JPH0546769B2 - - Google Patents

Info

Publication number
JPH0546769B2
JPH0546769B2 JP61127156A JP12715686A JPH0546769B2 JP H0546769 B2 JPH0546769 B2 JP H0546769B2 JP 61127156 A JP61127156 A JP 61127156A JP 12715686 A JP12715686 A JP 12715686A JP H0546769 B2 JPH0546769 B2 JP H0546769B2
Authority
JP
Japan
Prior art keywords
amount
vector addition
current
addition amount
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61127156A
Other languages
Japanese (ja)
Other versions
JPS62285616A (en
Inventor
Toshio Anzai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61127156A priority Critical patent/JPS62285616A/en
Publication of JPS62285616A publication Critical patent/JPS62285616A/en
Publication of JPH0546769B2 publication Critical patent/JPH0546769B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、デイジタル計算機を用いて電力系
統の動作状態を判定し、機器を保護する保護継電
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a protective relay that uses a digital computer to determine the operating state of a power system and protect equipment.

〔従来の技術〕[Conventional technology]

第5図は例えば特開昭55−23779号公報に示さ
れた従来の保護継電器を示す原理図であり、図に
おいて、21は系統の電流量を整流し平滑する整
流平滑要素、22は上記系統の各電流量をベクト
ル加算するベクトル加算要素、23は上記整流平
滑された各電流量を加算するスカラー加算要素、
24は上記ベクトル加算量を整流平滑する整流平
滑要素、25は上記ベクトル加算量(動作量)と
スカラー加算量(抑制量)とを比較判定する比較
判定要素、26は上記の判定結果を出力する出力
要素である。
FIG. 5 is a principle diagram showing a conventional protective relay disclosed in, for example, Japanese Unexamined Patent Publication No. 55-23779. In the figure, 21 is a rectifying and smoothing element that rectifies and smoothes the amount of current in the system, and 22 is a rectifying and smoothing element for rectifying and smoothing the amount of current in the system. 23 is a scalar addition element that adds each of the rectified and smoothed current amounts as a vector,
24 is a rectification and smoothing element that rectifies and smoothes the vector addition amount, 25 is a comparison judgment element that compares and judges the vector addition amount (operation amount) and the scalar addition amount (suppression amount), and 26 outputs the above judgment result. It is an output element.

次に第5図の動作原理を演算式(1)、(2)で示す。 Next, the operating principle of FIG. 5 is shown using equations (1) and (2).

‖ 〓i It i‖≧K1×( 〓i ‖It i‖)+K0 (1) (‖It‖=|It|+|It-3|+K2×‖It|−|It-3‖)
(2) ここで、Ii tはt時刻にサンプリングされた電流
量で、添字のiは端子番号である。また 〓i Ii tはベ
クトル加算、‖It‖は整流平滑、 〓i ‖Ii t‖はスカラ
ー加算を意味し、K0,K1,K2は定数である。ま
た上記例ではサンプリング周波数を系統周波数の
12倍(30°サンプリング)としてある。
‖ 〓 i I t i ‖≧K 1 × ( 〓 i ‖I t i ‖)+K 0 (1) (‖I t ‖=|I t |+|I t-3 |+K 2 ×‖I t |− |I t-3 ‖)
(2) Here, I i t is the amount of current sampled at time t, and the subscript i is the terminal number. Also, 〓 i I i t means vector addition, ‖I t ‖ means rectification smoothing, 〓 i ‖I i t ‖ means scalar addition, and K 0 , K 1 , and K 2 are constants. In addition, in the above example, the sampling frequency is set to the grid frequency.
12 times (30° sampling).

次に第5図の動作について説明する。すなわ
ち、サンプリングされた電力系統の夫々の電流量
Ii tは整流平滑要素21により、(2)式のように整流
平滑されて‖Ii t‖となり、スカラー加算要素23
によりスカラー加算されて 〓i ‖Ii t‖となる。ま
た、上記夫々の電流量Ii tは、ベクトル加算要素2
2によつてベクトル加算され、さらに、整流平滑
要素24で整流平滑されて‖ 〓i Ii t‖となる。
Next, the operation shown in FIG. 5 will be explained. In other words, the amount of current in each sampled power system
I i t is rectified and smoothed by the rectification and smoothing element 21 as shown in equation (2) to become ‖I i t ‖, and the scalar addition element 23
The scalars are added by 〓 i ‖I i t ‖. In addition, each of the above current amounts I i t is the vector addition element 2
2, and is further rectified and smoothed by the rectification and smoothing element 24 to obtain ‖ 〓 i I i t ‖.

