JPH0363299B2 - - Google Patents

Info

Publication number
JPH0363299B2
JPH0363299B2 JP60066041A JP6604185A JPH0363299B2 JP H0363299 B2 JPH0363299 B2 JP H0363299B2 JP 60066041 A JP60066041 A JP 60066041A JP 6604185 A JP6604185 A JP 6604185A JP H0363299 B2 JPH0363299 B2 JP H0363299B2
Authority
JP
Japan
Prior art keywords
amount
vector addition
current
maximum value
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60066041A
Other languages
Japanese (ja)
Other versions
JPS61224824A (en
Inventor
Toshio Anzai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60066041A priority Critical patent/JPS61224824A/en
Priority to EP86104089A priority patent/EP0196066B1/en
Priority to US06/845,258 priority patent/US4689710A/en
Publication of JPS61224824A publication Critical patent/JPS61224824A/en
Publication of JPH0363299B2 publication Critical patent/JPH0363299B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、デイジタル計算機を用いて電力系
統の動作状態を判定し機器を保護する保護継電器
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a protective relay that uses a digital computer to determine the operating state of a power system and protect equipment.

〔従来の技術〕[Conventional technology]

第4図は例えば、特開昭55−23779号公報に示
された保護継電装置を示す原理図で、図におい
て、21は系統の電流量を整流し平滑する整流平
滑要素、22は前記系統の各電流量をベクトル加
算するベクトル加算要素、23は前記整流平滑さ
れた各電流量を加算するスカラー加算要素、24
は前記ベクトル加算量を整流平滑する整流平滑要
素、25は前記ベクトル加算量(動作量)とスカ
ラー加算量(抑制量)とを比較判定する比較判定
要素、26は前記の判定結果を出力する出力要素
である。
FIG. 4 is a principle diagram showing a protective relay device disclosed in, for example, Japanese Unexamined Patent Publication No. 55-23779. In the figure, 21 is a rectifying and smoothing element that rectifies and smoothes the amount of current in the system, and 22 is a rectifying and smoothing element for rectifying and smoothing the amount of current in the system. 23 is a scalar addition element that adds each rectified and smoothed current amount, 24
25 is a rectification and smoothing element that rectifies and smoothes the vector addition amount, 25 is a comparison judgment element that compares and judges the vector addition amount (operation amount) and the scalar addition amount (suppression amount), and 26 is an output that outputs the above judgment result. is an element.

次に第4図の動作原理を演算式(1)、(2)式で示
す。
Next, the principle of operation shown in FIG. 4 is shown using equations (1) and (2).

‖ 〓i Iit‖≧K1×( 〓i Iit‖)+K0 ……(1) (‖It‖=|It|+|It-3|+K2 ×||It|−|It-3||) ……(2) ここで、Iitはt時刻にサプリングされた電流量
で、添字のiは端子番号である。また、 〓i Iitはベ
クトル加算、‖It‖は整流平滑、Σ‖Iit‖はスカ
ラー加算を意味し、K0、K1、K2は定数である。
また、前記例ではサンプリング周波数を系統周波
数の12倍(30°サンプリング)としてある。
‖ 〓 i Ii t ‖≧K 1 × ( 〓 i Ii t ‖)+K 0 ……(1) (‖I t ‖=|I t |+|I t-3 |+K 2 ×||I t |− |I t-3 | |) ...(2) Here, Ii t is the amount of current sampled at time t, and the subscript i is the terminal number. Further, 〓 i Ii t means vector addition, ‖I t ‖ means rectification smoothing, Σ‖Ii t ‖ means scalar addition, and K 0 , K 1 , and K 2 are constants.
Further, in the above example, the sampling frequency is set to 12 times the system frequency (30° sampling).

