JPS61224824A - Protective relay - Google Patents

Protective relay

Info

Publication number
JPS61224824A
JPS61224824A JP60066041A JP6604185A JPS61224824A JP S61224824 A JPS61224824 A JP S61224824A JP 60066041 A JP60066041 A JP 60066041A JP 6604185 A JP6604185 A JP 6604185A JP S61224824 A JPS61224824 A JP S61224824A
Authority
JP
Japan
Prior art keywords
maximum value
output
amount
determination
comparison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60066041A
Other languages
Japanese (ja)
Other versions
JPH0363299B2 (en
Inventor
安斉 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60066041A priority Critical patent/JPS61224824A/en
Priority to EP86104089A priority patent/EP0196066B1/en
Priority to US06/845,258 priority patent/US4689710A/en
Publication of JPS61224824A publication Critical patent/JPS61224824A/en
Publication of JPH0363299B2 publication Critical patent/JPH0363299B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ディジタル計算機を用いて電力系統の動作
状態を判定し機器を保護する保護継電器に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a protective relay that uses a digital computer to determine the operating state of a power system and protect equipment.

〔従来の技術〕[Conventional technology]

第4図は例えば、特開昭55−23779号公報に示さ
れた保護継電装置を示す原理図で、図において、21は
系統の電流量を整流し平滑する整流平滑要素、22は前
記系統の各電流量をベクトル加算するベクトル加算要素
、23は前記整流平滑された各電流量を加算するスカラ
ー加算要素。
FIG. 4 is a principle diagram showing a protective relay device disclosed in, for example, Japanese Patent Application Laid-Open No. 55-23779. 23 is a scalar addition element that adds the rectified and smoothed current amounts.

24は前記ベクトル加算量を整流平滑する整流平滑要素
、25は前記ベクトル加算量(動作量)とスカラー加算
量(抑制量)とを比較判定する比較判定要素、26は前
記の判定結果を出力する出力要素である。
24 is a rectification and smoothing element that rectifies and smoothes the vector addition amount; 25 is a comparison judgment element that compares and judges the vector addition amount (operation amount) and the scalar addition amount (suppression amount); and 26 outputs the judgment result. It is an output element.

次に第4図の動作原理を演算式(11、(2)式で示す
11ΣI+ If  ≧に1×(III It It 
)+4   ・・・(1)(III”ll = +I’
 + + +亡”l +に、X 1II7+ −II’
−’+1 )  ・・・(2)ここで、I−は1時刻に
サンプリングされた電流量で、添字のiは端子番号で°
ある。また、ΣI+はベクトル加算、llI’l+  
は整流平滑、Σ1lIi’ll  はヌカ會 ラー加算を意味し、KotKttKtは定数である。ま
た、前記例ではサンプリング周波数を系統周波数の12
倍(30°サンプリング)としである。
Next, the principle of operation in Fig. 4 is expressed by the calculation formula (11, (2)).
)+4...(1)(III"ll = +I'
+ + +death"l +, X 1II7+ -II'
-'+1) ... (2) Here, I- is the amount of current sampled at one time, and the subscript i is the terminal number.
be. Also, ΣI+ is vector addition, llI'l+
Σ1lIi'll means rectification smoothing, Σ1lIi'll means neutral addition, and KotKttKt is a constant. In the above example, the sampling frequency is set to 12 of the system frequency.
Double (30° sampling).

