JPH0447545B2 - - Google Patents

Info

Publication number
JPH0447545B2
JPH0447545B2 JP60066039A JP6603985A JPH0447545B2 JP H0447545 B2 JPH0447545 B2 JP H0447545B2 JP 60066039 A JP60066039 A JP 60066039A JP 6603985 A JP6603985 A JP 6603985A JP H0447545 B2 JPH0447545 B2 JP H0447545B2
Authority
JP
Japan
Prior art keywords
amount
vector
absolute value
value
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60066039A
Other languages
Japanese (ja)
Other versions
JPS61224822A (en
Inventor
Toshio Anzai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60066039A priority Critical patent/JPS61224822A/en
Priority to EP86104089A priority patent/EP0196066B1/en
Priority to US06/845,258 priority patent/US4689710A/en
Publication of JPS61224822A publication Critical patent/JPS61224822A/en
Publication of JPH0447545B2 publication Critical patent/JPH0447545B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、デイジタル計算機を用いて電力系
統の動作状態を判定し、機器を保護する保護継電
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a protective relay that uses a digital computer to determine the operating state of a power system and protect equipment.

〔従来の技術〕[Conventional technology]

第4図は例えば、特開昭55−23779号公報に示
された保護継電装置を示す原理図で、図におい
て、21は系統の電流量を整流して平滑する整流
平滑要素、22は上記系統の各電流量をベクトル
加算するベクトル加算要素、23は器整流平滑さ
れた各電流量を加算するスカラー加算要素、24
は上記ベクトル加算量を整流平滑する整流平滑要
素、25は上記ベクトル加算量(動作量)とスカ
ラー加算量(抑制量)とを比較判定する比較判定
要素、26は上記の判定結果を出力する出力要素
である。
FIG. 4 is a principle diagram showing the protective relay device disclosed in, for example, Japanese Patent Application Laid-Open No. 55-23779. In the figure, 21 is a rectifying and smoothing element that rectifies and smoothes the amount of current in the system, and 22 is the above-mentioned rectifying and smoothing element. 23 is a vector addition element that adds vectors of each amount of current in the system; 23 is a scalar addition element that adds each amount of current that has been rectified and smoothed; 24
is a rectification and smoothing element that rectifies and smoothes the vector addition amount, 25 is a comparison judgment element that compares and judges the vector addition amount (operation amount) and the scalar addition amount (suppression amount), and 26 is an output that outputs the above judgment result. is an element.

次に第4図の動作原理を演算式1,2式で示
す。
Next, the principle of operation shown in FIG. 4 will be shown using equations 1 and 2.

‖ 〓i Ii t‖≧K1( 〓i ‖Ii t‖)+K0 …(1) (‖It‖|It|+|It-3| +K2×||It|−|It-3||) …(2) ここで、Ii tはt時刻にサンプリングされた電流
量で、添字のiは端子番号である。また、〓Ii t
ベクトル加算、‖It‖は整流平滑、 〓i ‖It‖はスカ
ラー加算を意味し、K0,K1,K2は定数である。
また、上記例ではサンプリング周波数を系統周波
数の12倍(30°サンプリング)としてある。
‖ 〓 i I i t ‖≧K 1 ( 〓 i ‖I i t ‖)+K 0 …(1) (‖I t ‖|I t |+|I t-3 | +K 2 ×||I t |− |I t-3 ||) ...(2) Here, I i t is the amount of current sampled at time t, and the subscript i is the terminal number. Furthermore, 〓I t ‖ means vector addition, ‖I t ‖ means rectification smoothing, 〓 i ‖I t ‖ means scalar addition, and K 0 , K 1 , and K 2 are constants.
Furthermore, in the above example, the sampling frequency is set to 12 times the system frequency (30° sampling).

