JPH0546768B2 - - Google Patents

Info

Publication number
JPH0546768B2
JPH0546768B2 JP61122977A JP12297786A JPH0546768B2 JP H0546768 B2 JPH0546768 B2 JP H0546768B2 JP 61122977 A JP61122977 A JP 61122977A JP 12297786 A JP12297786 A JP 12297786A JP H0546768 B2 JPH0546768 B2 JP H0546768B2
Authority
JP
Japan
Prior art keywords
amount
current
vector addition
equal
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61122977A
Other languages
Japanese (ja)
Other versions
JPS62281719A (en
Inventor
Toshio Anzai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61122977A priority Critical patent/JPS62281719A/en
Publication of JPS62281719A publication Critical patent/JPS62281719A/en
Publication of JPH0546768B2 publication Critical patent/JPH0546768B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、デイジタル計算機を用いて電力系
統の動作状態を判定し、機器を保護する保護継電
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a protective relay that uses a digital computer to determine the operating state of a power system and protect equipment.

〔従来の技術〕[Conventional technology]

第4図は例えば特開昭55−23779号公報に示さ
れた従来の保護継電器を示す原理図であり、図に
おいて、21は系統の電流量を整流し平滑する整
流平滑要素、22は上記系統の各電流量をベクト
ル加算するベクトル加算要素、23は上記整流平
滑された各電流量を加算するスカラー加算要素、
24は上記ベクトル加算量を整流平滑する整流平
滑要素、25は上記ベクトル加算量(動作量)と
スカラー加算量(抑制量)とを比較判定する比較
判定要素、26は上記の判定結果を出力する出力
要素である。
FIG. 4 is a principle diagram showing a conventional protective relay disclosed in, for example, Japanese Unexamined Patent Publication No. 55-23779. In the figure, 21 is a rectifying and smoothing element that rectifies and smoothes the amount of current in the system, and 22 is a rectifying and smoothing element for rectifying and smoothing the amount of current in the system. 23 is a scalar addition element that adds each of the rectified and smoothed current amounts as a vector,
24 is a rectification and smoothing element that rectifies and smoothes the vector addition amount, 25 is a comparison judgment element that compares and judges the vector addition amount (operation amount) and the scalar addition amount (suppression amount), and 26 outputs the above judgment result. It is an output element.

次に第4図の動作原理を演算式(1)、(2)で示す。 Next, the operating principle of FIG. 4 is shown using equations (1) and (2).

‖ 〓i Ii t‖≧K1×( 〓i ‖Ii t‖)+K0 (1) (‖It‖=|It|+|It-3|+K2×‖It|−
|It-3‖)(2) ここで、Ii tはt時刻にサンプリングされた電流
量で、添字のiは端子番号である。また 〓i Ii tはベ
クトル加算、‖It‖は整流平滑、 〓iiIt‖はスカラ
ー加算を意味し、K0,K1,K2は定数である。ま
た上記例ではサンプリング周波数を系統周波数の
12倍(30°サンプリング)としてある。
‖ 〓 i I i t ‖≧K 1 × ( 〓 i ‖I i t ‖)+K 0 (1) (‖I t ‖=|I t |+|I t-3 |+K 2 ×‖I t |−
|I t-3 ‖) (2) Here, I i t is the amount of current sampled at time t, and the subscript i is the terminal number. Also, 〓 i I i t means vector addition, ‖I t ‖ means rectification smoothing, 〓 ii I t ‖ means scalar addition, and K 0 , K 1 , and K 2 are constants. Also, in the above example, the sampling frequency is set to the grid frequency.
12 times (30° sampling).

次に第4図の動作について説明する。すなわ
ち、サンプリングされた電力系統の夫々の電流量
Ii tは整流平滑要素21により、(2)式のように整流
平滑されて‖Ii t‖、スカラー加算要素23により
スカラー加算されて 〓i ‖Ii t‖となる。また、上記
夫々の電流量Ii tは、ベクトル加算要素22によつ
てベクトル加算され、さらに、整流平滑要素24
で整流平滑されて‖ 〓i Ii t‖となる。
Next, the operation shown in FIG. 4 will be explained. In other words, the amount of current in each sampled power system
I i t is rectified and smoothed by the rectifying and smoothing element 21 as shown in equation (2 ) , and is scalar-added by the scalar addition element 23 to become 〓 i ‖I i t ‖. Further, each of the above-mentioned current amounts I i t is vector-added by the vector addition element 22, and further, the rectification smoothing element 24
It is rectified and smoothed by ‖ 〓 i I i t ‖.

