するように構成する。Next, the second conductive layer W is applied to the surface of the dielectric film (17).
i! (16B) to avoid electrical contact with the conductive film (16B).
2).
本発明はDRAMの記憶セルのキャパシタの製造方法に
関する。The present invention relates to a method for manufacturing a capacitor for a DRAM memory cell.
最近の半導体メモリにおいては、高集積化のために微細
化が要求されている。In recent semiconductor memories, miniaturization is required for higher integration.
DRAMの記憶セルは、記憶容量の大規模化にともない
ビット当たりのセル面積が小さくかつ記憶保持、続出に
十分な電荷を蓄積できる容量の大きい蓄積電極の構造が
求められている。With the increase in storage capacity, DRAM memory cells are required to have a storage electrode structure that has a small cell area per bit and has a large capacity that can store enough charge for memory retention and subsequent storage.
本発明はこの要求に対応した記憶セルのキャパシタ構造
として利用できる。The present invention can be used as a capacitor structure for a memory cell that meets this requirement.
〔従来の技術〕
第2図(a)、 (b)は従来例によるキャパシタを説
明する断面図である。[Prior Art] FIGS. 2(a) and 2(b) are cross-sectional views illustrating a conventional capacitor.
図において、11は半導体基板、 12は分離酸化膜。In the figure, 11 is a semiconductor substrate, and 12 is an isolation oxide film.
13、14はソースドレイン領域、15はワードライン
(ゲー1−)、16は蓄積電極、17は誘電体膜、18
は対向電極、 19はビットラインである。13 and 14 are source and drain regions, 15 is a word line (gate 1-), 16 is a storage electrode, 17 is a dielectric film, 18
is a counter electrode, and 19 is a bit line.
図のように蓄積電極16を覆って誘電体膜17を介し対
向電極18が重ねられてキャパシタを構成している。As shown in the figure, a counter electrode 18 is stacked over the storage electrode 16 with a dielectric film 17 interposed therebetween to form a capacitor.
セル面積を小さくして、キャパシタの容量を増やすには
、蓄積電極の表面積を大きくすることが重要である。そ
のために、キャパシタはトレンチやスタックのような3
次元構造をとってキャパシタ面積を大きくシ、かつ誘電
体膜である窒化シリコン膜をその限界膜厚である60人
近くまで薄くシて容量を確保していた。In order to reduce the cell area and increase the capacitance of the capacitor, it is important to increase the surface area of the storage electrode. For this purpose, capacitors are
The capacitor area was increased by adopting a dimensional structure, and the silicon nitride film, which is a dielectric film, was thinned to close to its limit thickness of 60 mm to secure the capacitance.
従って、これ以上に容量を増加させるためには複雑なス
タック構造をとる必要がある。Therefore, in order to further increase the capacity, it is necessary to adopt a complicated stack structure.
また、第2図ら)の誘電体膜17の拡大図に示されるよ
うに、誘電体膜は例えば二酸化シリコン(SiO□)膜
17A/窒化シリコン(SiJn)膜17Bの2層構造
であるが、誘電体膜成長前に蓄積電極16上に自然酸化
膜17Nが成長しているため、その存在により容量低減
をきたしている。Furthermore, as shown in the enlarged view of the dielectric film 17 in FIG. Since the natural oxide film 17N has grown on the storage electrode 16 before the growth of the body film, its presence causes a reduction in capacity.
そこで1本発明は現状の簡単なスタック構造のまま、容
量を増大させることを目的とする。Therefore, one object of the present invention is to increase the capacity while maintaining the current simple stack structure.
