JPH0448055A - High strength heat treatment for titanium alloy - Google Patents

High strength heat treatment for titanium alloy

Info

Publication number
JPH0448055A
JPH0448055A JP15929090A JP15929090A JPH0448055A JP H0448055 A JPH0448055 A JP H0448055A JP 15929090 A JP15929090 A JP 15929090A JP 15929090 A JP15929090 A JP 15929090A JP H0448055 A JPH0448055 A JP H0448055A
Authority
JP
Japan
Prior art keywords
alloy
heat treatment
titanium alloy
strength
strength heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15929090A
Other languages
Japanese (ja)
Inventor
Akihiro Suzuki
昭弘 鈴木
Tomohito Iikubo
知人 飯久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP15929090A priority Critical patent/JPH0448055A/en
Publication of JPH0448055A publication Critical patent/JPH0448055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the strength of a Ti alloy while securing its toughness by subjecting the above alloy with the prescribed composition to hot forming and then to aging treatment in a specific temp. region. CONSTITUTION:A Ti alloy having a composition consisting of 4.50-5.50% Al, 1.50-2.50% Sn, 1.50-2.50% Zr, 3.50-4.50% Mo, 3.50-4.50% Cr, <=0.15% O, and the balance essentially Ti is refined and cast into an ingot. This ingot is formed at 650-1,200 deg.C and then subjected to aging treatment at 350<600 deg.C. Further, it is desirable that, after the above forming, a stage of solution treatment at 790-810 deg.C is added prior to aging treatment. By this method, the strength of the Ti alloy can be improved while securing its toughness.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、チタン合金とくに−r; −51−2Sn 
−22r −4M0−4Cr合金の熱処理方法の改良に
関する。 この熱処理は、従来より高い強度をこの合金
に与える。 [従来の技術] Ti−51)−2Sn −2Zr −4Mo −4Cr
合金は、AMS4995の番号で規格化された代表的な
近β型Ti合金であって、主として航空機用ファンディ
スク、ブレードなどの製造に使用されている。 従来、この合金の加工および熱処理は、熱間または温間
の成形加工を行なったものを800℃近辺の温度で溶体
化処理し、続いて600〜650℃の温度、代表的には
635℃で時効硬化させるという工程に従っていた。 航空機部品に関しては、軽量化は絶えざる要求である。  この材料についても、靭性を確保した上で強度を向上
させ、それによって−層軽量の部品をつくることが望ま
しい。 [発明が解決しようとする課題] 本発明の目的は、上記チタン合金に関するこの要望をみ
たし、従来の溶体化時効処理材より高強度の材料を与え
る熱処理方法を実現することにある。 [課題を解決するための手段] 本発明のチタン合金の高強度熱処理法はAj:4.50
〜5.50%、Sn :1.50〜2.50%、Zr 
:1.50〜2.50%、MO:3゜50〜4.50%
、Cr :3.50〜4.50%およびO:0.15%
以下を含有し、残部が実質的にTiからなるチタン合金
を、650〜1200℃の温度領域で成形加工したのち
、350℃以上600℃未満の温度領域で時効処理する
ことからなる。 上記の処理法において、成形加工の後、時効処理に先立
って、790〜810℃の温度で溶体化処理を行なう工
程を加えることもできる。
[Industrial Application Field] The present invention is directed to titanium alloys, particularly -r; -51-2Sn.
-22r -4M0-4Cr alloy heat treatment method improvement. This heat treatment gives the alloy higher strength than previously available. [Prior art] Ti-51)-2Sn-2Zr-4Mo-4Cr
The alloy is a typical near-β type Ti alloy standardized by the number AMS4995, and is mainly used for manufacturing fan disks, blades, etc. for aircraft. Traditionally, processing and heat treatment of this alloy involves hot or warm forming followed by solution treatment at temperatures around 800°C, followed by processing at temperatures of 600-650°C, typically 635°C. The process of age hardening was followed. When it comes to aircraft parts, weight reduction is a constant requirement. It is also desirable to improve the strength of this material while ensuring its toughness, thereby producing lighter parts. [Problems to be Solved by the Invention] An object of the present invention is to meet the above-mentioned demands regarding titanium alloys and to realize a heat treatment method that provides a material with higher strength than conventional solution-aged materials. [Means for solving the problem] The high-strength heat treatment method for titanium alloy of the present invention has Aj: 4.50.
~5.50%, Sn:1.50~2.50%, Zr
:1.50~2.50%, MO:3゜50~4.50%
, Cr: 3.50-4.50% and O: 0.15%
A titanium alloy containing the following, with the remainder substantially consisting of Ti, is formed in a temperature range of 650 to 1200°C, and then subjected to aging treatment in a temperature range of 350°C or higher and lower than 600°C. In the above treatment method, a step of solution treatment at a temperature of 790 to 810° C. may be added after the molding process and prior to the aging treatment.