比較判定要素25では、上記スカラー加算量2
3出力 〓i ‖Ii t‖に適当な定数が乗算され、上記整
流平滑要素24の出力‖ 〓i Ii t‖とともに(1)式の判
定が行なわれる。その結果(1)式が成立すれば、動
作信号が上記比較例判定要素25より出力され
る。出力要素26は、上記の動作信号に適当な時
限をもたせて最終的な動作信号とに出力する。
In the comparison judgment element 25, the above scalar addition amount 2
The three outputs 〓 i ‖I i t ‖ are multiplied by an appropriate constant, and the equation (1) is determined together with the output 〓 〓 i I i t ‖ of the rectifying and smoothing element 24. As a result, if equation (1) is established, an operation signal is output from the comparative example determining element 25. The output element 26 gives the above operation signal an appropriate time limit and outputs it as a final operation signal.

上記の演算式では、(1)式中のK0を最小動作値、
K1を比率として第5図の一般的な差動保護継電
器の動作特性における実線イで示された差動特性
を得ようとしているため、瞬時値を整流しただけ
では脈動となり、サンプリング位相により、動作
特性にばらつきが発生するため、例えば(2)式のよ
うに整流平滑を行なう必要がある。この(2)式の演
算により、4相整流の様な形になり、動作値誤差
を小さくでき、差動特性のサンプリング位相によ
るバラツキを少なくしようとしている。
In the above equation, K 0 in equation (1) is the minimum operating value,
Since we are trying to obtain the differential characteristics shown by the solid line A in the operating characteristics of a general differential protective relay in Figure 5 using K 1 as a ratio, simply rectifying the instantaneous value will result in pulsation, and depending on the sampling phase, Since variations occur in the operating characteristics, it is necessary to perform rectification and smoothing as shown in equation (2), for example. By calculating this equation (2), a form similar to four-phase rectification is obtained, the operating value error can be reduced, and the variation due to the sampling phase of the differential characteristics can be reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の保護継電器は以上のように構成されてい
るので、例えば母線保護のような多端子情報を扱
う場合には、(2)式の演算処理に膨大な時間がかか
ることになる。また、CT飽和等による誤動作を
避けるため、電流量の大きさにより、自動的に定
数K0,K1を変更して差動特性の傾きを大電流領
域で大きく変えてやる等の対策を施しているが、
完全ではなく、例えば1端子のCTが完全に飽和
してCT2次電流が瞬時的に0になるようなケース
では誤動作する可能性もあり、また、この処理に
もかなりの時間がかかり、計算機の処理能力に強
い制約を与える等の問題点があつた。
Since the conventional protective relay is configured as described above, when handling multi-terminal information such as bus bar protection, the calculation process of equation (2) takes an enormous amount of time. In addition, in order to avoid malfunctions due to CT saturation, etc., measures are taken such as automatically changing the constants K 0 and K 1 depending on the amount of current, and greatly changing the slope of the differential characteristics in the large current region. Although,
For example, if the CT of one terminal is completely saturated and the CT secondary current instantaneously becomes 0, malfunction may occur. Also, this process takes a considerable amount of time and is difficult for computers. There were problems such as strong restrictions on processing capacity.

この発明は上記のような問題点を解消するため
になされたもので、演算処理が容易で、高速に応
動し、CT飽和等にも安定な保護継電器を得こと
を目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a protective relay that is easy to process, responds quickly, and is stable against CT saturation.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る保護継電器は下記の(3)式を原理
式として用い、(3)式を判定する第1の比較判定要
素の出力で、下記(4)式を判定する第2の比較判定
要素の出力をインヒビツトすることにより、最終
出力とするように演算回路を構成し、更に抑制量
( Max i|Ii t|)の大きさにより、(3)式の判定の照
合回数を変動させるように構成したものである。
The protective relay according to the present invention uses the following formula (3) as a principle formula, and uses the output of the first comparison and determination element that determines formula (3) to determine the following formula (4). The arithmetic circuit is configured so that the final output is obtained by inhibiting the output of It is composed of