次に第4図の動作について説明する。すなわ
ち、サンプリングされた電力系統の夫々の電流量
Iitは整流平滑要素21により、(2)式のように整流
平滑されて‖It‖となり、スカラー加算要素23
によりスカラー加算されてΣ‖Iit‖となる。ま
た、前記夫々の電流量Iitはベクトル加算要素22
によつてベクトル加算され、さらに整流平滑要素
24で整流平滑され、 〓i ‖Iit‖となる。比較判定
要素25では、前記スカラー加算要素23の出力
i ‖Iit‖に適当な定数が乗算され、前記整流平滑
要素24の出力‖ 〓i Iit‖とともに(1)式の判定が行
なわれる。その結果(1)式が成立すれば、動作信号
が前記比較判定要素25より出力される。出力要
素26は、前記の動作信号に適当な時限をもたせ
て最終的な動作出力信号として出力する。
Next, the operation shown in FIG. 4 will be explained. In other words, the amount of current in each sampled power system
Ii t is rectified and smoothed by the rectification and smoothing element 21 as shown in equation (2) to become ‖I t ‖, and the scalar addition element 23
is scalar-added to become Σ‖Ii t‖ . In addition, each of the current amounts Ii t is the vector addition element 22
The vectors are added by , and further rectified and smoothed by the rectification and smoothing element 24, resulting in 〓 i ‖Ii t ‖. In the comparison/judgment element 25, the output 〓 i ‖Ii t ‖ of the scalar addition element 23 is multiplied by an appropriate constant, and together with the output 〓 i Ii t ‖ of the rectification and smoothing element 24 , the judgment of equation (1) is performed. . As a result, if equation (1) is established, an operation signal is output from the comparison/judgment element 25. The output element 26 gives the operation signal an appropriate time limit and outputs it as a final operation output signal.

前記の演算式では、(1)式中のK0を最小動作値、
K1を比較として第5図の一般的な差動保護継電
器の動作特性における実線イで示された差動特性
を得ようとしているため、瞬時値を整流しただけ
では脈動となり、サンプリング位相により動作特
性にばらつきが発生するため、例えば(2)式の様に
整流平滑演算を行なわなければならない。この(2)
式の演算により4相整流の様な形になり動作値誤
差を小さくでき、差動特性のサンプリング位相に
よるばらつきを少なくしようとしている。
In the above equation, K 0 in equation (1) is the minimum operating value,
Since we are trying to obtain the differential characteristics shown by the solid line A in the operating characteristics of a general differential protective relay in Figure 5 by comparing K 1 with Since variations occur in the characteristics, it is necessary to perform rectification and smoothing calculations as shown in equation (2), for example. This(2)
By calculating the formula, it becomes a form similar to four-phase rectification, and the operating value error can be reduced, and variations in differential characteristics due to the sampling phase can be reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の保護継電器は以上のように構成されてい
るので、例えば母線保護に適用するよう多端子情
報を扱う場合には、(2)式の演算処理に膨大な時間
がかかることになり、CT飽和等による誤動作を
避けるため、電流量の大きさにより、自動的に
K0、K1等を変更する必要があつた。よつて、動
作時間やデイジタル計算機の処理能力に強い制約
を受けるなどの問題点があつた。
Conventional protective relays are configured as described above, so when handling multi-terminal information such as applying to bus bar protection, it takes a huge amount of time to process equation (2), resulting in CT saturation. In order to avoid malfunctions due to
It was necessary to change K 0 , K 1 , etc. Therefore, there were problems such as severe restrictions on operating time and processing capacity of the digital computer.

この発明は前記のような問題点を解消するため
になされたもので、演算処理が容易で、高速に応
動し、かつCT飽和時等にも安定な動作をする保
護継電器を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a protective relay that is easy to process, responds quickly, and operates stably even when CT is saturated. do.

〔問題点を解消するための手段〕[Means to resolve the problem]

この発明に係る保護継電器は下記(3)式の原理式
を用い、(3)式を判定する第1の比較判定要素の出
力と、(4)式で判定する第2の比較判定要素の出力
とをインヒビツト要素に入力することにより最終
出力するように演算回路を構成したものである。
The protective relay according to the present invention uses the principle equation (3) below, and the output of the first comparison judgment element that judges the equation (3) and the output of the second comparison judgment element that judges the equation (4). The arithmetic circuit is configured to output the final output by inputting this into the inhibit element.