比較判定要素25では、上記スカラー加算量2
3の出力 〓i ‖Ii t‖に適当な定数が乗算され、上記
整流平滑要素24の出力‖ 〓i Ii t‖とともに(1)式の
判定が行なわれる。その結果(1)式が成立すれば、
動作信号が上記比較判定要素25より出力され
る。出力要素26は、上記の動作信号に適当な時
限をもたせて最終的な動作信号として出力する。
In the comparison judgment element 25, the above scalar addition amount 2
The output 〓 i ‖I i t ‖ of step 3 is multiplied by an appropriate constant, and the equation (1) is determined together with the output 〓 〓 i I i t ‖ of the rectifying and smoothing element 24. As a result, if formula (1) holds, then
An operation signal is output from the comparison/judgment element 25. The output element 26 gives the above operation signal an appropriate time limit and outputs it as a final operation signal.

上記の演算式では、(1)式中のK0を最小動作値、
K1を比率として第6図の一般的な差動保護継電
器の動作特性における実線イで示された差動特性
を得ようとしているため、瞬時値を整流しただけ
では脈動となり、サンプリング位相により、動作
特性にばらつきが発生するため、例えば(2)式のよ
うに整流平滑を行なう必要がある。この(2)式の演
算により、4相整流の様な形になり、動作値誤差
を小さくでき、差動特性のサンプリング位相によ
るバラツキを少なくしようとしている。
In the above equation, K 0 in equation (1) is the minimum operating value,
Since we are trying to obtain the differential characteristics shown by the solid line A in the operating characteristics of a general differential protective relay in Figure 6 using K 1 as a ratio, simply rectifying the instantaneous value will result in pulsation, and depending on the sampling phase, Since variations occur in the operating characteristics, it is necessary to perform rectification and smoothing as shown in equation (2), for example. By calculating this equation (2), a form similar to four-phase rectification is obtained, the operating value error can be reduced, and the variation due to the sampling phase of the differential characteristics can be reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の保護継電器は以上のように構成されてい
るので、例えば母線保護のような多端子情報を扱
う場合には、(2)式の演算処理に膨大な時間がかか
ることになる。また、CT飽和等による誤動作を
避けるため、電流量の大きさにより、自動的に定
数K0,K1を変更して差動特性の傾きを大電流領
域で大きく変えてやる等の対策を施しているが、
完全ではなく、例えば1端子のCTが完全に飽和
してCT2次電流が瞬時的に0になるようなケース
では誤動作する可能性もあり、またこの処理にも
かなりの時間がかかり、計算機の処理能力に強い
制約を与える等の問題点があつた。
Since the conventional protective relay is configured as described above, when handling multi-terminal information such as bus bar protection, the calculation process of equation (2) takes an enormous amount of time. In addition, in order to avoid malfunctions due to CT saturation, etc., measures are taken such as automatically changing the constants K 0 and K 1 depending on the amount of current, and greatly changing the slope of the differential characteristics in the large current region. Although,
It is not perfect; for example, in a case where the CT of one terminal is completely saturated and the CT secondary current instantaneously becomes 0, there is a possibility of malfunction, and this process also takes a considerable amount of time, making it difficult for the computer to process. There were problems such as severe restrictions on ability.

この発明は上記のような問題点を解消するため
になされたもので、演算処理が容易で、高速に応
動し、CT飽和等にも安定な保護継電器を得るこ
とを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a protective relay that is easy to process, responds quickly, and is stable against CT saturation.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る保護継電器は下記の(3)式を原理
式として用い、(3)式を判定する第1の比較判定要
素の出力で、下記(4)式を判定する第2の比較判定
要素の出力をインヒビツトすることにより、最終
出力とするように演算回路を構成し、事故発生当
初と、所定時間経過後とを比率ロツク検出回数で
区別し、事故発生当初は高速度に比率ロツク検出
((3)式)を行なわせるように構成したものである。
The protective relay according to the present invention uses the following formula (3) as a principle formula, and uses the output of the first comparison and determination element that determines formula (3) to determine the following formula (4). The arithmetic circuit is configured so that the final output is obtained by inhibiting the output of It is configured to perform equation (3).