Max i|Ii t|−m0×Max(| 〓i Ii t|、| 〓i Ii t-ta|)≧0 ……(3) ‖ 〓i iIi t‖≧K0 ……(4) 但し、m0,K0は定数であり、Ii t-taはta時刻前
のサンプリング量を表わす。(以下、上記第1の
比較判定要素を比率ロツク要素、第2の比較判定
要素と差動要素という。) 〔作用〕 この発明における比率ロツク要素(第1の比較
判定要素)は原理的に系統の電流瞬時値で判定演
算が可能になることにより、外部事故時のCT飽
和にも瞬時に検出して、誤動作を防止する。
Max i|I i t |−m 0 ×Max(| 〓 i I i t |, | 〓 i I i t-ta |)≧0 ……(3) ‖ 〓 i iI i t ‖≧K 0 …… (4) However, m 0 and K 0 are constants, and I i t-ta represents the sampling amount before time t a . (Hereinafter, the first comparison and judgment element will be referred to as a ratio lock element, and the second comparison and judgment element will be referred to as a differential element.) [Operation] The ratio lock element (first comparison and judgment element) in this invention is, in principle, a By making it possible to perform judgment calculations using the instantaneous current value, it is possible to instantly detect CT saturation in the event of an external accident and prevent malfunctions.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明す
る。第1図において、1はサンプリングされた系
統の電流量を整流する整流要素、2は上記整流さ
れた電流量の瞬時最大値(抑制値)を選出する第
2の最大値導出要素、3は上記サンプリングされ
た夫々の電流量をベクトル加算するベクトル加算
要素、4は上記のベクトル加算量を整流する整流
要素、6は上記整流されたベクトル加算量及び記
憶要素5で記憶された数サンプル前の加算量の最
大値(差動量)を選出する第1の最大値導出要
素、7は前記抑制量と差動量の大小関係を比較判
定する第1の判定要素、8は前記抑制量が所定の
基準値以下であるかを判定する第2の判定要素、
9は前記判定要素8とは異なるレベルで前記抑制
量をレベル判定する第3の判定要素、10は前記
第2の判定要素8の出力と第1の判定要素7の出
力のAND条件を出力するAND要素、11は前記
第3の判定要素9の出力と第1の判定要素7の出
力のAND条件を出力するAND要素、12は前記
AND要素10の出力が動作側に所定回数継続し
ていることで動作出力する第1の動作タイマー、
13は前記AND要素11の出力が前記動作タイ
マー12より大きい所定回数分動作側に継続する
ことにより動作出力する第2の動作タイマー、1
4は前記第1の動作タイマー12の出力と第2の
動作タイマー13の出力のOR条件を出力する
OR要素、15は復帰タイマー、16は前記整流
されたベクトル加算量と記憶要素5で記憶された
数サンプル前の加算量の2乗和をとる実効値演算
要素、17は前記の2乗和を基準値と比較し、そ
の大小関係により判定出力する第4の判定要素、
18は判定要素17の出力を復帰タイマー15の
出力でロツクするインヒビツト要素、19は上述
の原理式(3)の判定を行なう比率ロツク要素(第1
の比較判定要素)、20は上述の原理式(4)の判定
を行なう差動要素(第2の比較判定要素)であ
る。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a rectifying element that rectifies the current amount of the sampled system, 2 is a second maximum value deriving element that selects the instantaneous maximum value (suppression value) of the rectified current amount, and 3 is the above-mentioned maximum value deriving element. A vector addition element for vector addition of each sampled current amount; 4 is a rectification element for rectifying the above vector addition amount; 6 is an addition of the rectified vector addition amount and several samples before stored in storage element 5. A first maximum value deriving element selects the maximum value of the amount (differential amount), 7 is a first determination element that compares and determines the magnitude relationship between the suppression amount and the differential amount, and 8 indicates that the suppression amount is a predetermined value. a second determination element that determines whether it is below the reference value;
Reference numeral 9 denotes a third determination element that determines the level of the suppression amount at a level different from that of the determination element 8, and 10 outputs an AND condition of the output of the second determination element 8 and the output of the first determination element 7. AND element, 11 is an AND element that outputs the AND condition of the output of the third judgment element 9 and the output of the first judgment element 7, 12 is the above
a first operation timer that outputs an operation when the output of the AND element 10 continues on the operation side a predetermined number of times;
13 is a second operation timer that outputs an operation when the output of the AND element 11 continues on the operation side for a predetermined number of times greater than the operation timer 12;
4 outputs the OR condition of the output of the first operation timer 12 and the output of the second operation timer 13.
OR element, 15 is a return timer, 16 is an effective value calculation element that calculates the square sum of the rectified vector addition amount and the addition amount several samples ago stored in storage element 5, and 17 is the square sum of the above squared sum. a fourth determination element that compares with a reference value and outputs a determination based on the magnitude relationship;
18 is an inhibiting element that locks the output of the determination element 17 with the output of the recovery timer 15; 19 is a ratio locking element (first
20 is a differential element (second comparison/judgment element) that performs the judgment based on the above-mentioned principle formula (4).