次に第4図の動作について説明する。すなわち、サンプ
リングされた電力系統の夫々の電流量工11は整流平滑
要素21により、(2)式のように整流平滑されてll
I+lIとなり、スカラー加算要素23によりスカラー
加算されてΣlII+Ilとなる。また、前記夫々の電
流量I+はベクトル加算要素22によってベクトル加算
され、さらに整流平滑要素24で整流平滑され、11Σ
I+ Ifとなる。比較判定要素25では、前記スカラ
ー加算要素23の出力ΣIf It Itに適当な定数
が乗算され、前記整流平滑要素24の出力11Σ工%1
1とともに(1)式の判定が行なわれる鳳 。その結果(1)式が成立すれば、動作信号が前記比較
判定要素25より出力される。出力要素26は、前記の
動作信号に適当な時限をもたせて最終的な動作出力信号
として出力する。
Next, the operation shown in FIG. 4 will be explained. That is, each sampled current flow rate 11 of the power system is rectified and smoothed by the rectification and smoothing element 21 as shown in equation (2).
I+lI, which is scalar-added by the scalar addition element 23 to become ΣlII+Il. Further, the respective current amounts I+ are vector-added by a vector addition element 22, further rectified and smoothed by a rectification and smoothing element 24, and 11Σ
I+If. In the comparison/judgment element 25, the output ΣIf It It of the scalar addition element 23 is multiplied by an appropriate constant, and the output 11ΣWork%1 of the rectification and smoothing element 24 is
Along with 1, Otori is judged by equation (1). As a result, if equation (1) is established, an operation signal is output from the comparison/judgment element 25. The output element 26 gives the operation signal an appropriate time limit and outputs it as a final operation output signal.

前記の演算式では、(1)式中の4を最小動作値、K1
を比率として第5図の一般的な差動保護継電器の動作特
性における実線ピ)で示された差動特性を得ようとして
いるため、瞬時値を整流しただけでは脈動となり、サン
プリング位相により動作特性にばらつきが発生するため
、例えば(2)式の様に整流平滑演算を行なわなければ
ならない。この(2)式の演算により4相整流の様な形
になり動作値誤差を小さくでき、差動特性のサンプリン
グ位相によるばらつきを少なくしようとしている。
In the above equation, 4 in equation (1) is the minimum operating value, K1
Since we are trying to obtain the differential characteristics shown by the solid line P in the operating characteristics of a general differential protection relay in Figure 5 by taking the ratio as Since variations occur in , it is necessary to perform rectification and smoothing calculations as shown in equation (2), for example. By calculating this equation (2), a form similar to four-phase rectification is achieved, and the operating value error can be reduced, and variations in the differential characteristics due to the sampling phase can be reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の保護継電器は以上のように構成されているので、
例えば母線保護に適用するような多端子情報を扱う場合
には、(2)式の演算処理に膨大な時間がかかることに
なり、CT飽和等による誤動作を避けるため、電流量の
大きさにより、自動的に4、に8等を変更する必要があ
った。よって、動作時間やディジタル計算機の処理能力
に強い制約を受けるなどの問題点があった。
Conventional protective relays are configured as described above, so
For example, when handling multi-terminal information that is applied to bus bar protection, it takes an enormous amount of time to process equation (2), and in order to avoid malfunctions due to CT saturation, etc., depending on the amount of current, It was necessary to automatically change 8th grade to 4th grade. Therefore, there are problems such as severe restrictions on operating time and processing capacity of the digital computer.

この発明は前記のような問題点を解消するためになされ
たもので、演算処理が容易で、高速に応動し、かつCT
飽和時等にも安定な動作をする保護継電器を得ることを
目的とする。
This invention was made to solve the above-mentioned problems, and it has easy calculation processing, high-speed response, and CT
The purpose is to obtain a protective relay that operates stably even when saturated.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る保護継電器は下記(3)式の原理式を用
い、(3)式を判定する第1の比較判定要素の出力と、
(4)式で判定する第2の比較判定要素の出力とをイン
ヒビツト要素に入力することにより最終出力するように
演算回路を構成したものである。
The protective relay according to the present invention uses the principle equation (3) below, and the output of the first comparison judgment element that judges equation (3);
The arithmetic circuit is configured to output the final output by inputting the output of the second comparison judgment element determined by equation (4) to the inhibit element.