次に第4図の動作について説明する。すなわ
ち、サンプリングされた電力系統の夫々の電流量
Ii tは整流平滑要素21により、(2)式のように整流
平滑されて‖Ii t‖となり、スカラー加算要素23
によりスカラー加算されて 〓i ‖Ii t‖となる。また
上記夫々の電流量Ii tはベクトル加算要素22によ
つてベクトル加算され、さらに整流平滑要素24
で整流平滑され、‖ 〓i Ii t‖となる。比較判定要素
25では、上記スカラー加算要素23の出力‖ 〓i
Ii t‖に適当な定数が乗算され、上記整流平滑要素
24んの出力‖ 〓i Ii t‖とともに(1)式の判定が行な
われる。その結果(1)式が成立すれば、動作信号が
上記比較判定要素25より出力される。出力要素
26は、上記の動作信号に適当な時限をもたせて
最終的な動作出力信号として出力する。
Next, the operation shown in FIG. 4 will be explained. In other words, the amount of current in each sampled power system
I i t is rectified and smoothed by the rectification and smoothing element 21 as shown in equation (2) to become ‖I i t ‖, and the scalar addition element 23
The scalars are added by 〓 i ‖I i t ‖. Further, the above-mentioned respective current amounts I i t are vector-added by the vector addition element 22, and further rectified and smoothed by the rectification smoothing element 24.
It is rectified and smoothed by ‖ 〓 i I i t ‖. In the comparison judgment element 25, the output of the scalar addition element 23 ‖ 〓 i
I i t ‖ is multiplied by an appropriate constant, and the equation (1) is determined together with the output – i I i t ‖ of the rectifying and smoothing element 24. As a result, if equation (1) is established, an operation signal is output from the comparison/judgment element 25. The output element 26 gives the above operation signal a suitable time limit and outputs it as a final operation output signal.

上記の演算数式では、(1)式中のK0を最小動作
値、K1を比率として第5図の一般的な差動保護
継電器の動作特性における実線(イ)で示された差動
特性を得ようとしているため、瞬時値を整流した
だけでは脈動となり、サンプリング位相により動
作特性にばらつきが発生するため、例えば(2)式の
様に整流平滑演算を行なわなければならない。こ
の(2)式の演算により4相整流の様な形になり動作
値誤差を小さくでき、差動特性のサンプリング位
相によるばらつきを少なくしようとしている。
In the above calculation equation, K 0 in equation (1) is the minimum operating value, K 1 is the ratio, and the differential characteristic shown by the solid line (A) in the operating characteristics of a general differential protective relay in Figure 5 is calculated. Therefore, simply rectifying the instantaneous value will result in pulsations and variations in operating characteristics will occur depending on the sampling phase, so it is necessary to perform rectification and smoothing calculations as shown in equation (2), for example. The calculation of equation (2) creates a form similar to four-phase rectification, which reduces operating value errors and reduces variations in differential characteristics due to sampling phases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の保護継電器は以上のように構成されてい
るので、例えば母線保護に適用するような多端子
情報を扱う場合には、(2)式の演算堀に膨大な時間
がかかることになり、CT飽和等による誤動作を
避けるため、電流量の大きさにより、自動的に定
数K0,K1等を変更して差動特性の傾きを大電流
領域で大きく変えてやる等の必要があり、動作時
間や、計算機の処理能力に強い制約を与えるなど
の問題点があつた。
Conventional protective relays are configured as described above, so when handling multi-terminal information such as that applied to bus bar protection, it takes a huge amount of time to calculate equation (2), and CT In order to avoid malfunctions due to saturation, etc., it is necessary to automatically change the constants K 0 , K 1 , etc. depending on the amount of current, and greatly change the slope of the differential characteristics in the large current region. There were problems such as time constraints and strong constraints on computer processing power.

この発明は上記のような問題点を解消するため
になされたもので、演算処理が容易で、高速に応
動し、かつ、CT飽和時等にも安定に動作する保
護継電器を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a protective relay that is easy to process, responds quickly, and operates stably even when CT is saturated. do.

〔問題点を解決するため手段〕[Means to solve the problem]

この発明に係る保護継電器は下記の(3)式を原理
式として用い、(3)式を判定する第1の比較判定要
素の出力で、下記(4)式を判定する第2の比較判定
要素の出力をインヒビツトすることにより最終出
力とするように演算回路を構成したものである。
The protective relay according to the present invention uses the following formula (3) as a principle formula, and uses the output of the first comparison and determination element that determines formula (3) to determine the following formula (4). The arithmetic circuit is configured to produce the final output by inhibiting the output.