次に第1図の動作について説明する。まず、第
1図のブロツク図を、デジタル計算機を用いてプ
ログラムで実現すると、第2図のフローチヤート
が得られる。すなわちステツプ1において、t時
刻に系統の電流量Ii tをサンプリングして、量子化
した該電流量をベクトル加算要素3にかけて加算
し、ED tを計算する。
Next, the operation shown in FIG. 1 will be explained. First, when the block diagram of FIG. 1 is realized by a program using a digital computer, the flowchart of FIG. 2 is obtained. That is, in step 1, the current amount I i t of the system is sampled at time t, and the quantized current amount is added by the vector addition element 3 to calculate E D t .

ステツプ2で前記夫々の電流量Ii tの各々の絶対
値の最大値ER t(抑制量)を最大値導出要素2で
計算し、次にステツプ3で前記のベクトル加算量
ED tとta時刻前のベクトル加算量ED t-taとの最大値
ED t(差動量)を最大値導出要素6で計算する。
In step 2, the maximum value E R t (suppression amount) of the absolute value of each of the current amounts I i t is calculated using the maximum value deriving element 2, and then in step 3, the vector addition amount
The maximum value between E D t and vector addition amount E D t-ta before time t a
E D t (differential amount) is calculated using maximum value derivation element 6.

次にステツプ4で前記抑制量EK tと定数K1との
大小を判定要素8で比較し、前者が大きいか或い
は等しいときステツプ5へ、後者が大きい時はス
テツプ4′を進む。ステツプ4′では前記抑制量ER t
定数K2(但しK1>K2)との大小を判定要素9で
比較し、前者が大きい時ステツプ5へ後者が大き
い時は比率ロツク要素は瞬時不動作としステツプ
9へ進む。
Next, in step 4, the determination element 8 compares the suppression amount E K t with the constant K 1 , and if the former is greater or equal, the process proceeds to step 5, and if the latter is greater, the process proceeds to step 4'. In step 4', the magnitude of the suppression amount E R t and the constant K 2 (however, K 1 > K 2 ) is compared using the judgment element 9. If the former is large, the process proceeds to step 5. If the latter is large, the ratio locking element is instantaneous. Make it inactive and proceed to step 9.

ステツプ5では前記差動量ED tをm0倍し、前記
抑制量ER tとの大小関係を判定要素7で比較し、
前者が大きい時、比較ロツク要素は瞬時不動作と
してステツプ9に進み、後者が大きいか或いは等
しい時は比率ロツク要素は瞬時動作としステツプ
7へ進む。
In step 5, the differential amount E D t is multiplied by m 0 and the magnitude relationship with the suppression amount E R t is compared using the determination element 7.
When the former is large, the comparison lock element is instantaneously inoperative and the process proceeds to step 9; when the latter is large or equal, the ratio lock element is instantaneously active and the process proceeds to step 7.

ステツプ6ではステツプ5と同様の判定を行
い、前者が大きい時比率ロツク要素は瞬時不動作
としてステツプ9へ進み、後者が大きい時、比率
ロツク要素は瞬時動作としてステツプ8へ進む。
ステツプ7及びステツプ8では各々動作タイマー
12及び13にて各々異なる時間T1,T2(T1
T2)動作出力が継続することにより、比率ロツ
ク要素は動作とし、ステツプ9へ進む。
In step 6, the same judgment as in step 5 is made, and if the former is large, the ratio lock element is assumed to be instantaneously inoperable, and the process proceeds to step 9. If the latter is large, the ratio lock element is considered to be instantaneously activated, and the process proceeds to step 8.
In step 7 and step 8, the operation timers 12 and 13 set different times T 1 and T 2 (T 1 >
T 2 ) As the operation output continues, the ratio lock element is activated and the process proceeds to step 9.

