JPH0447850B2 - - Google Patents
Info
- Publication number
- JPH0447850B2 JPH0447850B2 JP58080316A JP8031683A JPH0447850B2 JP H0447850 B2 JPH0447850 B2 JP H0447850B2 JP 58080316 A JP58080316 A JP 58080316A JP 8031683 A JP8031683 A JP 8031683A JP H0447850 B2 JPH0447850 B2 JP H0447850B2
- Authority
- JP
- Japan
- Prior art keywords
- multiplier
- addition
- bit
- multiplication
- cumulative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001186 cumulative effect Effects 0.000 claims description 13
- 238000009825 accumulation Methods 0.000 claims description 10
- 230000000295 complement effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/53—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
- G06F7/5306—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with row wise addition of partial products
- G06F7/5312—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with row wise addition of partial products using carry save adders
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/499—Denomination or exception handling, e.g. rounding or overflow
- G06F7/49994—Sign extension
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は累積機能を有した乗算器の構成に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the configuration of a multiplier with an accumulation function.
従来例の構成とその問題点
入力信号が2の補数表示の2進信号の場合、被
乗数Xと乗数Yの乗算回路は第1図に示す構成で
実現できる。Conventional Structure and Problems When the input signal is a binary signal expressed in two's complement, a multiplication circuit for the multiplicand X and the multiplier Y can be realized with the structure shown in FIG.
2の補数表示の場合の乗算では、入力信号の被
乗数Xと乗数Yは(1),(2)式で表わされ、積Pは(3)
式のようになる。 In multiplication in two's complement representation, the multiplicand X and multiplier Y of the input signal are expressed by equations (1) and (2), and the product P is expressed as (3)
It becomes like the formula.
X=−2n-1・Xs+o-1
〓i=1
2i-1Xi ……(1)
Y=−2m-1・Ys+n-1
〓j=1
2j-1Yj ……(2)
P=X・Y=2n+m-2・Xs・Ys+o-1
〓i=1
n-1
〓j=1
(Xi・Yj)2i+j-2
−Xs・n-1
〓j=1
2j-1・Yj・2n-1−Ys・o-1
〓i=1
2i-1・Xi・2m-1 ……(3)
ここで、nは被乗数Xのビツト語長、mは乗数
Yのビツト語長、XsおよびYsは符号ビツト、Xi
およびYjは各数値ビツトを表す。 X=-2 n-1・X s + o-1 〓 i=1 2 i-1 X i ...(1) Y=-2 m-1・Y s + n-1 〓 j=1 2 j- 1 Y j ……(2) P=X・Y=2 n+m-2・X s・Y s + o-1 〓 i=1 n-1 〓 j=1 (X i・Y j )2 i +j-2 −X s・n-1 〓 j=1 2 j-1・Y j・2 n-1 −Y s・o-1 〓 i=1 2 i-1・X i・2 m-1 ...(3) Here, n is the bit word length of the multiplicand X, m is the bit word length of the multiplier Y, X s and Y s are the sign bits, and X i
and Y j represent each numerical bit.
(3)式に示す演算において、第2項はアレイ方式
で演算できるが、第1項、第3項および第4項の
補正が必要となり、回路構成が複雑となる。そこ
で、式(3)を次式のように変形し、回路構成を簡単
にする提案がなされている。 In the calculation shown in equation (3), the second term can be calculated using an array method, but the first, third, and fourth terms must be corrected, making the circuit configuration complicated. Therefore, a proposal has been made to simplify the circuit configuration by transforming equation (3) as shown below.
P=(Xs・Ys−Xs−Ys)・2n+m-2+o-1
〓i=1
n-1
〓j=1
(Xi・Yj)
・2i+j-2+(Xs・n-1
〓j=1
・2j-1・j)2n-1
+(Ys・o-1
〓i=1
・2i-1・i)・2n-1Xs・2n-1+Ys・2m-1 ……(4)
(4)式において、第1項の(Xs・Ys−Xs−Ys)
はXsとYsとの間のOR操作で求まるので、(4)式の
乗算の過程を示すと以下のようになる。 P=(X s・Y s −X s −Y s )・2 n+m-2 + o-1 〓 i=1 n-1 〓 j=1 (X i・Y j ) ・2 i+j- 2 + (X s・n-1 〓 j=1・2 j-1・j ) 2 n-1 + (Y s・o-1 〓 i=1・2 i-1・i )・2 n-1 X s・2 n-1 +Y s・2 m-1 ...(4) In equation (4), the first term (X s・Y s −X s −Y s )
is determined by the OR operation between X s and Y s , so the multiplication process of equation (4) is shown below.