M a ix|Ii t|−m0 ×Max(| 〓i Ii t|,| 〓i Ii t-ta)≧0 …(3) ‖ 〓i Ii t‖≧K0 …(4) 但し、m0,K0は定数であり、Ii t-ta時刻前のサ
ンプリング量を表わす。(以下、上記第1の比較
判定要素を比率ロツク要素、第2の比較判定要素
を差動要素という) 〔作用〕 この原理式を用いることにより、原理的に系統
の電流瞬時値で、比率ロツク要素(第1の比較判
定要素)は判定演算が可能になる。
M a ix | I i t | −m 0 ×Max ( | 〓 i I i t |, | 〓 i I i t-ta )≧0 …(3) ‖ 〓 i I i t ‖≧K 0 …(4 ) However, m 0 and K 0 are constants and represent the sampling amount before the time I i t-ta . (Hereinafter, the first comparison and judgment element will be referred to as the ratio lock element, and the second comparison and judgment element will be referred to as the differential element.) [Operation] By using this principle equation, the ratio lock can be theoretically determined using the instantaneous value of the grid current. The element (first comparison/determination element) becomes capable of a determination operation.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明す
る。まず、第1図において、1は複数系統からサ
ンプリングされた電流を整流する整流要素、2は
複数系統からサンプリングされた電流のうち瞬時
値の絶対値が最大のもの(抑制量)を選出する第
2の最大値導出要素(最大値導出要素)、3は複
数系統からサンプリングされた電流の瞬時値をベ
クトル加算するベクトル加算要素、4はベクトル
加算要素3にベクトル加算された加算量の絶対値
をとる整流要素、5はベクトル加算要素3にベク
トル加算さあれた加算量を記憶する記憶要素、6
はベクトル加算要素量3にベクトル加算された現
サンプリングの加算量における絶対値と記憶要素
5に記憶された前サンプリングの加算量の絶対値
とを比較して大きい方(差動量)を選出する第1
の最大値導出要素、7は第1の最大値導出要素6
に選出された差動量と第2の最大値導出要素2に
選出された抑制量との比率に基づいてロツク・非
ロツクを決定する第1の判定要素、8は数サンプ
リング前(例えば前4回のサンプリング)におい
て第1の判定要素7がロツクを決定している事実
がある場合には、今回第1の判定要素7が非ロツ
クを決定していても強制的にロツクとする復帰タ
イマー要素、12は第1の最大値導出要素6、第
1の判定要素7及び復帰タイマー要素8から構成
された第1の比較判定要素、9はベクトル加算要
素3でベクトル加算させた現サンプリングの加算
量における絶対値と記憶要素5に記憶された前サ
ンプリングの加算量の絶対値の2乗和をとる実効
値演算要素、10は実効値演算要素9の2乗和と
基準値を比較し、その大小関係から動作・不動作
を決定する第2の判定要素、13は実効値演算要
素9及び第2の判定要素10から構成された第2
の比較判定要素、11は第1の比較判定要素12
が非ロツクでかつ第2の比較判定要素13が動作
である場合のみ動作信号を出力するインヒビツト
要素である。
An embodiment of the present invention will be described below with reference to the drawings. First, in Fig. 1, 1 is a rectifier element that rectifies the current sampled from multiple systems, and 2 is a rectifier element that selects the one with the maximum absolute value of the instantaneous value (suppression amount) among the currents sampled from multiple systems. 2 is a maximum value derivation element (maximum value derivation element), 3 is a vector addition element that vector adds the instantaneous values of currents sampled from multiple systems, and 4 is a vector addition element that adds the absolute value of the vector addition amount to vector addition element 3. A rectifying element 5 is a storage element 6 that stores the amount of vector addition added to the vector addition element 3.
compares the absolute value of the addition amount of the current sampling vector added to the vector addition element amount 3 with the absolute value of the addition amount of the previous sampling stored in storage element 5, and selects the larger one (differential amount). 1st
7 is the first maximum value derivation element 6
8 is a first determination element that determines lock/non-lock based on the ratio between the differential amount selected in 2 and the suppression amount selected in second maximum value derivation element 2; If there is a fact that the first judgment element 7 has determined lock in the previous sampling), a return timer element that forcibly locks the lock even if the first judgment element 7 has determined non-lock this time. , 12 is a first comparison judgment element composed of a first maximum value derivation element 6, a first judgment element 7, and a return timer element 8; 9 is an addition amount of the current sampling vector-added by the vector addition element 3; An effective value calculation element 10 calculates the square sum of the absolute value of the absolute value of the addition amount of the previous sampling stored in the storage element 5, and 10 compares the square sum of the effective value calculation element 9 with the reference value and calculates the magnitude. 13 is a second determination element that determines operation/non-operation based on the relationship;
11 is the first comparison and judgment element 12
This is an inhibiting element that outputs an operating signal only when the lock is not locked and the second comparison judgment element 13 is operating.