ステツプ9では前記ステツプ7、8の判定結果
が動作の時はそのまま動作結果を出力し、不動作
の時は適当な時間引き続き動作結果を出力するよ
うな復帰タイマー演算を復帰タイマー15によつ
て行う。
In step 9, a return timer calculation is performed using the return timer 15, so that when the judgment results of steps 7 and 8 indicate operation, the operation result is output as is, and when it is non-operation, the operation result is continuously output for an appropriate period of time. .

次にステツプ10で上記ベクトル加算量ED t
tb時刻前のベクトル加算量ED t-taの2乗和EDtを実
効値演算要素16で計算し、ステツプ11で上記2
乗和EDtと定数K2 0の大小関係を判定要素17で
比較して、前者の方が大きいか等しい時差動要素
を動作させ、それ以外の時は差動要素を不動作と
する判定を行う。
Next, in step 10, the above vector addition amount E D t and
The square sum E Dt of the vector addition amount E D t-ta before time t b is calculated by the effective value calculation element 16, and in step 11, the above 2 is calculated.
The determination element 17 compares the magnitude relationship between the multiplicative sum E Dt and the constant K 2 0 , and when the former is greater or equal, the differential element is activated, and at other times, the differential element is inactivated. Make a judgment.

ステツプ12では前記ステツプ4〜11の判定結果
に基づき、比率ロツク要素が不動作でかつ差動要
素が動作の時のみ総合動作として、インヒビツト
要素18が動作して最終出力し、それ以外の時は
総合不動作又は総合復帰として最終出力する判定
を行う。
In step 12, based on the judgment results of steps 4 to 11, only when the ratio lock element is inactive and the differential element is active, the overall operation is performed and the inhibit element 18 is activated to output the final output. The final output is determined as total inoperation or total recovery.

なお、ステツプ1とステツプ2、ステツプ2と
ステツプ3、ステツプ4〜9とステツプ10、11は
順序が逆であつてもよい。また系統の電流量Ii t
時間的に正弦波で変化するとき、tb時刻を適当に
設定すれば、上記2乗和EDtは実効値の2乗とな
ることは既に明らかであるので、ここでは説明を
省略する。
Note that the order of steps 1 and 2, steps 2 and 3, and steps 4 to 9 and steps 10 and 11 may be reversed. Furthermore, when the amount of current I i t in the grid changes over time in a sinusoidal manner, it is already clear that if the time t b is set appropriately, the sum of squares E Dt will be the square of the effective value. Therefore, the explanation will be omitted here.

tb=90°のとき、 (ED t2+(ED t-tb2 =|ED2(sin2ωt+cos2ωt) =|ED2となる。 When t b = 90°, (E D t ) 2 + (E D t-tb ) 2 = |E D | 2 (sin 2 ωt + cos 2 ωt) = |E D | 2 .

また、第2図中ステツプ12の判定部は特性の安
定化のための対策として複数回照合(自明なので
説明省略)をすることもできる。
Further, the determining section at step 12 in FIG. 2 can perform verification multiple times (description will be omitted as it is self-evident) as a measure for stabilizing the characteristics.

この発明によれば、前述の原理式(3)で第5図の
イの実線を決定し原理式(4)で第5図のアの点線を
決定することにより従来と同様の比率差動特性が
得られ、原理式(3)は差動量EDtと抑制量ER tの比だ
けで判定しているで、瞬時値で判定できる。
According to this invention, by determining the solid line A in FIG. 5 using the above-mentioned principle equation (3) and determining the dotted line A in FIG. is obtained, and since the principle formula (3) is determined only by the ratio of the differential amount E Dt and the suppression amount E R t , it can be determined using an instantaneous value.