Max(I I+’l 、l It’−”l )−m6
XMax(lΣIs’l 、 IΣIi’−1a、 、
  ≧ 0・・・ (3) 11ΣIs If≧4  ・・・ (4)但し、胸、6
は定数であり、L、It  は各々la、 tb時刻前
の電流サンプル量を表わす。以下前記第1の比較判定要
素を比率ロック要素、第2の比較判定要素な差動要素と
いう。
Max(II+'l, lIt'-"l)-m6
XMax(lΣIs'l, IΣIi'-1a, ,
≧ 0... (3) 11ΣIs If≧4... (4) However, chest, 6
are constants, and L and It represent the current sample amounts before times la and tb, respectively. Hereinafter, the first comparison and determination element will be referred to as a ratio lock element, and the second comparison and determination element will be referred to as a differential element.

〔作用〕[Effect]

この原理式を用いることにより、原理的に系統の電流瞬
時値で比率ロック要素(第1の比較判定要素)は判定演
算が可能になる。
By using this principle formula, it becomes possible in principle to perform judgment calculations on the ratio lock element (first comparison judgment element) using the instantaneous current value of the system.

〔実施例〕 “ 以下、この発明の一実施例を図について説明する。まず
、第1図において、lはサンプリングされた系統の電流
量をベクトル加算するベクトル加算要素、2は前記ベク
トル加算量を整流する整流要素、3は前記整流されたベ
クトル加算要素1の加算量を記憶する第1の記憶要素、
4は整流要素2の出力と前記第1の記憶要素3の出力の
最大値(差動量)を選出する第1の最大値導出要素、5
は前記サンプリングされた各系統の電流量を整流する整
流要素、6は前記整流された電流量の瞬時最大値を選出
する第2の最大値導出要素、7は前記選出された瞬時最
大値を記憶する第2の記憶要素、8は前記第2の最大値
導出要素6の出力と第2の記憶要素7の出力の最大値(
抑制量)を選出する第3の最大値導出要素、9は前記差
動量と抑制量の大小関係によりレベル判定し出力する第
1の判定要素、lOは前記整流されたベクトル加算要素
1の加算量と第1の記憶要素3で記憶された数サンプル
前の加算量の29f!、和をとる実効値演算要素、11
は前記2乗和と基準値との大小関係を判定し出力する第
2の判定要素、12は前記第2の判定要素11の出力を
第1の判定要素9の出力でロックするインヒビツト要素
、13は原理式(3)の判定をする比率ロック要素(第
10托較判定要素)、14は原理式(4)の判定をする
差動要素(第2の比−判定要素)である。
[Embodiment] "An embodiment of the present invention will be explained below with reference to the drawings. First, in FIG. a rectifying element that rectifies, 3 a first storage element that stores the addition amount of the rectified vector addition element 1;
4 is a first maximum value deriving element that selects the maximum value (differential amount) of the output of the rectifying element 2 and the output of the first storage element 3;
is a rectifying element that rectifies the sampled current amount of each system; 6 is a second maximum value deriving element that selects the instantaneous maximum value of the rectified current amount; 7 is a memory for storing the selected instantaneous maximum value. The second storage element 8 is the maximum value (
9 is a first determination element that determines the level based on the magnitude relationship between the differential amount and the suppression amount and outputs it; lO is the addition of the rectified vector addition element 1; 29f of the amount and the addition amount of several samples ago stored in the first storage element 3! , effective value calculation element that calculates the sum, 11
12 is a second determination element that determines and outputs the magnitude relationship between the sum of squares and the reference value; 12 is an inhibit element that locks the output of the second determination element 11 with the output of the first determination element 9; 14 is a ratio lock element (10th comparison determination element) that makes a determination based on the principle formula (3), and 14 is a differential element (second ratio-determination element) that makes a determination based on the principle formula (4).

次に第1図の動作について説明する。まず、第1図のブ
ロック図を、ディジタル計算機を用いてプログラムする
と、第2図のフローチャートで表現できる。
Next, the operation shown in FIG. 1 will be explained. First, when the block diagram of FIG. 1 is programmed using a digital computer, it can be expressed as the flowchart of FIG. 2.