【作 用】[For use]

本発明で熱処理の対象とするチタン合金は、前記のよう
にAMS4995として規格化されたものとほとんど同
じ組成であるが、0含有量だけは上限を0.15%(規
格は0.13%)に拡張しである。 これは、強度の向
上を目的としたからであるが、O含有量の増大は靭性を
低下させるので、妥協点として0.15%をえらんだわ
けである。 熱間加工の下限温度を650℃としたのは、これより低
い温度ではチタン合金の変形能が低く、変形抵抗も大で
あって加工が困難だからである。 一方、高温で加工すると回復再結晶現象が起って加工歪
みが残留しにくくなる傾向があり、直接時効材では時効
効果が薄れる。 高温はまた、結晶粒の粗大化を招き、
時効後の延性が低下する。 時効硬化は、従来600〜650℃で実施されていたの
に対し、本発明ではそれより低温の350℃以上600
℃未満を採用した。 下限の350℃は、これに達しな
い低温では時効に過大な時間を要して実際的でないとい
う理由からであり、上限の600℃は、過時効により強
度が低下し、かえって熱処理の効果が失なわれるのを避
けるためである。 溶体化処理の温度790〜810℃は、従来から採用さ
れていた条件と同じである。 790℃未満では合金成
分の溶は込みが悪く、810℃超過ではα粒が粗く不均
一に分散するようになって靭性が低下し、その結果、割
れが生じやすくなる。
The titanium alloy to be heat-treated in the present invention has almost the same composition as that standardized as AMS4995 as mentioned above, except for the 0 content, which has an upper limit of 0.15% (standard is 0.13%). It is expanded to. This is because the purpose was to improve strength, but since increasing the O content reduces toughness, 0.15% was chosen as a compromise. The reason why the lower limit temperature for hot working is set at 650° C. is that at temperatures lower than this, the titanium alloy has low deformability and high deformation resistance, making processing difficult. On the other hand, when processed at high temperatures, a recovery recrystallization phenomenon occurs, making it difficult for processing strains to remain, and in directly aged materials, the aging effect is weakened. High temperatures also lead to coarsening of grains,
Ductility decreases after aging. Age hardening was conventionally carried out at 600 to 650°C, but in the present invention, age hardening was carried out at a temperature of 350°C or higher, 600°C or lower.
The temperature below ℃ was adopted. The lower limit of 350°C is because aging takes an excessively long time at lower temperatures, which is impractical, and the upper limit of 600°C is because the strength decreases due to over-aging, and the effect of heat treatment is lost. This is to avoid being abused. The solution treatment temperature of 790 to 810°C is the same as the conditions conventionally employed. If the temperature is lower than 790°C, the melt penetration of the alloy components is poor, and if the temperature exceeds 810°C, the α grains become coarse and unevenly dispersed, resulting in a decrease in toughness and, as a result, cracks are likely to occur.