Max i|Ii t|−m0×Max(| 〓i Ii t|、| 〓i Ii t-ta|)≧0 ……(3) ‖ 〓i Ii t‖≧K0 ……(4) 但し、m0,K0は定数であり、Ii t-taはta時刻前
のサンプリング量を表わす。(以下、上記第1の
比較判定要素を比率ロツク要素、第2の比較判定
要素と差動要素という。) 〔作用〕 この発明における比率ロツク要素(第1の比較
判定要素)は原理的に系統の電流瞬時値で判定演
算が可能になることにより、外部事故時のCT飽
和にも瞬時に検出してロツクをかけ誤動作を防止
する。
Max i|I i t |−m 0 ×Max(| 〓 i I i t |, | 〓 i I i t-ta |)≧0 ……(3) ‖ 〓 i I i t ‖≧K 0 …… (4) However, m 0 and K 0 are constants, and I i t-ta represents the sampling amount before time t a . (Hereinafter, the first comparison and judgment element will be referred to as a ratio lock element, and the second comparison and judgment element will be referred to as a differential element.) [Operation] The ratio lock element (first comparison and judgment element) in this invention is, in principle, a By making it possible to perform judgment calculations using the instantaneous current value, CT saturation in the event of an external fault can be instantly detected and locked to prevent malfunction.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明す
る。第1図において、1はサンプリングされた系
統の電流量を整流する整流要素、2は上記整流さ
れた電流量の瞬時最大値(抑制値)を選出する第
2の最大値導出要素、3は上記サンプリングされ
た夫々の電流量をベクトル加算するベクトル加算
要素、4は上記のベクトル加算量を整流する整流
要素、6は上記整流されたベクトル加算量及び記
憶要素5で記憶された数サンプル前の加算量の最
大値(差動量)を選出する第1の最大値導出要
素、7は前記抑制量と差動量の大小関係を比較判
定する第1の判定要素である。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a rectifying element that rectifies the current amount of the sampled system, 2 is a second maximum value deriving element that selects the instantaneous maximum value (suppression value) of the rectified current amount, and 3 is the above-mentioned maximum value deriving element. A vector addition element for vector addition of each sampled current amount; 4 is a rectification element for rectifying the above vector addition amount; 6 is an addition of the rectified vector addition amount and several samples before stored in storage element 5. A first maximum value deriving element 7 selects the maximum value of the amount (differential amount), and a first determining element 7 compares and determines the magnitude relationship between the suppression amount and the differential amount.

8は前記第1の判定要素7の動作出力が所定の
時間内に所定回数以上になつた際に動作信号を出
す動作回数検出要素、9は前記抑制量が所定の基
準値以上であるかを判定する第2の判定要素、1
0は前記第1の判定要素7の出力と前記第2の判
定要素9の出力のAND条件を前記動作回数検出
要素8の出力でインヒビツトするインヒビツト要
素、11は前記第1の判定要素7の出力、前記第
2の判定要素9の出力及び前記動作回数検出要素
8の出力のAND条件を出力するAND要素であ
る。
Reference numeral 8 denotes an operation number detection element that outputs an operation signal when the operation output of the first determination element 7 exceeds a predetermined number of times within a predetermined time; and 9 detects whether the suppression amount is greater than or equal to a predetermined reference value. Second judgment element to be judged, 1
0 is an inhibiting element that inhibits the AND condition of the output of the first determining element 7 and the output of the second determining element 9 with the output of the number of operation detection element 8, and 11 is the output of the first determining element 7. , is an AND element that outputs an AND condition of the output of the second determination element 9 and the output of the operation count detection element 8.

12は前記インヒビツト要素10の出力が動作
側に所定回数継続していることで動作出力する第
1の動作タイマー、13は前記AND要素11の
出力が前記動作タイマー12より大きい所定回数
分動作側に継続することにより動作出力する第2
の動作タイマー、14は前記第1の動作タイマー
12の出力と第2の動作タイマー13の出力の
OR条件を出力するOR要素、15は復帰タイマ
ーである。
12 is a first operation timer that outputs an operation when the output of the inhibit element 10 continues to be active a predetermined number of times, and 13 is a first operation timer that outputs an operation when the output of the AND element 11 is greater than the operation timer 12 for a predetermined number of times. The second output that outputs the operation by continuing
The operation timer 14 is the output of the first operation timer 12 and the output of the second operation timer 13.
The OR element 15 that outputs the OR condition is a return timer.