また第5図の線イは原点を通る直線となるの
で、通常潮流が系統を貫通している際に内部事故
が発生した場合、比率ロツク要素の復帰タイマー
分動時間が遅れないように判定要素9を設け、
K2の値を潮流より大きく設定して、常時潮流貫
通時に比率ロツク要素が動作しないようにしてあ
る。
In addition, since line A in Figure 5 is a straight line passing through the origin, if an internal accident occurs while normal power flow is passing through the system, the judgment element is used so that the return timer division time of the ratio lock element is not delayed. 9 is established,
The value of K 2 is set larger than the tidal current so that the ratio lock element does not operate when the tidal current is constantly passing through.

第3図のように端子電流の位相が同位相或いは
逆位相でないような場合、動作域にもかかわらず
瞬時的に抑制量ER tがベクトル加算量ED tを超える
ような時間領域(第3図の斜線部)を記憶された
ベクトル加算量で補償することにより、この領域
をなくし、位相特性で動作域が瞬時的に狭くなる
ことを防いでいる。
As shown in Fig. 3 , when the phases of the terminal currents are not the same phase or opposite phases , the time domain (the phase By compensating for the shaded area in FIG. 3 with the stored vector addition amount, this area is eliminated and the operating range is prevented from being instantaneously narrowed due to the phase characteristics.

上記の補償方法はステツプ3の方法以外でED t-
taに適当な定数を乗算してやり最大値をとること
で位相特性の動作限界角度を調整することも可能
である。
The above compensation method is other than the method in step 3 .
It is also possible to adjust the operating limit angle of the phase characteristic by multiplying ta by an appropriate constant and taking the maximum value.

さらに外部事故時に過大電流が貫通し、流出側
CTに電流が集中して、CTが飽和し、見かけ上差
動誤差が発生する事に対し、飽和する以前に原理
式(3)を判定する比率ロツク要素が動作し、動作信
号を差動誤差が発生している期間引き延ばすこと
でロツク状態を継続させ、継電器の誤動作を防い
でいるが、非常に過大な事故電流が貫通する場
合、極少ない時間でCTが飽和してしまい、比率
ロツク要素が充分に検出できない場合が考えられ
る。
Furthermore, in the event of an external accident, excessive current will pass through the outflow side.
Current concentrates on the CT, saturating the CT, and causing an apparent differential error. However, before saturation occurs, the ratio lock element that determines the principle formula (3) operates, and the operating signal is converted into a differential error. By prolonging the period during which the relay is occurring, the lock state continues and malfunction of the relay is prevented. However, if a very large fault current passes through the relay, the CT will become saturated in a very short period of time, and the ratio locking element will become saturated. There may be cases where sufficient detection is not possible.

しかし、この発明によれば、判定要素8と動作
タイマー12を設け、CTが極端に飽和する場合
に抑制量の大きさを判別(K1を過大電流領域に
設定する。)することにより、動作タイマー12
で瞬時に検出させ、誤動作を防いでいる。動作タ
イマー13の設定時間は位相特性の動作域が狭く
ならないように適当な時限に設定するものとす
る。
However, according to the present invention, the determination element 8 and the operation timer 12 are provided, and the magnitude of the suppression amount is determined ( K1 is set in the excessive current region) when the CT is extremely saturated. timer 12
This allows instant detection and prevents malfunctions. It is assumed that the setting time of the operation timer 13 is set to an appropriate time so that the operating range of the phase characteristic does not become narrow.

なお、上記実施例では、前述の(4)式の判定に2
乗和演算を用いて説明したが、原理的にレベル判
定であるので、従来の実施例で説明した(2)式の整
流平滑演算或いは、(5)式のような積分演算であつ
てもよく、上記実施例と同様の効果を奏する。
In addition, in the above embodiment, 2
Although the explanation has been made using a multiplication-sum operation, in principle it is a level judgment, so it may be a rectification smoothing operation as in equation (2) explained in the conventional embodiment, or an integral operation as in equation (5). , the same effect as the above embodiment is achieved.

また、この際、演算はベクトル加算量ED tに対
してのみ行なえば良いので、処理時間に対しての
負担は問題ない。
Further, at this time, since the calculation only needs to be performed on the vector addition amount E D t , there is no problem with the processing time.