【実施例1】 真空アーク炉溶解により下記の組成のチタン合金を溶製
して、100Kgのインゴットに鋳造した。 Ti −4,89AJ! −1,95Sn −1,80
Zr−4,05MO−3,75Or −0,06(0)
このインゴットを1100℃で分塊して直径65anの
丸棒とし、1000℃の熱間圧延により、19#Iの線
材を得た。 圧延終止温度は約700℃である。 線材を、その一部は800″CX4時間−水冷の条件で
溶体化処理し、一部は溶体化を省略してそのまま、35
0〜700℃の範囲内の種々の温度に8時間加熱−空冷
の条件で時効処理した。 各供試材について、引張り試験を行なった。 0.2%耐力および引張り強さを第1図に、伸びおよび
絞りを第2図に示す。 図のデータから、低温時効処理により約160Kgf 
/馴2の引張強さを実現できたことがわかる。 この値は、従来この材料で標準的な成績とされていた1
 20 K9 f /1rvn2とくらべて、明らかな
向上といえる。 低温時効は直接時効材で0.2%耐力
の向上に有効であり、最大的150 K’j f /s
2に達する。
[Example 1] A titanium alloy having the following composition was produced by melting in a vacuum arc furnace and cast into an ingot of 100 kg. Ti-4,89AJ! -1,95Sn -1,80
Zr-4,05MO-3,75Or-0,06(0)
This ingot was bloomed at 1100°C to form a round bar with a diameter of 65 ann, and hot rolled at 1000°C to obtain a 19#I wire rod. The rolling end temperature is about 700°C. Some of the wire rods were solution-treated at 800"CX for 4 hours and water-cooled, and some were left as they were without solution treatment.
Aging treatment was performed under conditions of heating and air cooling for 8 hours at various temperatures within the range of 0 to 700°C. A tensile test was conducted on each sample material. The 0.2% proof stress and tensile strength are shown in FIG. 1, and the elongation and reduction of area are shown in FIG. From the data in the figure, approximately 160Kgf is obtained by low-temperature aging treatment.
It can be seen that a tensile strength of 2/2 was achieved. This value is 1, which was previously considered to be the standard performance for this material.
It can be said that this is a clear improvement compared to 20 K9 f /1rvn2. Low-temperature aging is effective in improving yield strength by 0.2% in directly aged materials, with a maximum yield strength of 150 K'j f/s.
Reach 2.

【実施例2】 真空アーク炉溶解により下記の組成のチタン合金を溶製
して、1100Nのインゴットに鋳造した。 このインゴットを1100℃で分塊して、直径65!r
I!nの丸棒にした。 Ti −4,89AI−1,95Sn −1,80Zr
−4,05MO−3,75Cr −0,06(0)この
丸棒を、表に示す条件で熱間圧延して直径19#lの線
材とした。 各線材を、やはり表に示す条件で熱処理し
たのち、 引張り試験を行なった。 その結果を、 あわせて表に示す。 [発明の効果】 本発明の処理方法に従えば、AM34995タイプのチ
タン合金を、その靭性を確保した上で、強度を向上させ
ることができる。 それにより、機械部品がいっそう軽
量化でき、また高性能化(より高速の回転が可能になる
など)が実現する。 従って本発明は、前記したような航空機用部品のほか、
自動車の部品たとえばコンロッド、バルブ、バネなどの
製作に寄与する。
Example 2 A titanium alloy having the following composition was produced by melting in a vacuum arc furnace and cast into a 1100N ingot. This ingot was bloomed at 1100℃ and the diameter was 65! r
I! I made it into a round bar of n. Ti-4,89AI-1,95Sn-1,80Zr
-4,05MO-3,75Cr -0,06(0) This round bar was hot rolled under the conditions shown in the table to form a wire rod with a diameter of 19#l. After each wire rod was heat treated under the conditions shown in the table, a tensile test was conducted. The results are also shown in the table. [Effects of the Invention] According to the treatment method of the present invention, it is possible to improve the strength of AM34995 type titanium alloy while ensuring its toughness. As a result, mechanical parts can be made even lighter and have higher performance (such as being able to rotate at higher speeds). Therefore, the present invention is applicable to aircraft parts as described above, as well as
Contributes to the production of automobile parts such as connecting rods, valves, and springs.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の実施例のデータであって、第1
図は種々の時効温度における0、2%耐力および引張強
ざ、第2図は同じく種々の時効温度における伸びおよび
絞りをそれぞれ示すグラフである。 特許出願人   大同特殊鋼株式会社 代理人  弁理士  須 賀 総 夫 第1!!1
All drawings are data of embodiments of the present invention, and the first
The figure is a graph showing 0 and 2% yield strength and tensile strength at various aging temperatures, and FIG. 2 is a graph showing elongation and reduction of area at various aging temperatures. Patent Applicant Daido Steel Co., Ltd. Agent Patent Attorney Souo Suga No. 1! ! 1

Claims (2)