16は前記整流されたベクトル加算量と記憶要
素5で記憶された数サンプル前の加算量の2乗和
をとる実効値演算要素、17は前記の2乗和を基
準値と比較し、その大小関係により判定出力する
第4の判定要素、18は判定要素17の出力を復
帰タイマー15の出力でロツクするインヒビツト
要素、19は上述の原理式(3)の判定を行なう比率
ロツク要素(第1の比較判定要素)、20は上述
の原理式(4)の判定を行なう差動要素(第2の比較
判定要素)である。
16 is an effective value calculation element that calculates the sum of the squares of the rectified vector addition amount and the addition amount of several samples before stored in the storage element 5; 17 compares the above-mentioned square sum with a reference value and calculates the magnitude thereof; 18 is an inhibiting element that locks the output of the determining element 17 with the output of the recovery timer 15; 19 is a ratio locking element (the first 20 is a differential element (second comparison/judgment element) that performs the judgment based on the above-mentioned principle formula (4).

次に第1図の動作について説明する。まず、第
1図のブロツク図を、デジタル計算機を用いてプ
ログラムで実現すると、第2図のフローチヤート
が得られる。すなわちステツプ1において、t時
刻に系統の電流量Ii tをサンプリングして量子化し
た該電流量をベクトル加算要素3にかけて加算
し、ED tを計算する。
Next, the operation shown in FIG. 1 will be explained. First, when the block diagram of FIG. 1 is realized by a program using a digital computer, the flowchart of FIG. 2 is obtained. That is, in step 1, the current amount I i t of the system is sampled at time t and the quantized current amount is added by the vector addition element 3 to calculate E D t .

ステツプ2で前記夫々の電流量Ii tの各々の絶対
値の最大値ER t(抑制量)を最大値導出要素2で
計算し、次にステツプ3で前記のベクトル加算量
ED tとta時刻前のベクトル加算量ED t-taの最大値
EDt(差動量)を最大値導出要素6で計算する。
In step 2, the maximum value E R t (suppression amount) of the absolute value of each of the current amounts I i t is calculated using the maximum value deriving element 2, and then in step 3, the vector addition amount
Maximum value of vector addition amount E D t-ta before time E D t and t a
E Dt (differential amount) is calculated using the maximum value deriving element 6.

次にステツプ4で前記抑制量ER tと定数K1との
大小を判定要素9比較し、前者が大きいか或いは
等しい時ステツプ5へ、後者が大きい時は比率ロ
ツク要素を瞬時不動作としてステツプ9へ進む。
Next, in step 4, the judgment element 9 compares the magnitude of the suppression amount E R t and the constant K 1 , and if the former is greater or equal, the process proceeds to step 5, and if the latter is large, the ratio lock element is momentarily disabled and the process proceeds to step 4. Proceed to 9.

ステツプ5では前記差動量EDtをm0倍し、前記
抑制量ER tとの大小関係を判定要素7で比較し、
前者が大きい時、比較ロツク要素は瞬時不動作と
してステツプ9へ進み、後者が大きいか或いは等
しい時は比率ロツク要素は瞬時動作としてステツ
プ6へ進む。
In step 5, the differential amount E D ' t is multiplied by m 0 and the magnitude relationship with the suppression amount E R t is compared by the determination element 7.
When the former is greater, the comparison lock element is instantaneously inoperative and the process proceeds to step 9; when the latter is greater or equal, the ratio lock element is instantaneously active and the process proceeds to step 6.

ステツプ6では比率ロツク要素の瞬時動作→瞬
時復帰の組合せを1回とし所定時間当たりに前記
組合せが何回発生しているかを動作回数検出要素
8で判定して所定回数N以上であればステツプ8
へ、以下であればステツプ7へ進む。
In step 6, the combination of instantaneous operation and instantaneous return of the ratio lock element is performed once, and the number of times the combination occurs per predetermined time is determined by the operation number detection element 8. If the number of times is equal to or greater than the predetermined number N, step 8
If the result is below, proceed to step 7.