Max( Maxi |Iit|、 Maxi |Iit-tb|)−m0×Max(| 〓i Iit|、| 〓i Iit-ta|)≧0 ……(3) ‖ 〓i Iit‖≧K0 ……(4) 但し、m0、K0は定数であり、Iit-ta、Iit-tb
各々ta、tb時刻前の電流サンプル量を表わす。以
下前記第1の比較判定要素を比率ロツク要素、第
2の比較判定要素を差動要素という。
Max( Max i | Ii t |, Max i | Ii t-tb |)−m 0 ×Max( | 〓 i Ii t |, | 〓 i Ii t-ta |)≧0 ……(3) ‖ 〓 i Ii t ‖≧K 0 ...(4) However, m 0 and K 0 are constants, and Ii t-ta and Ii t-tb represent the current sample amounts before time t a and t b , respectively. Hereinafter, the first comparison and determination element will be referred to as a ratio lock element, and the second comparison and determination element will be referred to as a differential element.

〔作用〕[Effect]

この原理式を用いることにより、原理的に系統
の電流瞬時値で比率ロツク要素(第1の比較判定
要素)は判定演算が可能になる。
By using this principle equation, it becomes possible in principle to perform judgment calculations on the ratio lock element (first comparison judgment element) using the instantaneous value of the current in the system.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明す
る。まず、第1図において、1は複数系統からそ
れぞれ電流量を取り込んでベクトル加算するベク
トル加算要素、2はベクトル加算要素1にベクト
ル加算されたベクトル加算量を整流する整流要
素、3は整流要素2に整流されたベクトル加算量
を記憶する第1の記憶要素、4はベクトル加算要
素1にベクトル加算された現時刻におけるベクト
ル加算量と第1の記憶要素3に記憶された所定時
刻前のベクトル加算量とを比較して大きい方(差
動量)を導出する第1の最大値導出要素、5は複
数系統からそれぞれ取り込んだ電流量を整流する
整流要素、6は整流要素5に整流された各電流量
のうち最も大きい電流量を導出する第2の最大値
導出要素、7は第2の最大値導出要素6に導出さ
れた最大電流量を記憶する第2の記憶要素、8は
第2の最大値導出要素6に導出された現時刻にお
ける最大電流量と第2の記憶要素7に記憶された
所定時刻前の最大電流量とを比較して大きい方
(抑制量)を導出する第3の最大値導出要素、9
は第1の最大値導出要素4に導出されたベクトル
加算量と第3の最大値導出要素8に導出された最
大電流量との大小関係を判定する第1の判定要
素、10はベクトル加算要素1にベクトル加算さ
れた現時刻におけるベクトル加算量と第1の記憶
要素3に記憶された所定時刻前のベクトル加算量
とを入力して2乗和を演算する実効値演算要素、
11は実効値演算要素10に演算された演算値と
所定の基準値との大小関係を判定する第2の判定
要素、12は第1の判定要素9にそのベクトル加
算量の方が大きいと判定され、かつ第2の判定要
素11にそろ基準値の方が小さいと判定された場
合のみ動作出力をするインヒビツト要素、13は
原理式(3)の判定をする比率ロツク要素(第1の比
較判定要素)、14は原理式(4)の判定をする差動
要素(第2の比較判定要素)である。
An embodiment of the present invention will be described below with reference to the drawings. First, in FIG. 1, 1 is a vector addition element that takes in current amounts from multiple systems and adds the vectors, 2 is a rectification element that rectifies the vector addition amount added to the vector addition element 1, and 3 is a rectification element 2. 4 is the vector addition amount at the current time, which is vector added to the vector addition element 1, and the vector addition at a predetermined time before stored in the first storage element 3. A first maximum value derivation element that compares the amounts and derives the larger one (differential amount), 5 is a rectifier element that rectifies the amount of current taken in from multiple systems, and 6 is each rectifier rectified by the rectifier element 5. A second maximum value deriving element that derives the largest current amount among the current amounts; 7 a second storage element that stores the maximum current amount derived to the second maximum value deriving element 6; 8 a second maximum value deriving element 6; A third step that compares the maximum current amount at the current time derived by the maximum value deriving element 6 with the maximum current amount before a predetermined time stored in the second storage element 7 and derives the larger one (suppression amount). Maximum value derivation element, 9
is a first determination element that determines the magnitude relationship between the vector addition amount derived to the first maximum value derivation element 4 and the maximum current amount derived to the third maximum value derivation element 8; 10 is a vector addition element an effective value calculation element that calculates a sum of squares by inputting the vector addition amount at the current time that has been vector added to 1 and the vector addition amount at a predetermined time before stored in the first storage element 3;
Reference numeral 11 denotes a second determination element that determines the magnitude relationship between the calculated value calculated by the effective value calculation element 10 and a predetermined reference value, and 12 determines that the vector addition amount is larger than the first determination element 9. and 13 is a ratio lock element (first comparison judgment) that makes a judgment based on the principle formula (3). element), 14 is a differential element (second comparison/determination element) that makes a determination based on principle formula (4).