【特許請求の範囲】[Claims] (1)Al:4.50〜5.50%、Sn:1.50〜
2.50%、Zr:1.50〜2.50%、Mo:3.
50〜4.50%、Cr:3.50〜4.50%および
O:0.15%以下を含有し、残部が実質的にTiから
なるチタン合金を、650〜1200℃の温度領域で成
形加工したのち、350℃以上600℃未満の温度領域
で時効処理することからなるチタン合金の高強度熱処理
法。
(1) Al: 4.50~5.50%, Sn: 1.50~
2.50%, Zr: 1.50-2.50%, Mo: 3.
A titanium alloy containing 50 to 4.50% Cr, 3.50 to 4.50% Cr, and 0.15% or less O, with the remainder substantially consisting of Ti, is formed in a temperature range of 650 to 1200°C. A high-strength heat treatment method for titanium alloys, which comprises aging treatment in a temperature range of 350°C or more and less than 600°C after processing.
(2)成形加工の後、時効処理に先立って、790〜8
10℃の温度で溶体化処理を行なう工程を加えた請求項
1の高強度熱処理法。
(2) After molding and prior to aging treatment, 790 to 8
The high-strength heat treatment method according to claim 1, further comprising a step of performing solution treatment at a temperature of 10°C.
JP15929090A 1990-06-18 1990-06-18 High strength heat treatment for titanium alloy Pending JPH0448055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15929090A JPH0448055A (en) 1990-06-18 1990-06-18 High strength heat treatment for titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15929090A JPH0448055A (en) 1990-06-18 1990-06-18 High strength heat treatment for titanium alloy

Publications (1)

Publication Number Publication Date
JPH0448055A true JPH0448055A (en) 1992-02-18

Family

ID=15690566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15929090A Pending JPH0448055A (en) 1990-06-18 1990-06-18 High strength heat treatment for titanium alloy

Country Status (1)

Country Link
JP (1) JPH0448055A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219734A (en) * 2005-02-14 2006-08-24 Kobe Steel Ltd ULTRAHIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY HAVING ADEQUATE DUCTILITY
JP4834182B1 (en) * 2011-02-10 2011-12-14 株式会社ベクタークラフト Surfboard holder
CN108913948A (en) * 2018-08-03 2018-11-30 燕山大学 A kind of high-strength titanium alloy and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219734A (en) * 2005-02-14 2006-08-24 Kobe Steel Ltd ULTRAHIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY HAVING ADEQUATE DUCTILITY
JP4507094B2 (en) * 2005-02-14 2010-07-21 株式会社神戸製鋼所 Ultra high strength α-β type titanium alloy with good ductility
JP4834182B1 (en) * 2011-02-10 2011-12-14 株式会社ベクタークラフト Surfboard holder
CN108913948A (en) * 2018-08-03 2018-11-30 燕山大学 A kind of high-strength titanium alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3959766B2 (en) Treatment method of Ti alloy with excellent heat resistance
US4889170A (en) High strength Ti alloy material having improved workability and process for producing the same
EP0683242B1 (en) Method for making titanium alloy products
JP3638188B2 (en) Manufacturing method of high strength aluminum alloy extruded tube for front fork outer tube of motorcycle with excellent stress corrosion cracking resistance
US11078563B2 (en) TiAl alloy and method of manufacturing the same
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
JPH07116577B2 (en) Method of manufacturing titanium alloy member and member manufactured by the method
JP7401760B2 (en) Manufacturing method of α+β type titanium alloy bar material
JP3873313B2 (en) Method for producing high-strength titanium alloy
JP7233659B2 (en) Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
US5964967A (en) Method of treatment of metal matrix composites
JPH06116691A (en) Method for heat-treating ti-al intermetallic compound series ti alloy
JP4442004B2 (en) Method for producing heat-resistant Ti alloy
JPH0448055A (en) High strength heat treatment for titanium alloy
JP3362428B2 (en) Processing method of hot-formed product of β-type titanium alloy
JP2541042B2 (en) Heat treatment method for (α + β) type titanium alloy
JPH0565601A (en) Austenitic stainless steel having high strength and high fatigue strength and its production
JPH07150316A (en) Manufacture of (alpha+beta) type ti alloy forged material
JPH08134615A (en) Production of high strength titanium alloy excellent in characteristic of balance of mechanical property
JPH03240939A (en) Manufacture of high ductility and high toughness titanium alloy
JP3334246B2 (en) Method for producing TiAl-based thermostat forged alloy
JPH08232051A (en) Production of aluminum alloy forged product
Green et al. The effect of beta processing on properties of titanium alloys
JP2001011557A5 (en)