次に第1図の動作について説明する。まず、第
1図のブロツク図を、デイジタル計算機を用いて
プログラムで実現すると、第2図のフローチヤー
トが得られる。すなわち、ステツプ1において、
t時刻に系統の電流量をサンプリングして量子化
した電流値Iitをベクトル加算要素3にかけて加算
しED tを計算し、ステツプ2で、前記夫々の電流
量Iitの各々の絶対値の最大値ER t(抑制量)を最
大値導出要素2で計算し、次にステツプ3で前記
のベクトル加算量ED tとta時刻前のベクトル加算
量ED t-taの最大値EDt(差動量)を最大値導出要
素6で計算し、ステツプ4で前記差動量EDt
m0倍し、前記抑制量ER tとの大小関係を判定要素
7で比較し、後者の方が大きいか、又は等しいと
き、比率ロツク要素12はロツクとし、それ以外
のときには比率ロツク要素12は非ロツクとする
判定を行なう。ステツプ5では、前記ステツプ4
での判定結果がロツクのときはそのままロツク信
号を出力し、非ロツクのときには数サンプリング
前においてロツクが決定されている事実がある場
合にはロツク信号を出力しそれ以外のときは非ロ
ツク信号を出力するような復帰タイマー演算を復
帰タイマー要素8によつて行なう。次にステツプ
6で上記ベクトル加算量ED tとtb時刻前のベクト
ル加算量ED t-tbの2乗和EDtを実効値演算要素9
で計算し、ステツプ7で上記2乗和のEDtと定数
K2 0の大小関係を判定要素10で比較して、前者
方が大きいか又は等しいとき、差動要素を動作さ
せ、それ以外のときは差動要素を不動作とする判
定を行う。ステツプ8では、前記ステツプ4とス
テツプ7の判定結果に基づき比率ロツク要素が不
動作でかつ差動要素が動作のときのみ総合動作と
してインヒビツト要素11が動作して最終出力
し、それ以外のときには総合不動作、又は総合復
帰として最終出力する判定を行う。なお、ステツ
プ1とステツプ2、ステツプ2とステツプ3、ス
テツプ2〜5とステツプ6〜7は順序が逆であつ
てもよい。また系統の電流量Ii tが時間的に正げん
波で変化するとき、tb時刻を適正に設定すれば、
上記2乗和のEDtは実効値の2乗となることは既
に明らかであるので、ここでは説明を省略する。
Next, the operation shown in FIG. 1 will be explained. First, when the block diagram of FIG. 1 is realized by a program using a digital computer, the flowchart of FIG. 2 is obtained. That is, in step 1,
The current value Ii t obtained by sampling and quantizing the amount of current in the system at time t is applied to the vector addition element 3 and added to calculate E D t . In step 2, the absolute value of each of the above-mentioned current amounts Ii t is The maximum value E R t (suppression amount) is calculated by maximum value derivation element 2, and then in step 3, the maximum value E D of the vector addition amount E D t and the vector addition amount E D t- ta before time ta is calculated. ′ t (differential amount) is calculated using the maximum value deriving element 6, and in step 4, the differential amount E Dt is calculated.
m is multiplied by 0 , and the magnitude relationship with the suppression amount E R t is compared with the determination element 7. If the latter is larger or equal, the ratio lock element 12 is set to lock; otherwise, the ratio lock element 12 is set to lock. is determined to be unlocked. In step 5, step 4
If the judgment result is lock, a lock signal is output as is, and if it is non-lock, a lock signal is output if there is a fact that lock has been determined several samplings ago, otherwise a non-lock signal is output. The return timer element 8 performs the return timer calculation such as output. Next, in step 6, the sum of the squares of the vector addition amount E D t and the vector addition amount E D t - tb before time tb is calculated using the effective value calculation element 9.
In step 7, calculate E Dt of the above sum of squares and a constant.
The determination element 10 compares the magnitude relationship of K 2 0 , and when the former is greater or equal, it is determined that the differential element is operated, and otherwise, it is determined that the differential element is inoperative. In step 8, based on the judgment results of step 4 and step 7, the inhibit element 11 operates as a total operation and outputs the final output only when the ratio lock element is inactive and the differential element is active, and in other cases, the overall operation is performed. The final output is determined as non-operation or comprehensive recovery. Note that the order of steps 1 and 2, steps 2 and 3, steps 2-5 and steps 6-7 may be reversed. Also, when the current amount I i t of the grid changes in a positive wave over time, if the tb time is set appropriately,
Since it is already clear that the sum of squares E Dt is the square of the effective value, the explanation will be omitted here.

tb=90°のとき、 (ED t2+(ED t-tb2 =|ED2(sin2ωt+cos2ωt)=|ED2とな
る。
When tb=90°, (E D t ) 2 + (E D t-tb ) 2 = |E D | 2 (sin 2 ωt + cos 2 ωt) = |E D | 2 .