次に第1図の動作について説明する。まず、第
1図のブロツク図を、デイジタル計算機を用いて
プログラムすると、第2図のフローチヤートで表
現できる。
Next, the operation shown in FIG. 1 will be explained. First, when the block diagram of FIG. 1 is programmed using a digital computer, it can be expressed as the flowchart of FIG. 2.

すなわち、ステツプ1ではt時刻にサンプリン
グがなされ量子化された各系統の電流量Iitのベク
トル加算量ED tをベクトル加算要素1で計算し、
ステツプ2で前記電流量Iitの各々の絶対値の最大
値ER tを第2の最大値導出要素6で計算する。続
いてステツプ3で前記ベクトル加算量ED tとta
刻前のベクトル加算量ED t-taの最大値ED t(差動
量)を第1の最大値導出要素4で計算し、ステツ
プ4では前記ステツプ2で計算した最大値ER t
tb時刻前の最大値ER t-tbの最大値ERt(抑制量)
を第3の最大値導出要素8で計算し、ステツプ5
で前記差動量EDtをm0倍し、前記抑制量ERtとの
大小関係を比較して後者の方が大きいか、又は等
しいときに比率ロツク要素13は動作とし、それ
以外のときには比較ロツク要素は不動作とする判
定を第1の判定要素9で行なう。ステツプ6では
前記ベクトル加算要素1の加算量ED tとtc時刻前
のベクトル加算量ED t-tcの2乗和EDtを実効値演
算要素10で計算し、ステツプ7で前記2乗和
EDtと定数K02の大小関係を比較し前者の方が大
きいか、又は等しいとき、差動要素を動作とし、
それ以外のときは差動要素を不動作とする演算を
第2の判定要素11で行なう。ステツプ8では、
前記ステツプ4とステツプ7の判定結果に基づき
比較ロツク要素13が不動作で、かう差動要素1
4が動作のときのみ総合動作として最終出力し、
それ以外のときは総合不動作、又は総合復帰とし
て最終出力する判定をインヒビツト要素12で行
う。なお、ステツプ1とステツプ2、ステツプ2
とステツプ3、ステツプ3とステツプ4、ステツ
プ2〜5とステツプ6〜7は演算順序が逆であつ
てもよい。また、各系統の電流量Iitが時間的に正
げん波で変化するときにteを適当に設定すれば、
前記2乗和EDtは実効値の2乗和となることは自
明なので、ここでの説明は省略する。
That is, in step 1, the vector addition amount E D t of the current amount Ii t of each system sampled and quantized at time t is calculated using the vector addition element 1,
In step 2, the second maximum value deriving element 6 calculates the maximum absolute value E R t of each of the current amounts Ii t . Next , in step 3, the maximum value E D t (differential amount) of the vector addition amount E D t and the vector addition amount E D t-ta before the time t a is calculated by the first maximum value deriving element 4, In step 4, the maximum value E R t calculated in step 2 and
Maximum value E R before time t b Maximum value E Rt of t-tb (amount of suppression)
is calculated by the third maximum value derivation element 8, and step 5
The differential amount E Dt is multiplied by m 0 and compared with the suppression amount E Rt . If the latter is larger or equal, the ratio locking element 13 is set to operate. In other cases, the first determination element 9 determines that the comparison lock element is inactive. In step 6, the square sum E D ″t of the addition amount E D t of the vector addition element 1 and the vector addition amount E D t −tc before time t c is calculated by the effective value calculation element 10, and in step 7 sum of squares
Compare the magnitude relationship between E Dt and the constant K0 2 , and if the former is larger or equal, the differential element is activated,
In other cases, the second determination element 11 performs an operation to disable the differential element. In step 8,
Based on the determination results in step 4 and step 7, the comparison lock element 13 is inoperative, and the differential element 1
Only when 4 is an operation, the final output is performed as a comprehensive operation,
In other cases, the inhibit element 12 determines whether to output the final output as total inoperation or total recovery. In addition, step 1, step 2, and step 2
and step 3, step 3 and step 4, and steps 2 to 5 and steps 6 to 7 may be performed in reverse order. Also, if the amount of current Ii t in each system changes in a positive wave over time, if t e is set appropriately,
It is obvious that the sum of squares E Dt is the sum of squares of effective values, so the explanation here will be omitted.