‖ 〓i Ii t i‖=〓| 〓i Iit-t=| 〓i Ii t|+| 〓i Ii t-t1|+| 〓i Ii t-t2|+ ……(5) 〔発明の効果〕 以上にように、この発明によれば、原理的に瞬
時値で演算が可能であるため、処理時間が少な
く、高速度で動作判定が可能であり、なおかつ、
母線保護のような多端子系統保護特有の極端な事
故時のCT飽和現象に対して確実かつ高速度に正
しい応動が可能な保護性能が得られる効果があ
る。
‖ 〓 i I i t i ‖=〓| 〓 i I itt =| 〓 i I i t |+| 〓 i I i t-t1 |+| 〓 i I i t-t2 |+ ……(5 ) [Effects of the Invention] As described above, according to the present invention, since calculation can be performed using instantaneous values in principle, the processing time is short and operation judgment can be made at high speed.
This has the effect of providing protection performance that enables a reliable and high-speed correct response to CT saturation phenomena during extreme accidents that are unique to multi-terminal system protection such as busbar protection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による保護継電器
を示す動作原理ブロツク図、第2図はその動作を
説明するフローチヤート図、第3図はこの発明の
位相特性の補償原理図、第4図は従来の保護継電
器を示す動作原理ブロツク図、第5図は一般的な
差動保護継電器の動作特性図である。 図において、2は第2の最大値導出要素、3は
ベクトル加算要素、5は記憶要素、6は第1の最
大値導出要素、7は第1の判定要素、8は第2の
判定要素、9は第3の判定要素、12は第1の動
作タイマー、13は第2の動作タイマー、15は
復帰タイマー、16は実効値演算要素、17は第
4の判定要素、19は比率ロツク要素(第1の比
較判定要素)、20は差動要素(第2の比較判定
要素)。なお、図中、同一符号は同一又は相当部
分を示す。
FIG. 1 is a block diagram of the operating principle of a protective relay according to an embodiment of the present invention, FIG. 2 is a flowchart explaining the operation, FIG. 3 is a diagram of the compensation principle of phase characteristics of the present invention, and FIG. 4 5 is a block diagram of the operating principle of a conventional protective relay, and FIG. 5 is a diagram of operating characteristics of a general differential protective relay. In the figure, 2 is a second maximum value derivation element, 3 is a vector addition element, 5 is a storage element, 6 is a first maximum value derivation element, 7 is a first determination element, 8 is a second determination element, 9 is a third determination element, 12 is a first operation timer, 13 is a second operation timer, 15 is a recovery timer, 16 is an effective value calculation element, 17 is a fourth determination element, and 19 is a ratio lock element ( 20 is a differential element (second comparison/judgment element). In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 複数系統からの電流量の瞬時値を取り込んで
ベクトル加算するベクトル加算要素と、前記ベク
トル加算要素によりベクトル加算されたベクトル
加算量を整流する整流要素と、前記整流要素によ
り整流されたベクトル加算量を記憶する記憶要素
と、前記整流要素により整流されたベクトル加算
量と前記記憶要素により記憶された数サンプリン
グ前のベクトル加算量の大小関係を比較して大き
い方を導出する第1の最大値導出要素と、前記複
数系統から取り込んだ電流量を整流する整流要素
と、前記整流要素により整流された各系統の電流
量のうち、最も大きい電流量を導出する第2の最
大値導出要素と、前記第2の最大値導出要素によ
り導出された電流量が、前記第1の最大値導出要
素により導出されたベクトル加算量の所定倍値以
上か否かを判定する第1の判定要素と、前記第2
の最大値導出要素により導出された電流量が第1
の基準値以上であるか否かを判定する第2の判定
要素と、前記第2の最大値導出要素により導出さ
れた電流量が前記第1の基準値より小さい第2の
基準値以上であるか否かを判定する第3の判定要
素と、前記第1の判定要素により前記電流量が前
記ベクトル加算量の所定倍値以上であると判定さ
れ、かつ、前記第2の判定要素により前記電流量
が前記第1の基準値以上であると判定されたと
き、所定時間ロツク信号を出力する第1の動作タ
イマーと、前記第1の判定要素により前記電流量
が前記ベクトル加算量の所定倍値以上であると判
定され、かつ、前記第3の判定要素により前記電
流量が前記第2の基準値以上であると判定された
とき、前記所定時間より長い時間ロツク信号を出
力する第2の動作タイマーと、前記整流要素によ
り整流されたベクトル加算量と前記記憶要素によ
り記憶された数サンプリング前のベクトル加算量
の2乗和をとり、その2乗和が基準値以上か否か
を判定する第2の比較判定要素と、前記第2の比
較判定要素により2乗和が基準値以上と判定さ
れ、かつ、前記第1及び第2の動作タイマーの何
れからもロツク信号が出力されていないとき、動
作指令を出力するインヒビツト要素とを備えた保
護継電器。
1. A vector addition element that takes in instantaneous values of current amounts from multiple systems and adds the vectors, a rectification element that rectifies the vector addition amount vector-added by the vector addition element, and a vector addition amount rectified by the rectification element. and a first maximum value derivation that compares the magnitude relationship between the vector addition amount rectified by the rectification element and the vector addition amount before several samplings stored by the storage element and derives the larger one. a rectifying element that rectifies the amount of current taken in from the plurality of systems, a second maximum value deriving element that derives the largest amount of current from among the amounts of current of each system rectified by the rectifying element; a first determination element that determines whether the amount of current derived by the second maximum value derivation element is equal to or greater than a predetermined multiple of the vector addition amount derived by the first maximum value derivation element; 2
The amount of current derived by the maximum value derivation element is the first
a second determination element for determining whether or not the current amount is greater than or equal to a reference value; and the amount of current derived by the second maximum value derivation element is greater than or equal to a second reference value that is smaller than the first reference value. a third determination element that determines whether the current amount is greater than or equal to a predetermined multiple of the vector addition amount; a first operation timer that outputs a lock signal for a predetermined period of time when the amount of current is determined to be equal to or greater than the first reference value; a second operation of outputting a lock signal for a time longer than the predetermined time when it is determined that the current amount is equal to or greater than the second reference value and the third determination element determines that the current amount is equal to or greater than the second reference value; a timer; and a second step that calculates the square sum of the vector addition amount rectified by the rectifying element and the vector addition amount several samplings ago stored by the storage element, and determines whether the sum of squares is equal to or greater than a reference value. When the sum of squares is determined to be equal to or greater than the reference value by the comparison determination element No. 2 and the second comparison determination element, and a lock signal is not output from either the first or second operation timer, A protective relay equipped with an inhibit element that outputs an operation command.
JP61122977A 1986-05-28 1986-05-28 Protective relay Granted JPS62281719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122977A JPS62281719A (en) 1986-05-28 1986-05-28 Protective relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122977A JPS62281719A (en) 1986-05-28 1986-05-28 Protective relay