すなわち、ステップ1では1時刻にサンプリングがなさ
れ量子化された各系統の電流量ニーのベクトル加算量E
D  をベクトル加算要素1で計算し、ステップ2で前
記電流量IIの各々の絶対値の最大値ERを第2の最大
値導出要素6で計算する。続いてステップ3で前記ベク
トル加算量ED  とt1時刻前のベクトル加算量ED
′−“ の最大値E、、tL <差動量)を第1の最大
値導出要素4で計算し、ステップ4では前記ステップ2
で計算した最大値El  とib時刻前の最大値El 
  の最大値Ell  (抑制量)を第3の最大値導出
要素8で計算し、ステップ5で前記差動量ED”をm。
That is, in step 1, the vector addition amount E of the current amount knee of each system sampled and quantized at one time is
D is calculated by the vector addition element 1, and in step 2, the maximum value ER of the absolute value of each of the current amounts II is calculated by the second maximum value derivation element 6. Next, in step 3, the vector addition amount ED and the vector addition amount ED before time t1 are calculated.
'-'' maximum value E,, tL < differential amount) is calculated by the first maximum value deriving element 4, and in step 4, the maximum value E,, tL < differential amount) is calculated.
The maximum value El calculated by and the maximum value El before time ib
The maximum value Ell (suppression amount) is calculated by the third maximum value deriving element 8, and in step 5, the differential amount ED'' is calculated by m.

倍し、前記抑制量ERt’ トO大小関係を比較して後
者の方が大きいか、又は等しいときに比率ロック要素1
3は動作とし、それ以外のときには比率ロック要素は不
動作とする判定を第1の判定要素9で行なう。ステップ
6では前記ベクトル加算要素1の加算量EDt とt・
時刻前のベクトル加算量ED1−1″  の2乗N E
/’を実効値演算要素10で計算し、ステップ7で前記
2乗和E1と定数々の大小関係を比較し前者の方が大き
いか、又は等しいとき、差動要素を動作とし、それ以外
のときは差動要素を不動作とする演算を第2の判定要素
11で行なう。ステップ8では、前記ステップ4とステ
ップ7の判定結果に基づき比率ロック要素13が不動作
で、かつ差動要素14が動作のときのみ総合動作として
最終出力し、それ以外のときは総合不動作、又は総合復
帰として最終出力する判定をインヒビツト要素12で行
う。なお、ステップ1とステップ2、ステップ2とステ
ップ3、ステップ3とステップ4、ステップ2〜5とス
テップ6〜7は演算順序が逆であってもよい。また、各
系統の電流量ニ1  が時間的に正げん波で変化すると
きに1.を適当に設定すれば、前記2乗和E/′は実効
値の2乗和となることは自明なので、ここでの説明は省
略する。
Multiply the suppression amount ERt' and compare the magnitude relationship between
The first determination element 9 determines that the ratio lock element is in operation at 3, and that the ratio lock element is inoperative in other cases. In step 6, the addition amount EDt of the vector addition element 1 and t・
Vector addition amount ED1-1'' before time squared N E
/' is calculated by the effective value calculation element 10, and in step 7, the magnitude relationship between the sum of squares E1 and the constant number is compared, and if the former is larger or equal, the differential element is operated, and the other In this case, the second determination element 11 performs an operation to disable the differential element. In step 8, based on the determination results of steps 4 and 7, a final output is made as a total operation only when the ratio lock element 13 is inoperative and the differential element 14 is in operation; Alternatively, the inhibitor element 12 determines whether to make a final output as a comprehensive return. Note that the calculation order of steps 1 and 2, steps 2 and 3, steps 3 and 4, and steps 2 to 5 and steps 6 to 7 may be reversed. Also, when the current amount N1 of each system changes in a positive wave over time, 1. It is obvious that if E/' is set appropriately, the sum of squares E/' becomes the sum of squares of the effective values, so the explanation here will be omitted.

tb=90°のとき (E♂>’ + < EDt−t
b、!−IEDI (sia”ωを十〇S2ωt)=I
EDl  となるまた、第2図中の各判定部は、特性の
安定化のための対策として複数回照合(自明なので説明
省略)をすることもできる。
When tb=90° (E♂>' + < EDt-t
b,! −IEDI (sia”ω is 10S2ωt)=I
EDl. Furthermore, each determination section in FIG. 2 can perform verification multiple times (as this is self-explanatory, the explanation will be omitted) as a measure for stabilizing the characteristics.