ステツプ7及びステツプ8では各々動作タイマ
ー12及び13にて各々異なる時間T1,T2(T1
<T2)動作出力が継続することにより比率ロツ
ク要素は動作としステツプ9へ進む。
In step 7 and step 8, the operation timers 12 and 13 set different times T 1 and T 2 (T 1
<T 2 ) As the operation output continues, the ratio lock element is activated and the process proceeds to step 9.

ステツプ9では動作回数検出要素8により、前
述の比率ロツク要素の瞬時動作→瞬時復帰の組合
せの発生回数をカウントする。なお上記動作回数
検出要素8は上記組合せの発生回数のカウント開
始後所定時間後に再度リセツトされる。
In step 9, the operation count detection element 8 counts the number of times the above-described combination of instantaneous operation and instantaneous return of the ratio locking element occurs. Note that the operation number detection element 8 is reset again a predetermined time after the start of counting the number of occurrences of the combination.

ステツプ10では前記ステツプ7、8の判定結果
が動作の時はそのまま動作結果を出力し、不動作
の時は適当な時間引き続き動作を出するような復
帰タイマー演算を復帰タイマー15によつて行
う。
In step 10, the return timer calculation is performed by the return timer 15 to output the operation result as is when the result of the determination in steps 7 and 8 indicates operation, and to continue outputting operation for an appropriate time when it is not operation.

次にステツプ11で上記ベクトル加算量ED tとtb
時刻前のベクトル加算量ED t-tbの2乗和EDtを実
効値演算要素16で計算し、ステツプ12で上記2
乗和EDtと定数K0 2の大小関係を判定要素17で
比較して、前者の方が大きいか等しい時差動要素
を動作させ、それ以外の時は差動要素を不動作と
する判定を行う。
Next, in step 11, the above vector addition amounts E D t and t b
The square sum E Dt of the vector addition amount E D t-tb before the time is calculated by the effective value calculation element 16, and the above 2 is calculated in step 12.
The determination element 17 compares the magnitude relationship between the multiplicative sum E Dt and the constant K 0 2 , and when the former is greater or equal, the differential element is operated, and at other times, the differential element is disabled. Make a judgment.

ステツプ13では前記ステツプ4〜12の判定結果
に基づき、比率ロツク要素が不動作でかつ差動要
素が動作の時のみ総合動作として、インヒビツト
要素18が動作して最終出力し、それ以外の時は
総合不動作又は総合復帰として最終出力する判定
を行う。
In step 13, based on the judgment results of steps 4 to 12, only when the ratio lock element is inactive and the differential element is active, the overall operation is performed, and the inhibit element 18 is activated to output the final output. The final output is determined as total inoperation or total recovery.

なお、ステツプ1とステツプ2、ステツプ2と
ステツプ3、ステツプ4〜10とステツプ11、12は
順序が逆であつてもよい。また、系統の電流量Ii t
が時間的に正弦波で変化するとき、tb時刻を適当
に設定すれば、上記2乗和EDtは実効値の2乗と
なることは既に明らかであるので、ここでは説明
を省略する。
Note that the order of steps 1 and 2, steps 2 and 3, and steps 4 to 10 and steps 11 and 12 may be reversed. Also, the amount of current I i t in the grid
When changes temporally in a sinusoidal manner, it is already clear that if the time t b is set appropriately, the above sum of squares E Dt becomes the square of the effective value, so the explanation is omitted here. do.

tb=90°のとき、 (ED t2+(ED t-tb2 =|ED2(sin2ωt+cos2ωt) =|ED2となる。 When t b = 90°, (E D t ) 2 + (E D t-tb ) 2 = |E D | 2 (sin 2 ωt + cos 2 ωt) = |E D | 2 .

また、第2図中ステツプ12の判定部は特性の安
定化のための対策として複数回照合(自明なので
説明省略)をすることもできる。
Further, the determining section at step 12 in FIG. 2 can perform verification multiple times (description will be omitted as it is self-evident) as a measure for stabilizing the characteristics.