Publications (2)

Publication Number Publication Date
JPS62281719A JPS62281719A (en) 1987-12-07
JPH0546768B2 true JPH0546768B2 (en) 1993-07-14

Family

ID=14849260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122977A Granted JPS62281719A (en) 1986-05-28 1986-05-28 Protective relay

Country Status (1)

Country Link
JP (1) JPS62281719A (en)

Also Published As

Publication number Publication date
JPS62281719A (en) 1987-12-07

Similar Documents

Publication Publication Date Title
US5694281A (en) Zero sequence voltage-polarized directional element for protective relays
US5963404A (en) Restricted earth fault protection for transformers using a directional element
WO2001029948A1 (en) Improved restraint-type differential relay
JPH0159815B2 (en)
US4329727A (en) Directional power distance relay
US4689710A (en) Protective relay for an electric power system including decision-making computer means
JPS60501986A (en) Phase relay for AC power transmission line protection
JPH0546768B2 (en)
JPH0546769B2 (en)
JPH0447545B2 (en)
JPH01190215A (en) Phase selector
JPH0363299B2 (en)
JPS6356121A (en) Ratio differential relay
JP2971298B2 (en) Protective relay
JP2923572B2 (en) Change width detector
JP3746493B2 (en) Ratio differential relay
JPS61224823A (en) Protective relay
JPS6051331B2 (en) Electric power system fault detection method
JPH09261844A (en) Ground fault circuit selecting relay equipment
JPS5858888B2 (en) Protective relay device
JP2856826B2 (en) Differential relay
JPH0514502B2 (en)
JPH0158734B2 (en)
JPS5842692B2 (en) Protective relay device
JPH0487514A (en) Digital distance relay