この発明によれば、前述の原理式(3)で第5図の(イ
)の実線を決定し、原理式(4)で第5図の(7)の点
線を決定するととKより従来と同様の比率差動特性が得
られる。かつ、原理式(3)は、差動量BD”と抑制量
EIL/*の比だけで判定するので瞬時値で演算判定が
でき、(イ)の実線が原点を通る直線となるので最小動
作値4と比率−が各々独立に設定できるという特徴をも
つ。また第3図のような端子電流の位相が同位相、或い
は逆位相でないような場合、動作域にもかかわらず、開
時的に抑制量Ell  かベクトル加算量ED  を越
えるような時間領域(第3図の斜線部)を記憶されたベ
クトル加算量ED1−″で補償すること罠より、この領
域をなくシ、位相特性で動作域が瞬時演算により狭くな
ることを防いでいる。さらに、外部事故時に、過大電流
が貫通し、流出側CTが飽和する際、当該C72次電流
が瞬時的に減少し、過大な差動量が見かけ上発生するが
、この発明によれば、飽和する際に発生する過大な差動
量を、記憶された系統の電流量の最大値E♂−″ゝで打
ち消すため、(3)の原理式に基づく比率ロック要素は
復帰せず、ロック状態が継続し、誤動作には至らない。
According to this invention, the solid line in (a) in FIG. 5 is determined by the above-mentioned principle equation (3), and the dotted line in FIG. Similar ratio differential characteristics are obtained. In addition, since the principle formula (3) is determined only by the ratio of the differential amount BD" and the suppression amount EIL/*, calculations can be made based on the instantaneous value, and the solid line in (a) is a straight line passing through the origin, so the minimum operation is possible. It has the characteristic that the value 4 and the ratio - can be set independently.Also, when the terminal currents are not in the same phase or out of phase as shown in Figure 3, the opening time may vary regardless of the operating range. By compensating for the time domain in which the suppression amount Ell exceeds the vector addition amount ED (the shaded area in Fig. 3) with the stored vector addition amount ED1-'', this region can be eliminated and the operating range determined by the phase characteristics. is prevented from becoming narrow due to instantaneous calculation. Furthermore, in the event of an external fault, when an excessive current passes through and the outflow side CT is saturated, the C7 secondary current decreases instantaneously, and an excessive differential amount appears to occur. In order to cancel the excessive differential amount that occurs when It continues and does not lead to malfunction.

また、前記実施例では、前述の(4)式の判定に2乗和
演算を用いたが、原理的にレベル判定であるので、従来
の実施例で説明した(2)式の整流平滑演算か或いは、
(5)式のような積分演算であってもよく、前記実施例
と同様の効果を奏する。
In addition, in the embodiment described above, the sum of squares calculation was used for the determination of the above-mentioned formula (4), but since it is a level determination in principle, the rectification and smoothing calculation of the formula (2) explained in the conventional embodiment is used. Or,
An integral calculation as shown in equation (5) may be used, and the same effect as in the embodiment described above can be achieved.