上記課題の解決は1層間絶縁膜(20)が表面に被着形
成された半導体基板(11)表面に、該半導体基板(1
1)表面を露出させるようにコンタクト窓を開口する工
程と9次いで、非酸化性雰囲気中で、該コンタクト窓を
通して該半導体基板(11)表面から#g、層間絶縁膜
(20)表面に延在するように第1層目導電膜(16A
)を形成する工程と1次いで、引き続いて非酸化性雰囲
気中で、該第1層目導電膜(16A)表面から該第1層
目導電膜 (16A)が形成されない核層間絶縁膜(2
0)表面にまで延在するように第2層目導電膜(16B
)を形成する工程と1次いで、該第2層目導電膜(16
B)表面に誘電体膜(I7)を形成する工程と1次いで
、該誘電体膜(17)表面に、該第2層目導電1!(1
6B)と電気的に接触しないように導電膜(18)を形
成する工程とを有する半導体装置の製造方法により達成
される。To solve the above problem, a single interlayer insulating film (20) is deposited on the surface of a semiconductor substrate (11).
1) Opening a contact window so as to expose the surface; 9. Next, in a non-oxidizing atmosphere, extending from the surface of the semiconductor substrate (11) to the surface of the interlayer insulating film (20) through the contact window. The first layer conductive film (16A
) Next, in a non-oxidizing atmosphere, a core interlayer insulating film (2) is formed from the surface of the first conductive film (16A) on which the first conductive film (16A) is not formed.
0) The second layer conductive film (16B) extends to the surface.
) and then forming the second conductive film (16
B) Step of forming a dielectric film (I7) on the surface (1) Next, the second conductive layer (1!) is formed on the surface of the dielectric film (17). (1
6B) forming a conductive film (18) so as not to be in electrical contact with the conductive film (18).
[作用〕
本発明は蓄積電極を2層で形成し、第1層目導電膜は従
来のパターンどおりの厚さを有し2且っ同し層でピント
ライン等の他部の導電膜を同時に形成し、第2層目導電
膜は第1層目導電膜のパターンを覆って真空を破らない
で連続的ムこ第2層目導電膜と窒化シリコン膜を成長し
、窒化シリコン膜の表面を軽(酸化後1次いで対向電極
形成用の導電膜を成長し、対向電極形成用の導電膜、窒
化シリコン膜、蓄積電極の第2層目導電膜を同時にパタ
ーニングしてキャパシタを形成することにより。[Function] In the present invention, the storage electrode is formed in two layers, and the first layer conductive film has the same thickness as the conventional pattern. The second layer conductive film is grown continuously without breaking the vacuum, covering the pattern of the first layer conductive film. After oxidation, a conductive film for forming a counter electrode is grown, and a capacitor is formed by simultaneously patterning the conductive film for forming a counter electrode, the silicon nitride film, and the second layer conductive film of the storage electrode.
(1)対向電極と同時にセルフアライメントで蓄積電極
を従来パターンより大きい面積で形成するため容量が増
大する。(1) Since the storage electrode is formed in a larger area than the conventional pattern by self-alignment at the same time as the counter electrode, the capacitance increases.
(2)蓄積電極の第2層目導電膜と窒化シリコン膜を連
続成長するため、これらの層の間に自然酸化膜が生成さ
れることなく、従ってその分だけ容量が増える
ようにしたものである。(2) Since the second layer conductive film and silicon nitride film of the storage electrode are grown continuously, no natural oxide film is formed between these layers, and the capacitance increases accordingly. be.
ここで、蓄積電極を第1層目導電膜を省略して第2層目
導電膜導電膜だけで形成することも考えられるが、この
場合キャパシタ面積は、膜厚の大きい第1層目導電膜の
側面部の面積骨が低減することになる。また、ビットラ
イン等の他の配線を別工程で行わなければならず、第1
層目導電膜を省略する意義がなくなることになる。Here, it is possible to omit the first layer conductive film and form the storage electrode only with the second layer conductive film, but in this case, the capacitor area is The area of bone on the side of the body will be reduced. In addition, other wiring such as bit lines must be done in a separate process, and the
There is no point in omitting the layered conductive film.
第1図(a)〜(C)は実施例を工程順に説明する断面
図である。FIGS. 1(a) to 1(C) are cross-sectional views illustrating an embodiment in the order of steps.