ここで、Xs+YsはXsとYsのOR操作を示し、
Psは積出力の符号ビツトを示すものである。この
(4)式の乗算を行うための回路構成が第1図であ
る。 Here, X s + Y s indicates the OR operation of X s and Y s ,
Ps indicates the sign bit of the product output. this
FIG. 1 shows the circuit configuration for performing the multiplication of equation (4).
部分積の加算には、回路構成に規則制が保た
れ、高速演算を行えるキヤリーセーブ方式を用い
ている。 For the addition of partial products, a carry-save method is used, which maintains regularity in the circuit configuration and allows high-speed calculations.
同図において、X1〜Xsは被乗数Xの各ビツト
の入力端子、Y1〜Ysは乗数Yの各ビツトの入力
端子、P1〜Psは積Pの各ビツトの出力端子であ
る。但し、Xs,Ys,PsはそれぞれX,Y,Pの
符号ビツトであり、X1〜X3,Y1〜Y3,P1〜P6は
それぞれX,Y,Pの数値ビツトである。101
〜106は第2図に示すANDゲート、107は
ORゲートである。108〜110は第3図に示
すANDゲート301と半加算器302で構成さ
れるブロツク、111〜116は第4図に示す
ANDゲート401と全加算器402で構成され
るブロツク、117〜120は全加算器である。
121〜126はインバータであり、被乗数Xの
符号ビツトXsと乗数Yの数値ビツト(Y1〜Y3)
との部分積を生成する場合、Y1〜Y3を反転し、
乗数Yの符号ビツトYsと被乗数Xの数値ビツト
(X1〜X3)との部分積を生成する場合、X1〜X3
を反転すると共に、XsとYsをP4に対応する桁に
加算し、XsとYsのOR出力をPsに対応する桁に加
算することにより、前述の乗算過程で示す2の補
数表示の場合の被乗数と乗数の乗算が行える。こ
こで、符号ビツトの計算を行う加算器120の桁
上げ信号127は積出力P1〜Psには影響しない
ので、無効信号と見なしている。 In the figure, X 1 to X s are input terminals for each bit of the multiplicand X, Y 1 to Y s are input terminals for each bit of the multiplier Y, and P 1 to P s are output terminals for each bit of the product P. . However, X s , Y s , and P s are sign bits of X, Y, and P, respectively, and X 1 to X 3 , Y 1 to Y 3 , and P 1 to P 6 are numerical bits of X, Y, and P, respectively. It is. 101
〜106 is the AND gate shown in FIG. 2, and 107 is the AND gate shown in FIG.
It is an OR gate. 108 to 110 are blocks composed of an AND gate 301 and a half adder 302 shown in FIG. 3, and 111 to 116 are shown in FIG. 4.
Blocks 117 to 120 consisting of an AND gate 401 and a full adder 402 are full adders.
121 to 126 are inverters, which input the sign bit Xs of the multiplicand X and the numerical value bits (Y 1 to Y 3 ) of the multiplier Y.
If you want to generate a partial product with , invert Y 1 ~ Y 3 and
When generating a partial product between the sign bit Y s of the multiplier Y and the numerical bits ( X 1 to X 3 ) of the multiplicand X,
By inverting , adding X s and Y s to the digit corresponding to P 4 , and adding the OR output of X s and Y s to the digit corresponding to P s , the 2 The multiplicand and multiplier can be multiplied in complement representation. Here, the carry signal 127 of the adder 120 that calculates the sign bit does not affect the product outputs P 1 to P s and is therefore regarded as an invalid signal.