この発明によれば、前述の原理式(3)で第6図の
イの実線を決定し原理式(4)で第6図のアの点線を
決定することにより従来と同様の比率差動特性が
得られ、原理式(3)は差動量EDtと抑制量ER tの比だ
けで判定しているで、瞬時値で判定できる。
According to this invention, by determining the solid line A in FIG. 6 using the above-mentioned principle equation (3) and determining the dotted line A in FIG. is obtained, and since the principle formula (3) is determined only by the ratio of the differential amount E Dt and the suppression amount E R t , it can be determined using an instantaneous value.

また第6図の線イは原点を通る直線となるの
で、通常潮流が系統を貫通している際に内部事故
が発生した場合比率ロツク要素の復帰タイマー分
動時間が遅れないように判定要素9を設け、K1
の値を潮流より大きく設定して、常時潮流貫通時
に比率ロツク要素が動作しないようにしてある。
In addition, line A in Figure 6 is a straight line passing through the origin, so if an internal accident occurs while the power flow is passing through the system, the judgment element 9 is set so that the return timer division time of the ratio lock element is not delayed. and K 1
The value of is set larger than the tidal current so that the ratio lock element does not operate when the tidal current is constantly passing through.

第3図のように端子電流の位相が同位相或いは
逆位相でないような場合動作域にもかかわらず瞬
時的に抑制量ER tがベクトル加算量ED tを超えるよ
うな時間領域(第3図の斜線部)を記憶されたベ
クトル加算量で補償することにより、この領域を
なくし、位相特性で動作域が瞬時的に狭くなるこ
とを防いでいる。
As shown in Figure 3 , when the terminal currents are not in the same phase or out of phase, the time domain ( 3rd By compensating for the area (shaded area in the figure) with the stored vector addition amount, this area is eliminated and the operating range is prevented from being instantaneously narrowed due to the phase characteristics.

上記の補償方法はステツプ3の方法以外でED t-
taに適当な定数を乗算してやり最大値をとること
で位相特性の動作限界角度を調整することも可能
である。
The above compensation method is other than the method in step 3 .
It is also possible to adjust the operating limit angle of the phase characteristic by multiplying ta by an appropriate constant and taking the maximum value.

さらに外部事故時に過大電流が貫通し、流出側
CTに電流が集中して、CTが飽和し、見かけ上差
動誤差が発生する事に対し、飽和する以前に原理
式(3)を判定する比率ロツク要素が動作し、動作信
号を差動誤差が発生している期間引き延ばすこと
でロツク状態を継続させ、継電器の誤動作を防い
でいるが、非常に過大な事故電流が貫通する場
合、極少ない時間でCTが飽和してしまい比率ロ
ツク要素が充分に検出できない場合が考えられ
る。
Furthermore, in the event of an external accident, excessive current will pass through the outflow side.
Current concentrates on the CT, saturating the CT, and causing an apparent differential error. However, before saturation occurs, the ratio lock element that determines the principle formula (3) operates, and the operating signal is converted into a differential error. By prolonging the period during which the relay occurs, the lock state continues and malfunction of the relay is prevented. However, if an extremely large fault current passes through the relay, the CT will become saturated in a very short period of time and the ratio locking element will not be sufficient. There may be cases where it cannot be detected.

しかし、第4図の信号波形図に示すように、こ
の発明によれば、極端に厳しいCT飽和の際、事
故発生当初、CTの飽和していない期間が最も短
かく除々に長くなつていく事(事故電流中の直流
分が除々に減衰していくため)に着目し、事故発
生当初は設定時間の短時限(瞬時でも良い)動作
タイマー12で比率ロツク検出して、事故発生後
所定時間は長時限の動作タイマー13で比率ロツ
ク検出を行なうことにより、CT飽和を高速度に
検出し、それ以外の系統現象にも安定に応動する
事ができる。
However, as shown in the signal waveform diagram in Fig. 4, according to the present invention, in the case of extremely severe CT saturation, the period in which the CT is not saturated is the shortest at the beginning of an accident, and gradually becomes longer. (Because the DC component of the fault current gradually attenuates), at the beginning of the accident, the ratio lock is detected by the operation timer 12 for a short time (instantaneous is also possible), and after the accident occurs, the ratio lock is detected. By detecting the ratio lock using the long-time operation timer 13, it is possible to detect CT saturation at high speed and respond stably to other system phenomena.