第1図(a)において、半導体基板としてp型シリコン
(p−5i)基板11の素子分離領域に分離絶縁膜12
を形成し2選択トランジスタのワードライン15及びソ
ースドレイン領域13.14を形成する。In FIG. 1(a), an isolation insulating film 12 is provided in an element isolation region of a p-type silicon (p-5i) substrate 11 as a semiconductor substrate.
A word line 15 and source/drain regions 13 and 14 of the two selection transistors are formed.
その上に、二酸化シリコン(SiO□)膜20を成長し
。A silicon dioxide (SiO□) film 20 is grown thereon.
この膜にビットライン19のコンタクトホールBCと蓄
積電極接続用のストレージコンタクトホールSCを開口
する。A contact hole BC for the bit line 19 and a storage contact hole SC for connecting the storage electrode are opened in this film.
次いで、*さ2000〜4000人のポリシリコン膜(
またはポリサイド膜)を成長し、この膜をバターニング
して蓄積電極の第1層目導電膜16Aのパターンとビッ
トライン19を形成する。Next, a polysilicon film of 2,000 to 4,000 people (
A pattern of the first conductive film 16A of the storage electrode and the bit line 19 are formed by patterning this film.
次いで、基板上全面に蓄積電極の第2層目導電膜16B
として燐をドープした厚さ1000〜2000人のポリ
シリコン膜と厚さ70人の窒化シリコン(SiJ4)膜
17を真空を破らないで連続成長する。Next, a second layer conductive film 16B of the storage electrode is formed on the entire surface of the substrate.
A polysilicon film 17 doped with phosphorus and having a thickness of 1000 to 2000 thick and a silicon nitride (SiJ4) film 17 having a thickness of 70 thick are continuously grown without breaking the vacuum.
この場合、ポリシリコンの成長条件は1反応ガスとして
51g4またはSiJ、を用い、これを0.1〜Q、5
Torrに減圧した雰囲気中で基板温度をSin、の
場合で580〜650 ”C,5iz)Lの場合で36
0〜450°Cにして行う。In this case, the growth conditions for polysilicon are 51g4 or SiJ as one reaction gas, and 0.1~Q, 5
When the substrate temperature is Sin in an atmosphere reduced to Torr, the temperature is 580 to 650"C, and when the temperature is 36"
The temperature is 0 to 450°C.
また、ガスの切り換えにより次の条件で5iJ4の成長
を行う。Furthermore, 5iJ4 is grown under the following conditions by switching the gas.
5iJ4の成長条件は1反応ガスとして5iHsとNH
3,または5iHC13とNH3,または5iH2C1
,とNH,を用い、これを0.1〜0.5 Torrに
減圧した雰囲気中で基板温度を680〜800°Cにし
て行う。The growth conditions for 5iJ4 are 5iHs and NH as one reaction gas.
3, or 5iHC13 and NH3, or 5iH2C1
, and NH, in an atmosphere with a reduced pressure of 0.1 to 0.5 Torr and at a substrate temperature of 680 to 800°C.
次いで、熱酸化により、 Si3N、膜17の表面に膜
厚〜10人のSiO□を形成してSiO□/Si3N4
の2層構造の誘電体膜を形成する。Next, by thermal oxidation, a film of SiO□ of ~10 layers is formed on the surface of the Si3N film 17 to form SiO□/Si3N4.
A dielectric film having a two-layer structure is formed.
第1図ら)において、基板上全面に対向電極形成用の厚
さ1000〜2000人のポリシリコン膜18を成長し
、燐をドープする。1, et al.), a polysilicon film 18 with a thickness of 1000 to 2000 thick for forming a counter electrode is grown over the entire surface of the substrate and doped with phosphorus.
次いで、エツチングマスクとしてキャパシタ領域を覆う
レジスト膜21を形成する。Next, a resist film 21 is formed as an etching mask to cover the capacitor region.