この様な2の補数の乗算器に累積機能を付加す
る場合には、第5図に示すように、第1図に示す
乗算回路に加算器を1段付加することにより実現
できる。第5図において501は第1図に示す2
の補数乗算回路である。502〜511は全加算
器、512〜521はラツチ回路であり、〜累積
演算を行つている。」を512〜521は累積乗
算結果を記憶する手段を構成するラツチ回路であ
り、ラツチ回路512〜521に保持されている
一回前の演算結果を加算器502〜511に入力
する手段を備えることにより、乗算回路501の
乗算出力と一回前の演算結果を加算器502〜5
11で加算し、累積演算を行つている。ここで加
算器509〜511は累積加算を行うためのビツ
ト幅拡張用である。又、加算器120の出力を加
算器508〜511に加えているのは、2の補数
信号のビツト幅を合せるためである。P1〜Psは
出力信号であり、Psは符号ビツトである。 When adding an accumulation function to such a two's complement multiplier, it can be realized by adding one stage of an adder to the multiplier circuit shown in FIG. 1, as shown in FIG. In Fig. 5, 501 is 2 shown in Fig. 1.
This is a complement multiplication circuit. Full adders 502 to 511 and latch circuits 512 to 521 perform accumulation operations. '' 512 to 521 are latch circuits constituting means for storing cumulative multiplication results, and are provided with means for inputting the previous operation results held in the latch circuits 512 to 521 to the adders 502 to 511. As a result, the multiplication output of the multiplication circuit 501 and the previous calculation result are added to the adders 502 to 5.
11 and performs an accumulation operation. Here, adders 509 to 511 are used to expand the bit width for cumulative addition. Furthermore, the reason why the output of adder 120 is added to adders 508 to 511 is to match the bit widths of the two's complement signals. P 1 -P s are the output signals, and P s is the sign bit.
このように累積加算は、乗算回路の出力に加算
器を1段付加することにより行われるが、演算を
さらに高速に行う場合一般にCLA(Carry Look
Ahead)回路が用いられる。 Cumulative addition is performed by adding one stage of adder to the output of the multiplier circuit, but if the calculation is to be performed even faster, CLA (Carry Look
Ahead) circuit is used.
このCLA回路は桁上げ信号の伝搬に最も時間
を要する部分に用いられるものであり、乗算回路
においては、桁上げ信号が横方向に転送する部分
に用いられ、第5図においては、加算器117〜
120で構成される加算段と、加算器502〜5
11で構成される加算段にCLAを用いれば演算
を高速に行うことができる。 This CLA circuit is used in the part where it takes the longest time to propagate the carry signal, and in the multiplication circuit, it is used in the part where the carry signal is transferred in the horizontal direction, and in FIG. ~
120 and adders 502 to 5
If CLA is used in the addition stage composed of 11, calculations can be performed at high speed.
しかしながら、CLAは回路規模の大きなもの
であり、このCLAを加算段の2段について付加
することは回路が複雑となり、又消費電力も大き
くなり、集積回路化するには好ましくない。 However, CLA has a large circuit scale, and adding this CLA to two adder stages complicates the circuit and increases power consumption, which is not preferable for integrated circuit implementation.
発明の目的
本発明はこのような従来の問題に鑑み、回路構
成が簡単で高速演算に適した累積機能を有する乗
算器を提供することを目的とする。OBJECTS OF THE INVENTION In view of these conventional problems, it is an object of the present invention to provide a multiplier with a simple circuit configuration and an accumulation function suitable for high-speed calculations.
発明の構成
本発明は、累積加算用の加算器段を乗算用加算
器段の中間に設けることにより、CLAを1段付
加するだけで高速演算を可能とするものである。Structure of the Invention According to the present invention, by providing an adder stage for cumulative addition in the middle of an adder stage for multiplication, high-speed calculation is possible by simply adding one stage of CLA.
実施例の説明
第6図は本発明の実施例を示すものであり、説
明を容易にするために第1図と共通の構成要素の
番号は第1図と同じにしてある。DESCRIPTION OF THE EMBODIMENT FIG. 6 shows an embodiment of the present invention, and for ease of explanation, the numbers of the components common to those in FIG. 1 are the same as in FIG. 1.