tb=90°のとき、 (ED t2+(ED t-tb2 =|ED2(sin2ωt+cos2ωt)=|ED 2|となる また、第2図中の各判定部は、特性の安定化の
ための対策として複数回照合(自明なので説明省
略)をすることもできる。
When t b = 90°, (E D t ) 2 + (E D t-tb ) 2 = |E D | 2 (sin 2 ωt+cos 2 ωt) = |E D 2 | Also, in Figure 2 Each determination unit can perform verification multiple times (as it is self-explanatory, the explanation will be omitted) as a measure for stabilizing the characteristics.

この発明によれば、前述の原理式(3)で第5図の
イの実線を決定し、原理式(4)で第5図のアの点線
を決定することにより従来と同様の比率差動特性
が得られる。かつ、原理式(3)は、差動量EDtと抑
制量ERtの比だけで判定するので瞬時値で演算判
定ができ、イの実線が原点を通る直線となるので
最小動作値K0と比率m0が各々独立に設定できる
という特性をもつ。また第3図のような端子電流
の位相が同位相、或いは逆位相でないような場
合、動作域にもかかわわらず、瞬時的に余生量
ERtがベクトル加算量ED tを越えるような時間領
域(第3図の斜線部)を記憶されたベクトル加算
量ED t-taで補償することにより、この領域をなく
し、位相特性で動作域が瞬時演算により狭くなる
ことを防いでいる。さらに、外部事故時に、過大
電流が貫通し、流出側CTが飽和する際、当該
CT2次電流が瞬時的に減少し、過大な差動量が見
かけ上発生するが、この発明によれば、飽和する
際に発生する過大な差動量を、記憶された系統の
電流量の最大値ED t-tbで打ち消すため、(3)の原理
式に基づく比率ロツク要素は復帰せず、ロツク状
態が継続し、誤動作には至らない。
According to this invention, by determining the solid line A in FIG. 5 using the above-mentioned principle equation (3) and determining the dotted line A in FIG. characteristics are obtained. In addition, since the principle formula (3) is determined only by the ratio of the differential amount E Dt and the suppression amount E Rt , calculations can be made based on the instantaneous values, and the solid line A is a straight line passing through the origin, so the minimum It has the characteristic that the operating value K 0 and the ratio m 0 can be set independently. In addition, if the terminal currents are not in the same phase or out of phase as shown in Figure 3, the residual amount will be instantaneously changed regardless of the operating range.
By compensating for the time domain in which E Rt exceeds the vector addition amount E D t (the shaded area in Figure 3) with the stored vector addition amount E D t-ta , this region can be eliminated and the phase characteristics This prevents the operating range from becoming narrower due to instantaneous calculations. Furthermore, in the event of an external fault, when excessive current passes through and the outflow CT becomes saturated, the relevant
The CT secondary current decreases instantaneously and an excessive differential amount appears to occur, but according to this invention, the excessive differential amount that occurs at saturation can be reduced to the maximum amount of stored system current. Since it is canceled by the value E D t-tb , the ratio lock element based on the principle equation (3) does not recover, the locked state continues, and no malfunction occurs.

また、前記実施例では、前記の(4)式の判定に2
乗和演算を用いたが、原理的にレベル判定である
ので、従来の実施例が説明した(2)式の整流平滑演
算か或いは、(5)式のような積分演算であつてもよ
く、前記実施例と同様の効果を奏する。
In addition, in the above embodiment, 2
Although a multiplication-sum operation is used, since it is basically a level judgment, it may be a rectification smoothing operation as shown in equation (2) as explained in the conventional embodiment, or an integral operation as shown in equation (5). The same effects as in the embodiment described above are achieved.