また、第2図中、各判定部は特性の安定化のた
めの対策として複数回照合(自明なので説明省
略)をすることもできる。
Further, in FIG. 2, each determination unit can perform verification multiple times (description will be omitted since it is obvious) as a measure for stabilizing the characteristics.

この発明によれば、前述の原理式3で第5図の
イの実線を決定し、原理式(4)で第5図のアの点線
を決定することにより従来と同様の比率差動特性
が得られる。なお、前記原理式(3)は差動量EDt
抑制量ER tの比だけで判定するので瞬時値で判定
ができ、第5図の実線イが原点を通る直線となる
ので最小動作値K0と比率m0が各々独立に設定で
きるという特徴をもつ。また、第3図のように端
子電流の位相が同位相或いは逆位相でないような
場合、動作域にもかかわらず瞬時的に抑制量ER t
がベクトル加算量ED tを越えるような時間領域
(第3図の斜線部)を記憶されたベクトツ加算量
ED t-taで補償することによりこの領域をなくし位
相特性で動作域が瞬時演算により狭くなることを
防いでいる。ここで第3図は2端子電流の位相が
120°の場合の各演算量の波形を示している。さら
に外部事故時に、過大電流が貫通し、流出側CT
が飽和する際には、当該CT2次電流が瞬時的に減
少し過大な差動電流が見かけ上発生するが、この
発明によれば、飽和する以前に原理式(3)を判定す
る比率ロツク要素が動作しているため、過大な差
動量が発生する期間を復帰タイマーでカバーし
て、ロツク状態が継続し、誤動作に至らない。
According to this invention, by determining the solid line A in FIG. 5 using the above-mentioned principle equation 3 and determining the dotted line A in FIG. can get. In addition, since the above-mentioned principle formula (3) is determined only by the ratio of the differential amount E Dt and the suppression amount E R t , it can be determined based on the instantaneous value, and the solid line A in Fig. 5 is a straight line passing through the origin. It has the feature that the minimum operating value K 0 and the ratio m 0 can be set independently. In addition, as shown in Figure 3, when the phases of the terminal currents are not in the same phase or opposite phases, the suppression amount E R t instantaneously increases despite the operating range.
The vector addition amount stored in the time domain (shaded area in Figure 3) in which exceeds the vector addition amount E D t
By compensating with E D t-ta , this region is eliminated and the phase characteristic prevents the operating range from becoming narrower due to instantaneous calculation. Here, in Figure 3, the phase of the two-terminal current is
It shows the waveform of each calculation amount in the case of 120°. Furthermore, in the event of an external accident, excessive current will pass through the outflow side CT.
When the CT secondary current is saturated, the CT secondary current instantaneously decreases and an excessive differential current appears to occur. However, according to the present invention, the ratio lock element that determines the principle equation (3) before saturation occurs. is operating, the recovery timer covers the period in which an excessive differential amount occurs, and the lock state continues and malfunction does not occur.

また、上記実施例では、前述の(4)式の判定に2
乗和演算を用いたが、原理的にレベル判定である
ので、従来の実施例で説明した(2)式の整流平滑演
算、或いは、(5)式のような積分演算数であつても
よく、上記実施例と同様の効果を奏する。
In addition, in the above embodiment, 2
Although a sum of multiplication operation is used, since it is basically a level judgment, the rectification and smoothing operation of equation (2) explained in the conventional embodiment, or the integral operation number of equation (5) may also be used. , the same effect as the above embodiment is achieved.