次いで1 レジスト膜21をマスクにしてポリシリコン
膜18.誘電体膜17.蓄積電極の第2N目導電膜16
Bを同時にパターニングしてキャパシタを形成し、レジ
スト膜21を除去する。Next, using the resist film 21 as a mask, the polysilicon film 18. Dielectric film 17. Second N-th conductive film 16 of storage electrode
B is simultaneously patterned to form a capacitor, and the resist film 21 is removed.
第1図(C)はキャパシタを形成した後の断面図である
。FIG. 1(C) is a cross-sectional view after forming a capacitor.
従来例では、 Si:+L膜成長前に蓄積電極のポリシ
リコン膜上に厚さ〜10人の自然酸化膜が存在するため
容量が小さくなるが、ちなみに。In the conventional example, a natural oxide film with a thickness of ~10 μm exists on the polysilicon film of the storage electrode before the Si:+L film is grown, so the capacitance is small.
厚さ10人/70人の5xOz/Si:lNnの2層構
造の誘電体膜の場合はこの自然酸化膜により約20%の
容量低下となる。In the case of a dielectric film having a two-layer structure of 5xOz/Si:lNn with a thickness of 10/70, the capacity decreases by about 20% due to this natural oxide film.
一方、実施例では連続成長によりこのような自然酸化膜
は生成されないこと、及びキャパシタ面積の増加の2点
により、容量を増大させることができる。On the other hand, in the embodiment, the capacitance can be increased because such a natural oxide film is not generated due to continuous growth and the capacitor area is increased.
以上の一実施例では、蓄積電極(16A、 16B)を
重ね形成しているが、要は蓄積電極表面が酸化されなけ
ればよく、非酸化性(不活性)雰囲気にて処理してもよ
い。In the above embodiment, the storage electrodes (16A, 16B) are stacked, but the point is that the surface of the storage electrodes does not need to be oxidized, and may be treated in a non-oxidizing (inert) atmosphere.
以上説明したように本発明によれば、現状の簡単なスタ
ンク構造のまま1容量を増大させることができる。As explained above, according to the present invention, the capacity can be increased with the current simple tank structure.
この結果、 DRAMの放射線によるソフトエラーが低
減できる。As a result, soft errors caused by radiation in the DRAM can be reduced.
第1図(a)〜(C)は実施例を工程順に説明する断面
図である。
第2図(a)、 (b)は従来例によるキャパシタを説
明する断面図である。
図おいて
11は半導体基板。
12は分離酸化膜。
13、14はソースドレイン領域。
15はワードライン(ゲート)。
16は蓄積電極。
16八は蓄積電極の第1層目導電膜。
16Bは蓄積電極の第2層目導電膜。
17は誘電体膜。
18は対向電極。
19はビットライン。
20は層間絶縁膜
実砲4夕)の順面図
ZI図FIGS. 1(a) to 1(C) are cross-sectional views illustrating an embodiment in the order of steps. FIGS. 2(a) and 2(b) are cross-sectional views illustrating a conventional capacitor. In the figure, 11 is a semiconductor substrate. 12 is an isolation oxide film. 13 and 14 are source and drain regions. 15 is a word line (gate). 16 is a storage electrode. 168 is the first layer conductive film of the storage electrode. 16B is the second layer conductive film of the storage electrode. 17 is a dielectric film. 18 is a counter electrode. 19 is the bit line. 20 is the front view ZI diagram of the interlayer insulation film actual gun 4)
Claims (1)
(11)表面に、該半導体基板(11)表面を露出させ
るようにコンタクト窓を開口する工程と、次いで、非酸
化性雰囲気中で、該コンタクト窓を通して該半導体基板
(11)表面から該層間絶縁膜(20)表面に延在する
ように第1層目導電膜(16A)を形成する工程と、 次いで、引き続いて非酸化性雰囲気中で、該第1層目導
電膜(16A)表面から該第1層目導電膜(16A)が
形成されない該層間絶縁膜(20)表面にまで延在する
ように第2層目導電膜(16B)を形成する工程と、 次いで、該第2層目導電膜(16B)表面に誘電体膜(
17)を形成する工程と、 次いで、該誘電体膜(17)表面に、該第2層目導電膜
(16B)と電気的に接触しないように導電膜(18)
を形成する工程 とを有することを特徴とする半導体装置の製造方法。[Claims] A step of opening a contact window in the surface of the semiconductor substrate (11) on which the interlayer insulating film (20) is deposited so as to expose the surface of the semiconductor substrate (11); forming a first conductive film (16A) in a non-oxidizing atmosphere so as to extend from the surface of the semiconductor substrate (11) to the surface of the interlayer insulating film (20) through the contact window; Subsequently, in a non-oxidizing atmosphere, a first conductive film (16A) is formed so as to extend from the surface of the first conductive film (16A) to the surface of the interlayer insulating film (20) on which the first conductive film (16A) is not formed. A step of forming a second conductive film (16B), and then a dielectric film (16B) is formed on the surface of the second conductive film (16B).