11ぞIt ll = +lf工11’−”=1ΣI+
 I + IΣLl  +IΣL1  +・・・ ・・
・(5)Il1 〔発明の効果〕 以上のように、この発明によれば、原理的に系統電流量
の瞬時値で演算判定が可能なように演算回路を構成した
ので、前述の(2)式のような整流平滑演算の必要がな
くなって、演算時間が大幅に短縮され、事故の処置が速
やかに行える効果がある。また、高速に応動が可能であ
るため、1台のディジタル計算機に対しての処理量の負
担が軽減される。さらに外部事故時OCT飽和現象に対
しても非常に安定な特性が容易に得られる等の効果があ
る。
11 It ll = +lf 11'-"=1ΣI+
I + IΣLl +IΣL1 +... ・・
・(5) Il1 [Effects of the Invention] As described above, according to the present invention, the arithmetic circuit is configured in such a way that calculation determination can be made based on the instantaneous value of the system current amount, so that the above-mentioned (2) can be achieved. This eliminates the need for rectification and smoothing calculations such as those in the equation, which greatly reduces calculation time and has the effect of allowing prompt handling of accidents. Furthermore, since it is possible to respond quickly, the processing load on one digital computer is reduced. Furthermore, there are effects such as the ability to easily obtain very stable characteristics against OCT saturation phenomena during external accidents.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例による保護継電器の動作
原理ブロック図、第2図は第1図の実施例の70−チャ
ート図、第3図はこの発明の位相特性の補償原理図、第
4図は従来の保護継電器の動作原理ブロック図、第5図
は一般的な保護継電器の動作特性を示す図である。 図において、1はベクトル加算要素、2は整流要素、3
は第1の記憶要素、4は第1の最大値導出要素、5は整
流要素、6は第2の最大値導出要素、7は第2の記憶要
素、8は第3の最大値導出要素、9は第1の判定要素、
10は実効値演算要素、11は第2の判定要素、12は
インヒビツト要素、13は比率ロック要素(第1の比較
判定要素)、14は差動要素(第2の比較判定要素)で
ある。 特許出願人  三菱電機株式会社 代理人弁理士  1)澤 博 昭 ・、″乙口(外2名
)IJ・二゛−jj 第3図 max(111+I21:111+1zl当xm。 IR(抑制電ん)
FIG. 1 is a block diagram of the operating principle of a protective relay according to an embodiment of the present invention, FIG. 2 is a 70-chart diagram of the embodiment of FIG. 1, and FIG. 3 is a diagram of the compensation principle of phase characteristics of the present invention. FIG. 4 is a block diagram of the operating principle of a conventional protective relay, and FIG. 5 is a diagram showing the operating characteristics of a general protective relay. In the figure, 1 is a vector addition element, 2 is a rectification element, and 3
is a first storage element, 4 is a first maximum value derivation element, 5 is a rectification element, 6 is a second maximum value derivation element, 7 is a second storage element, 8 is a third maximum value derivation element, 9 is the first determination element;
10 is an effective value calculation element, 11 is a second judgment element, 12 is an inhibit element, 13 is a ratio lock element (first comparison judgment element), and 14 is a differential element (second comparison judgment element). Patent applicant: Patent attorney representing Mitsubishi Electric Corporation 1) Hiroshi Sawa, ``Otsuguchi (2 others) IJ, 2-jj Figure 3 max (111 + I21: 111 + 1zl xm. IR (suppression electric))

Claims (3)