‖ΣIit‖=Σ|ΣIit-tj =| 〓i Iit+| 〓i Iit-t1+| 〓i Iit-t2+…… ……(5) 〔発明の効果〕 以上のように、この発明によれば、原理的に系
統電流量の瞬時値で演算判定が可能なように演算
回路を構成したので、前述の(2)式のような整流平
滑演算の必要がなくなつて、演算時間が大幅に短
縮され、1台のデイジタル計算機に対しての処理
量の負担が軽減されるとともに、事故の処理が速
やかに行える効果がある。さらに外部事故部の
CT飽和現象に対しても非常に安定な特性が容易
に得られる等の効果がある。
‖ΣIi t ‖=Σ|ΣI it-tj =| 〓 i I it +| 〓 i I it-t1 +| 〓 i I it-t2 +…… ……(5) 〔 [Effects of the Invention] As described above, according to the present invention, since the arithmetic circuit is configured so that calculation and judgment can be made based on the instantaneous value of the system current in principle, rectification and smoothing as in the above-mentioned equation (2) is possible. Since there is no need for computation, the computation time is significantly shortened, the processing load on one digital computer is reduced, and accidents can be handled quickly. In addition, the external accident department
It has the advantage that very stable characteristics can be easily obtained even against CT saturation phenomena.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例による保護継電
器の動作原理ブロツク図、第2図は第1図の実施
例のフローチヤート図、第3図はこの発明の位相
特性の補償原理図、第4図は従来の保護継電器の
動作原理ブロツク図、第5図は一般的な保護継電
器の動作特性を示す図である。 図において、1はベクトル加算要素、2は整流
要素、3は第1の記憶要素、4は第1の最大値導
出要素、5は整流要素、6は第2の最大値導出要
素、7は第2の記憶要素、8は第3の最大値導出
要素、9は第1の判定要素、10は実効値演算要
素、11は第2の判定要素、12はインヒビツト
要素、13は比率ロツク要素(第1の比較判定要
素)、14は差動要素(第2の比較判定要素)で
ある。
FIG. 1 is a block diagram of the operating principle of a protective relay according to an embodiment of the present invention, FIG. 2 is a flowchart of the embodiment of FIG. 1, and FIG. 3 is a diagram of the compensation principle of phase characteristics of the present invention. FIG. 4 is a block diagram of the operating principle of a conventional protective relay, and FIG. 5 is a diagram showing the operating characteristics of a general protective relay. In the figure, 1 is a vector addition element, 2 is a rectification element, 3 is a first storage element, 4 is a first maximum value derivation element, 5 is a rectification element, 6 is a second maximum value derivation element, and 7 is a first maximum value derivation element. 2 is a storage element, 8 is a third maximum value deriving element, 9 is a first judgment element, 10 is an effective value calculation element, 11 is a second judgment element, 12 is an inhibit element, 13 is a ratio lock element (the 1), and 14 is a differential element (second comparison/judgment element).

Claims (1)