17), and then a conductive film (18) is formed on the surface of the dielectric film (17) so as not to be in electrical contact with the second layer conductive film (16B).
1. A method of manufacturing a semiconductor device, the method comprising: forming a semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2155792A JPH0448649A (en) | 1990-06-14 | 1990-06-14 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2155792A JPH0448649A (en) | 1990-06-14 | 1990-06-14 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0448649A true JPH0448649A (en) | 1992-02-18 |
Family
ID=15613535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2155792A Pending JPH0448649A (en) | 1990-06-14 | 1990-06-14 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0448649A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0488665A (en) * | 1990-07-31 | 1992-03-23 | Nec Corp | Semiconductor device provided with charge storage capacitor and manufacture thereof |
-
1990
- 1990-06-14 JP JP2155792A patent/JPH0448649A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0488665A (en) * | 1990-07-31 | 1992-03-23 | Nec Corp | Semiconductor device provided with charge storage capacitor and manufacture thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3759859B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2673615B2 (en) | Integrated circuit manufacturing method and memory cell | |
US4882649A (en) | Nitride/oxide/nitride capacitor dielectric | |
US5918118A (en) | Dual deposition methods for forming contact metallizations, capacitors, and memory devices | |
JPH05110014A (en) | Manufacture of semiconductor device | |
US5396094A (en) | Semiconductor memory device with a capacitor having a protection layer | |
US5583356A (en) | Connector arrangement for a semiconductor memory device | |
US5742472A (en) | Stacked capacitors for integrated circuit devices and related methods | |
JPH02226754A (en) | Capacitor for semiconductor integrated circuit | |
US6479364B2 (en) | Method for forming a capacitor for semiconductor devices with diffusion barrier layer on both sides of dielectric layer | |
JP2003068993A (en) | Semiconductor device and its manufacturing method | |
JPH0563156A (en) | Manufacture of semiconductor device | |
US20020100924A1 (en) | Method of forming dram circuitry | |
US20030173613A1 (en) | Memory-storage node and the method of fabricating the same | |
JP2002124649A (en) | Semiconductor integrated circuit device and the manufacturing method therefor | |
JPH09232542A (en) | Semiconductor device and manufacture thereof | |
JP2002190580A (en) | Semiconductor device and manufacturing method therefor | |
JP2001053249A (en) | Semiconductor device and manufacture thereof | |
JPH0448649A (en) | Manufacture of semiconductor device | |
JP2826717B2 (en) | Method for manufacturing capacitor of semiconductor device | |
US6489198B2 (en) | Semiconductor device and method of manufacturing the same | |
KR100464938B1 (en) | A method for forming capacitor using polysilicon plug structure in semiconductor device | |
JP3039425B2 (en) | Capacitive element and method of manufacturing the same | |
JP4485701B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2891562B2 (en) | Semiconductor device |