‖ 〓i Ii t‖= 〓i | 〓i Iit-t1=| 〓i Iit+| 〓i Iit-t1+| 〓i Iit-t2+ …(5) 〔発明の効果〕 以上のように、この発明によれば、原理的に系
統電流量の瞬時値で演算判定が可能なように演算
回路を構成したので、例えば母線保護のように端
子数が多い場合には、前述の(2)式のような整流平
滑演算の必要がなく、演算時間が少なくなり、か
つ高速に応動が可能であるため、1台のデイジタ
ル計算機に対しての処理量の負担が軽減される。
また、外部事故時のCT飽和現象に対しても非常
に安定な特性が確実に得られる等の効果がある。
‖ 〓 i I i t ‖= 〓 i | 〓 i I it-t1 =| 〓 i I it +| 〓 i I it-t1 +| 〓 i I it-t2 + …( 5) [Effects of the Invention] As described above, according to the present invention, the arithmetic circuit is configured in such a way that it is theoretically possible to make arithmetic judgments based on the instantaneous value of the system current. When there is a large amount of The burden of
Furthermore, it has the effect of reliably obtaining extremely stable characteristics even against CT saturation phenomenon during external accidents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例による系統の保
護継電器の動作原理ブロツク図、第2図は第1図
のフローチヤート図、第3図はこの発明の位相特
性の保証原理図、第4図は従来の保護継電器の動
作原理ブロツク図、第5図は一般的な差動保護継
電器の動作特性図である。 図において、1は整流要素、2は第2の最大値
導出要素、3はベクトル加算要素、4は整流要
素、5は記憶要素、6は第1の最大値導出要素、
7は第1の判定要素、8は復帰タイマー要素、9
は実効値演算要素、10は第2の判定要素、11
はインヒツビツト要素、12は比率ロツク要素
(第1の比較判定要素)、13は差動要素(第2の
比較判定要素)である。
FIG. 1 is a block diagram of the operating principle of a protective relay for a system according to an embodiment of the present invention, FIG. 2 is a flowchart of FIG. 1, FIG. 3 is a diagram of the principle of guaranteeing phase characteristics of the present invention, and The figure is a block diagram of the operating principle of a conventional protective relay, and FIG. 5 is a diagram of the operating characteristics of a general differential protective relay. In the figure, 1 is a rectification element, 2 is a second maximum value derivation element, 3 is a vector addition element, 4 is a rectification element, 5 is a storage element, 6 is a first maximum value derivation element,
7 is a first determination element, 8 is a return timer element, 9
is an effective value calculation element, 10 is a second judgment element, 11
is an inhibit element, 12 is a ratio lock element (first comparison judgment element), and 13 is a differential element (second comparison judgment element).

Claims (1)