【特許請求の範囲】[Claims] 1 複数系統からそれぞれ電流量を取り込んでベ
クトル加算するベクトル加算要素と、上記ベクト
ル加算要素にベクトル加算されたベクトル加算量
を記憶する第1の記憶要素と、上記ベクトル加算
要素にベクトル加算された現時刻におけるベクト
ル加算量と上記第1の記憶要素に記憶された所定
時刻前のベクトル加算量とを比較して大きい方を
導出する第1の最大値導出要素と、上記複数系統
から取り込んだ各電流量のうち絶対値が最も大き
い電流量を導出する第2の最大値導出要素と、上
記第2の最大値導出要素に導出された最大電流量
を記憶する第2の記憶要素と、上記第2の最大値
導出要素に導出された現時刻における最大電流量
と上記第2の記憶要素に記憶された所定時刻前の
最大電流量とを比較して大きい方を導出する第3
の最大値導出要素と、上記第1の最大値導出要素
に導出されたベクトル加算量と上記第3の最大値
導出要素に導出された最大電流量との大小関係を
判定する第1の判定要素と、上記ベクトル加算要
素にベクトル加算された現時刻におけるベクトル
加算量と上記第1の記憶要素に記憶された所定時
刻前のベクトル加算量とを入力して2乗和を演算
する実効値演算要素と、上記実効値演算要素に演
算された演算値と所定の基準値との大小関係を判
定する第2の判定要素と、上記第1の判定要素に
そのベクトル加算量の方が大きいと判定され、か
つ上記第2の判定要素にその基準値の方が小さい
と判定された場合のみ動作出力をするインヒビツ
ト要素とを備えた保護継電器。
1 A vector addition element that takes in current amounts from multiple systems and adds them vectorwise; a first storage element that stores the vector addition amount added to the vector addition element; and a vector addition element that stores the vector addition amount added to the vector addition element; a first maximum value derivation element that compares the amount of vector addition at a time with the amount of vector addition before a predetermined time stored in the first storage element and derives the larger one; and each current taken in from the plurality of systems. a second maximum value derivation element that derives the amount of current with the largest absolute value among the amounts; a second storage element that stores the maximum amount of current derived to the second maximum value derivation element; A third step that compares the maximum current amount at the current time derived by the maximum value deriving element with the maximum current amount before a predetermined time stored in the second storage element and derives the larger one.
a first determination element that determines the magnitude relationship between the maximum value derivation element, the vector addition amount derived to the first maximum value derivation element, and the maximum current amount derived to the third maximum value derivation element; and an effective value calculation element that calculates a sum of squares by inputting the vector addition amount at the current time that has been vector added to the vector addition element and the vector addition amount at a predetermined time before stored in the first storage element. and a second determination element that determines the magnitude relationship between the calculated value calculated by the effective value calculation element and a predetermined reference value, and a second determination element that determines that the vector addition amount is larger than the first determination element. and an inhibiting element that outputs an operational output only when the second determining element is determined to be smaller than the reference value.
JP60066041A 1985-03-29 1985-03-29 Protective relay Granted JPS61224824A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60066041A JPS61224824A (en) 1985-03-29 1985-03-29 Protective relay
EP86104089A EP0196066B1 (en) 1985-03-29 1986-03-25 Protective relay
US06/845,258 US4689710A (en) 1985-03-29 1986-03-28 Protective relay for an electric power system including decision-making computer means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066041A JPS61224824A (en) 1985-03-29 1985-03-29 Protective relay

Publications (2)

Publication Number Publication Date
JPS61224824A JPS61224824A (en) 1986-10-06
JPH0363299B2 true JPH0363299B2 (en) 1991-09-30

Family

ID=13304395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066041A Granted JPS61224824A (en) 1985-03-29 1985-03-29 Protective relay

Country Status (1)

Country Link
JP (1) JPS61224824A (en)

Also Published As

Publication number Publication date
JPS61224824A (en) 1986-10-06

Similar Documents

Publication Publication Date Title
US5963404A (en) Restricted earth fault protection for transformers using a directional element
US4297740A (en) Protective relaying apparatus
JPS646608B2 (en)
US4689710A (en) Protective relay for an electric power system including decision-making computer means
GB1590665A (en) Protective relay circuit for interphase faults
US5627712A (en) Transformer differential relay
US3992651A (en) Active symmetrical component network for protective relays
JPS6366139B2 (en)
JPH0363299B2 (en)
JPH0447545B2 (en)
JPH0546768B2 (en)
JPH01190215A (en) Phase selector
JPH0546769B2 (en)
JPS61224823A (en) Protective relay
JP2971298B2 (en) Protective relay
JP7471552B1 (en) High voltage direct current transmission return line protection relay, return line protection system, and return line protection method
JP3746493B2 (en) Ratio differential relay
JPH08126187A (en) Protection of digital protective relay
JP2788323B2 (en) Monitoring device for DC transformer
JP3269368B2 (en) Power converter abnormality detection circuit
JPS6051331B2 (en) Electric power system fault detection method
JPS6295923A (en) Protective relay of transformer
JPH01214220A (en) Harmonic suppression system for ratio differential relay
JPH0465613B2 (en)
JPH0514502B2 (en)