X1〜Xsは被乗数Xの各ビツトの入力端子、Y1
〜Ysは乗数Yの各ビツトの入力端子であり、Xs,
Ysは符号ビツト、X1〜X3およびY1〜Y3はそれぞ
れ数値ビツトである。 X 1 to X s are input terminals for each bit of multiplicand X, Y 1
~ Ys is the input terminal for each bit of the multiplier Y, and Xs ,
Y s is a sign bit, and X 1 -X 3 and Y 1 -Y 3 are each numerical bits.
101〜106はANDゲート、107はORゲ
ートである。108〜110はANDゲートと半
加算器で構成されるブロツク、111〜116は
ANDゲートと全加算器で構成されるブロツク、
117〜120は全加算器、121〜126はイ
ンバータであり、第1図と同一構成である。60
2〜611は累積加算用の全加算器である。図に
示すように、全加算器117〜120で構成され
る加算段と114〜116で構成される加算段の
間に挿入し、ラツチ回路615〜624(累積乗
算結果を記憶する手段)に保持されている一回前
の演算結果を入力する手段を備えることにより累
算演算を行う。 101 to 106 are AND gates, and 107 is an OR gate. 108 to 110 are blocks composed of AND gates and half adders, and 111 to 116 are blocks composed of AND gates and half adders.
A block consisting of an AND gate and a full adder,
Full adders 117 to 120 and inverters 121 to 126 have the same configuration as in FIG. 1. 60
2 to 611 are full adders for cumulative addition. As shown in the figure, it is inserted between the addition stage composed of full adders 117 to 120 and the addition stage composed of full adders 114 to 116, and held in latch circuits 615 to 624 (means for storing cumulative multiplication results). The cumulative calculation is performed by providing means for inputting the result of the previous calculation.
このような構成とすることにより、第1図にお
いて説明した無効信号と見なしていた符号ビツト
の計算を行う加算器の桁上げ信号が上位桁へ加算
されてしまう。このため本発明においては次のよ
うにこの無効信号を補償している。無効信号は下
位7ビツト目から8ビツト目へ桁上げ信号として
入力される。したがつて次のような補償信号を加
えることにより補償することができる。 With such a configuration, the carry signal of the adder for calculating the sign bit, which was considered to be an invalid signal as explained in FIG. 1, is added to the upper digits. Therefore, in the present invention, this invalid signal is compensated for as follows. The invalid signal is input as a carry signal from the lower 7th bit to the 8th bit. Therefore, compensation can be achieved by adding the following compensation signal.
一方、2の補数信号の加算の場合、ビツト幅を
合せる為、符号ビツトの拡張を行わなければなら
ない。この拡張信号は乗算結果が負の場合に8〜
10ビツト目が“1”となる信号であり、前述の補
償信号と同一となる。 On the other hand, in the case of addition of two's complement signals, the sign bit must be expanded in order to match the bit width. This extended signal is 8 to 8 when the multiplication result is negative.
This is a signal in which the 10th bit is "1", and is the same as the above-mentioned compensation signal.
したがつて、無効信号が生じる場合と、負の符
号ビツトを拡張する場合に8〜10ビツト目が
“1”となる信号を加算すればよい。 Therefore, when an invalid signal is generated and when extending a negative sign bit, it is sufficient to add signals whose 8th to 10th bits are "1".
無効信号が生じる場合は、乗算器の被乗数Xお
よび乗数Yの2つの信号が共に負の場合、Xが
負、Yが零の場合および、Xが零、Yが負の場合
である。したがつて、補償信号の制御信号Cは、
C=Xs・Ys+Xs・(1+2+3)+Ys
・(1+2+3)
となる。 An invalid signal occurs when the two signals of the multiplicand X and the multiplier Y of the multiplier are both negative, when X is negative and Y is zero, and when X is zero and Y is negative. Therefore, the control signal C of the compensation signal is: C= Xs・Ys + Xs・( 1 + 2 + 3 )+ Ys
・( 1 + 2 + 3 ).