【特許請求の範囲】[Claims] (1)複数系統からの電流量を取り込んでベクトル加算
するベクトル加算要素と、前記ベクトル加算要素の加算
量を記憶する第1の記憶要素と、前記電流量の絶対値の
瞬時最大値を選出する第2の最大値導出要素と、前記第
2の最大値導出要素で選出された最大値を記憶する第2
の記憶要素と、前記ベクトル加算要素、第1の記憶要素
、第2の最大値導出要素、第2の記憶要素の各出力を取
り込んで比較判定し出力する第1の比較判定要素と、前
記ベクトル加算要素の加算量、第1の記憶要素の出力と
を取り込んでレベル判定し出力する第2の比較判定要素
と、前記第1及び第2の比較判定要素の出力をインヒビ
ツトし最終出力とするインヒビツト要素とを備えた保護
継電器。
(1) Select a vector addition element that takes in the amount of current from multiple systems and adds the vector, a first storage element that stores the addition amount of the vector addition element, and the instantaneous maximum value of the absolute value of the amount of current. a second maximum value deriving element; and a second maximum value deriving element that stores the maximum value selected by the second maximum value deriving element.
a first comparison/judgment element that takes in each output of the vector addition element, the first storage element, the second maximum value derivation element, and the second storage element, compares and judges, and outputs the vector; a second comparison and judgment element that takes in the addition amount of the addition element and the output of the first storage element, determines the level, and outputs it; and an inhibitor that inhibits the outputs of the first and second comparison and judgment elements to produce a final output. Protective relay with elements.
(2)前記第1の比較判定要素の構成として、前記第2
の最大値導出要素及び第2の記憶要素の出力とを取り込
んで最大値を出力する第3の最大値導出要素と、前記第
3の最大値導出要素の出力、並びにベクトル加算要素、
第1の記憶要素の2出力より最大値を導出する第1の最
大値導出要素との出力を取り込んで比較判定する第1の
判定要素とを備えたことを特徴とする特許請求の範囲第
1項記載の保護継電器。
(2) As a configuration of the first comparison determination element, the second
a third maximum value derivation element that takes in the maximum value derivation element and the output of the second storage element and outputs the maximum value; an output of the third maximum value derivation element; and a vector addition element;
A first maximum value deriving element that derives the maximum value from two outputs of the first storage element; and a first determination element that takes in the output and makes a comparative determination. Protective relay as described in section.
(3)前記第2の比較判定要素の構成として、前記ベク
トル加算要素及び第1の記憶要素の出力とを取り込んで
2乗和を求める実効値演算要素と、前記実効値演算要素
の出力を所定の定数値と比較する第2の判定要素とを備
えたことを特徴とする特許請求の範囲第1項記載の保護
継電器。
(3) The configuration of the second comparison/determination element includes an effective value calculation element that takes in the outputs of the vector addition element and the first storage element and calculates the sum of squares, and a predetermined value for the output of the effective value calculation element. 2. The protective relay according to claim 1, further comprising a second determination element for comparison with a constant value of .
JP60066041A 1985-03-29 1985-03-29 Protective relay Granted JPS61224824A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60066041A JPS61224824A (en) 1985-03-29 1985-03-29 Protective relay
EP86104089A EP0196066B1 (en) 1985-03-29 1986-03-25 Protective relay
US06/845,258 US4689710A (en) 1985-03-29 1986-03-28 Protective relay for an electric power system including decision-making computer means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066041A JPS61224824A (en) 1985-03-29 1985-03-29 Protective relay

Publications (2)

Publication Number Publication Date
JPS61224824A true JPS61224824A (en) 1986-10-06
JPH0363299B2 JPH0363299B2 (en) 1991-09-30

Family

ID=13304395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066041A Granted JPS61224824A (en) 1985-03-29 1985-03-29 Protective relay

Country Status (1)

Country Link
JP (1) JPS61224824A (en)

Also Published As

Publication number Publication date
JPH0363299B2 (en) 1991-09-30

Similar Documents

Publication Publication Date Title
US4689710A (en) Protective relay for an electric power system including decision-making computer means
JPS6366139B2 (en)
JPS61224824A (en) Protective relay
JPS61224822A (en) Protective relay
JPS61224823A (en) Protective relay
JPS62285616A (en) Protective relay
JPH0546768B2 (en)
JP3097375B2 (en) Three-phase current detection circuit
JPS602028A (en) Voltage variation suppressing device
JP2788323B2 (en) Monitoring device for DC transformer
Macferran Parallel Operation of Transformers Whose Ratios of Transformation are Unequal
CN114825283A (en) Bus self-adaptive differential protection method and system based on waveform characteristics
JPS5935520A (en) Rear facility distance relaying device
JPH0514502B2 (en)
JPS5883536A (en) Load remedy arithmetic unit
JPH0359657B2 (en)
JPS6359719A (en) Digital differential current relay
JPH0313810B2 (en)
JPS6346651B2 (en)
JPS5866527A (en) Ground-fault bus protecting relay unit
Kezunovic et al. Design and Implementation of Transformer and Busbar Differential Protection
JPS6389020A (en) Protective relay of transformer
JPS6295923A (en) Protective relay of transformer
JPH01214220A (en) Harmonic suppression system for ratio differential relay
JPH0432618B2 (en)