【特許請求の範囲】 1 複数系統からサンプリングされた電流の瞬時
値をベクトル加算するベクトル加算要素と、前記
ベクトル加算要素にベクトル加算された加算量の
絶対値をとる整流要素と、前記整流要素の出力を
記憶する記憶要素と、前記複数系統からサンプリ
ングされた電流のうちの瞬時値の絶対値が最大の
ものを選出し、その最大の絶対値を抑制量として
出力する最大値導出要素と、前記ベクトル加算要
素にベクトル加算された現サンプリングの加算量
における絶対値と前記記憶要素に記憶された前サ
ンプリングの加算量の絶対値とを比較して大きい
方を差動量として選出し、その差動量と前記最大
値導出要素より出力された抑制量との比率に基づ
いてロツク・非ロツクを決定するが、数サンプリ
ング前においてロツクが決定されている事実があ
る場合には強制的にロツクとする第1の比較判定
要素と、前記ベクトル加算要素にベクトル加算さ
れた現サンプリングの加算量における絶対値と前
記記憶要素に記憶された前サンプリングの加算量
の絶対値に基づいて動作・不動作を決定する第2
の比較判定要素と、前記第1の比較判定要素が非
ロツクでかつ前記第2の比較判定要素が動作であ
る場合のみ動作信号を出力するインヒビツト要素
とを備えた保護継電器。 2 前記第1の比較判定要素の回路構成として、
前記整流要素及び記憶要素の出力とを取り込む第
1の最大値導出要素と、前記第1の最大値導出要
素の出力、及び系統の電流量の絶対値の瞬時最大
値を選出する第2の最大値導出要素の出力とを比
較する第1の判定要素と、前記第1の判定要素の
出力信号に所定の遅延時間を持たせる復帰タイマ
ー要素とを備えたことを特徴とする特許請求の範
囲第1項記載の保護継電器。 3 前記第2の比較判定要素の構成として、前記
整流要素及び記憶要素の出力とを取り込むように
した実効値演算要素と、前記実効値演算要素の出
力を所定の定数値とレベル判定する第2の判定要
素とを備えたことを特徴とする特許請求の範囲第
1項記載の保護継電器。
[Scope of Claims] 1. A vector addition element that vector adds instantaneous values of currents sampled from a plurality of systems, a rectification element that takes the absolute value of the addition amount vector-added to the vector addition element, and a rectification element that takes the absolute value of the addition amount added to the vector addition element, and a storage element that stores an output; a maximum value derivation element that selects a current sampled from the plurality of systems with a maximum absolute value of instantaneous values and outputs the maximum absolute value as a suppression amount; The absolute value of the addition amount of the current sampling vector-added to the vector addition element and the absolute value of the addition amount of the previous sampling stored in the storage element are compared, the larger one is selected as the differential amount, and the differential amount is Lock or non-lock is determined based on the ratio between the amount and the suppression amount output from the maximum value derivation element, but if there is a fact that lock has been determined several samplings ago, it is forcibly set to lock. Operation/non-operation is determined based on the first comparison judgment element, the absolute value of the addition amount of the current sampling vector added to the vector addition element, and the absolute value of the addition amount of the previous sampling stored in the storage element. Second to do
A protective relay comprising: a comparison determination element; and an inhibiting element that outputs an operation signal only when the first comparison determination element is non-locked and the second comparison determination element is activated. 2. As a circuit configuration of the first comparison and determination element,
a first maximum value deriving element that takes in the outputs of the rectifying element and the storage element; and a second maximum value that selects the instantaneous maximum value of the absolute value of the output of the first maximum value deriving element and the amount of current in the system. Claim 1, characterized by comprising: a first determination element that compares the output of the value derivation element; and a return timer element that causes the output signal of the first determination element to have a predetermined delay time. The protective relay described in item 1. 3 The configuration of the second comparison and determination element includes an effective value calculation element that takes in the outputs of the rectification element and the storage element, and a second element that determines the level of the output of the effective value calculation element as a predetermined constant value. 2. The protective relay according to claim 1, further comprising: a determining element.
JP60066039A 1985-03-29 1985-03-29 Protective relay Granted JPS61224822A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60066039A JPS61224822A (en) 1985-03-29 1985-03-29 Protective relay
EP86104089A EP0196066B1 (en) 1985-03-29 1986-03-25 Protective relay
US06/845,258 US4689710A (en) 1985-03-29 1986-03-28 Protective relay for an electric power system including decision-making computer means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066039A JPS61224822A (en) 1985-03-29 1985-03-29 Protective relay

Publications (2)

Publication Number Publication Date
JPS61224822A JPS61224822A (en) 1986-10-06
JPH0447545B2 true JPH0447545B2 (en) 1992-08-04

Family

ID=13304340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066039A Granted JPS61224822A (en) 1985-03-29 1985-03-29 Protective relay

Country Status (1)

Country Link
JP (1) JPS61224822A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664166B2 (en) * 2010-11-22 2015-02-04 株式会社明電舎 Current differential protection relay device

Also Published As

Publication number Publication date
JPS61224822A (en) 1986-10-06

Similar Documents

Publication Publication Date Title
US5963404A (en) Restricted earth fault protection for transformers using a directional element
US4689710A (en) Protective relay for an electric power system including decision-making computer means
US7199991B2 (en) Electrical bus protection method & apparatus
US5627712A (en) Transformer differential relay
JPH0447545B2 (en)
JPH0546768B2 (en)
JPH0546769B2 (en)
JPH0363299B2 (en)
JPH01190215A (en) Phase selector
US4873602A (en) Ripple attenuator for AC power transmission line protective relays
JPS6152613B2 (en)
JPH0723527A (en) Negative-phase overcurrent protective relay
JP2971298B2 (en) Protective relay
JP2923572B2 (en) Change width detector
JP3269220B2 (en) Transformer protection relay
JPS6011722Y2 (en) Digital protective relay device
JPS61224823A (en) Protective relay
Mudditt et al. Developments in transformer protection
JPS6051331B2 (en) Electric power system fault detection method
JPS6124900B2 (en)
JPH0514502B2 (en)
JPH0158734B2 (en)
JPH0487514A (en) Digital distance relay
JPS5842692B2 (en) Protective relay device
JPS6124899B2 (en)