又、乗算結果が負の場合、符号ビツトとして
“1”を拡張しなければならない。乗算結果が負
となるのは、2つの入力信号の一方が負、他方が
零を除く正の場合であり、この符号ビツトの拡張
を制御する信号Sは
S=XsYs
となる。 Furthermore, if the multiplication result is negative, "1" must be expanded as a sign bit. The multiplication result is negative when one of the two input signals is negative and the other is positive except for zero, and the signal S that controls the extension of the sign bit is S=X s Y s .
ここで、前述のように無効信号の補償と符号ビ
ツトの拡張は同一の処理を行えばよいので、この
処理の制御信号CTは、
CT=C+S=Xs・Ys+Xs・(1+2+3)+Ys・
(1+2+3)+XsYs
=Xs・Ys+Xs・s+s・Ys+Xs・(1+2+
3)
+Ys・(1+2+3)
=Xs+Ys+Xs・(1+2+3)+Ys・(1+
2+3)=Xs+Ys
となる。 Here, as mentioned above, the compensation of the invalid signal and the extension of the sign bit can be performed in the same process, so the control signal CT for this process is CT=C+S=X s・Y s +X s・( 1 + 2 +3 )+ Ys・
( 1 + 2 + 3 ) +X s Y s =X s・Y s +X s・s + s・Y s +X s・( 1 + 2 +
3 ) + Ys・( 1 + 2 + 3 )= Xs + Ys + Xs・( 1 + 2 + 3 )+ Ys・( 1+
2 + 3 ) = X s + Y s .
Xs+Ysは被乗数Xと乗数Yの符号ビツトの
R操作で求まり、第6図に示す様に、XsとYsの
論理和を求めるRゲート107の出力信号62
5を累積加算を行うために拡張した8〜10ビツト
の加算器に加えることにより、無効信号の補償と
符号ビツトの拡張を行うことができる。 X s + Y s is determined by the R operation of the sign bits of the multiplicand X and the multiplier Y , and as shown in FIG.
By adding 5 to an 8-10 bit adder expanded to perform cumulative addition, invalid signal compensation and sign bit expansion can be achieved.
このように第6図に示す構成とすることにより
高速化のためにCLAを用いる場合には、桁上げ
信号が横方向に転送される加算器117〜120
と612〜614で構成される1段のみに適用す
れば高速演算を行うことができる。 When CLA is used for speeding up by having the configuration shown in FIG.
If applied to only one stage consisting of and 612 to 614, high-speed calculation can be performed.
発明の効果
本発明によれば、累積機能を有する乗算器にお
いて、累積演算を行うための加算器を乗算用加算
器の中間に設けることにより、桁上げ信号が横方
向に転送される加算段が1段のみとなり、CLA
回路を1段用いるだけで高速演算を行うことがで
きる。したがつて、高速累積乗算回路を実現する
場合、簡単な回路構成ででき、消費電力も少なく
てすみ、LSI化が容易となる。Effects of the Invention According to the present invention, in a multiplier having an accumulation function, by providing an adder for performing an accumulation operation in the middle of the multiplication adder, the addition stage to which a carry signal is transferred in the horizontal direction is Only one stage available, CLA
High-speed calculation can be performed by using only one stage of circuit. Therefore, when realizing a high-speed accumulation multiplication circuit, it can be done with a simple circuit configuration, consumes less power, and can be easily implemented as an LSI.
第1図は乗算器のブロツク図、第2図〜第4図
は第1図における乗算器の回路説明図、第5図は
従来の累積乗算器のブロツク図、第6図は本発明
による累積乗算器の一実施例の回路構成図であ
る。
602〜611……累積演算用全加算器、61
5〜624……ラツチ回路。
Figure 1 is a block diagram of a multiplier, Figures 2 to 4 are circuit explanatory diagrams of the multiplier in Figure 1, Figure 5 is a block diagram of a conventional accumulator, and Figure 6 is an accumulator according to the present invention. FIG. 2 is a circuit configuration diagram of an embodiment of a multiplier. 602-611...Full adder for cumulative operation, 61
5-624...Latch circuit.
Claims (1)
と、前記乗算用の複数の加算段の中間に位置す
る拡張ビツトを有した累積加算用の加算段と、
累積加算結果を保持するための記憶手段と、拡
張ビツトを含めた前記記憶手段の全ビツト出力
を前記累積加算用の加算段へ入力する手段を備
えたことを特徴とする累積乗算器。 2 被乗数と乗数の符号ビツトの論理和を求める
ORゲートと、このORゲートの出力を累積演
算を行うために拡張したビツトに加算する手段
とを有することを特徴とする特許請求の範囲第
1項記載の累積乗算器。[Scope of Claims] 1. A plurality of addition stages for multiplication that performs addition of partial products; an addition stage for cumulative addition having an extension bit located between the plurality of addition stages for multiplication;
A cumulative multiplier comprising: storage means for holding cumulative addition results; and means for inputting all bit outputs of the storage means including extended bits to the addition stage for cumulative addition. 2 Find the logical sum of the sign bit of the multiplicand and the multiplier
2. An accumulation multiplier according to claim 1, comprising an OR gate and means for adding the output of the OR gate to expanded bits for performing an accumulation operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58080316A JPS59205646A (en) | 1983-05-09 | 1983-05-09 | Cumulative multiplier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58080316A JPS59205646A (en) | 1983-05-09 | 1983-05-09 | Cumulative multiplier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59205646A JPS59205646A (en) | 1984-11-21 |
JPH0447850B2 true JPH0447850B2 (en) | 1992-08-05 |
Family
ID=13714847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58080316A Granted JPS59205646A (en) | 1983-05-09 | 1983-05-09 | Cumulative multiplier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59205646A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4974855A (en) * | 1972-10-16 | 1974-07-19 | ||
JPS5694435A (en) * | 1979-12-27 | 1981-07-30 | Fujitsu Ltd | Multiplying circuit |
JPS588353A (en) * | 1981-07-06 | 1983-01-18 | Nec Corp | Multiplier |
-
1983
- 1983-05-09 JP JP58080316A patent/JPS59205646A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4974855A (en) * | 1972-10-16 | 1974-07-19 | ||
JPS5694435A (en) * | 1979-12-27 | 1981-07-30 | Fujitsu Ltd | Multiplying circuit |
JPS588353A (en) * | 1981-07-06 | 1983-01-18 | Nec Corp | Multiplier |
Also Published As
Publication number | Publication date |
---|---|
JPS59205646A (en) | 1984-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0328063B1 (en) | Absolute value calculating circuit having a single adder | |
US3610906A (en) | Binary multiplication utilizing squaring techniques | |
EP0356153B1 (en) | Radix-2**n divider method and apparatus using overlapped quotient bit selection and concurrent quotient rounding and correction | |
Makino et al. | A 8.8-ns 54/spl times/54-bit multiplier using new redundant binary architecture | |
US4878192A (en) | Arithmetic processor and divider using redundant signed digit arithmetic | |
US5497343A (en) | Reducing the number of carry-look-ahead adder stages in high-speed arithmetic units, structure and method | |
US6684236B1 (en) | System of and method for efficiently performing computations through extended booth encoding of the operands thereto | |
JPS6027024A (en) | Arithmetic device | |
Mekhallalati et al. | New high radix maximally-redundant signed digit adder | |
JPH0447850B2 (en) | ||
KR0152911B1 (en) | Parallel multiplier | |
US20020188641A1 (en) | Logic circuit for fast carry/borrow | |
EP0626638A1 (en) | A one's complement adder and method of operation | |
KR950006583B1 (en) | Multiplying method and circuit | |
JP2681968B2 (en) | Arithmetic processing unit | |
JPS6349835A (en) | Arithmetic processor | |
JPH0253819B2 (en) | ||
JP2620660B2 (en) | Multiplier | |
JPH0326857B2 (en) | ||
JP2563467B2 (en) | Binary calculator | |
JPH10333885A (en) | Multiplying circuit | |
JPS63197227A (en) | Adder | |
JPS6371729A (en) | Operation processing device | |
Farooqui et al. | A Novel Technique for Fast Multiplication | |
JPH0427587B2 (en) |