また、動作タイマー13の設定時間は位相特性
の動作域が狭くならないように適当な時限に設定
するものとする。
Further, the setting time of the operation timer 13 is set to an appropriate time so that the operating range of the phase characteristic does not become narrow.

なお、上記実施例では、前述の(4)式の判定に2
乗和演算を用いて説明したが、原理的にレベル判
定であるので、従来の実施例で説明した(2)式の整
流平滑演算或いは、下記(5)式のような積分演算で
あつてもよく、上記実施例と同様の効果を奏す
る。
In addition, in the above embodiment, 2
Although the explanation has been made using a multiplication-sum operation, in principle it is a level judgment, so even if it is a rectification smoothing operation of equation (2) explained in the conventional embodiment or an integral operation such as the following equation (5), In many cases, the same effects as in the above embodiment can be achieved.

また、この際、演算はベクトル加算量Et Dに対
してのみ行なえば良いので、処理時間に対しての
負担は問題ない。
Further, at this time, since the calculation only needs to be performed on the vector addition amount E t D , there is no problem with the processing time.

‖ 〓i Ii t‖= 〓j | 〓i Iit-tj=| 〓i Ii t|+| 〓i Ii t-t1|+| 〓i Ii t-t2|+ ……(5) 〔発明の効果〕 以上にように、この発明によれば、原理的に瞬
時値で演算が可能であるため処理時間が少なく高
速度で動作判定が可能であり、なおかつ、母線保
護のような多端子系統保護特有の極端な事故時の
CT飽和現象に対して確実かつ高速度に正しい応
動が可能な保護性能が得られる効果がある。
‖ 〓 i I i t ‖= 〓 j | 〓 i I it-tj =| 〓 i I i t |+| 〓 i I i t-t1 |+| 〓 i I i t-t2 |+ …… (5) [Effects of the Invention] As described above, according to the present invention, calculations can be made using instantaneous values in principle, so operation can be determined at high speed with less processing time. In the event of an extreme accident specific to multi-terminal system protection such as
This has the effect of providing protection performance that enables a reliable and high-speed correct response to CT saturation phenomena.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による保護継電器
を示す動作原理ブロツク図、第2図はこの保護継
電器の動作を説明するフローチヤート図、第3図
はこの発明の位相特性の補償原理図、第4図は第
1図各部の信号波形図、第5図は従来の保護継電
器を示す動作原理ブロツク図、第6図は一般的な
差動保護継電器の動作特性図である。 図において、2は第2の最大値導出要素、3は
ベクトル加算要素、5は記憶要素、6は第1の最
大値導出要素、7は第1の判定要素、8は動作回
数検出要素、9は第2の判定要素、12は第1の
動作タイマー、13は第2の動作タイマー、15
は復帰タイマー、16は実効値演算要素、17は
第3の判定要素、19は比率ロツク要素(第1の
比較判定要素)、20は差動要素(第2の比較判
定要素)。なお、図中、同一符号は同一又は相当
部分を示す。
FIG. 1 is a block diagram of the operating principle of a protective relay according to an embodiment of the present invention, FIG. 2 is a flowchart explaining the operation of this protective relay, and FIG. 3 is a diagram of the compensation principle of phase characteristics of the present invention. 4 is a signal waveform diagram of each part of FIG. 1, FIG. 5 is a block diagram of the operating principle of a conventional protective relay, and FIG. 6 is a diagram of operating characteristics of a general differential protective relay. In the figure, 2 is a second maximum value derivation element, 3 is a vector addition element, 5 is a storage element, 6 is a first maximum value derivation element, 7 is a first determination element, 8 is an operation number detection element, 9 is the second determination element, 12 is the first operation timer, 13 is the second operation timer, 15
16 is a return timer, 16 is an effective value calculation element, 17 is a third judgment element, 19 is a ratio lock element (first comparison judgment element), and 20 is a differential element (second comparison judgment element). In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 複数系統からの電流量の瞬時値を取り込んで
ベクトル加算するベクトル加算要素と、前記ベク
トル加算要素によりベクトル加算されたベクトル
加算量を整流する整流要素と、前記整流要素によ
り整流されたベクトル加算量を記憶する記憶要素
と、前記整流要素により整流されたベクトル加算
量と前記記憶要素により記憶された数サンプリン
グ前のベクトル加算量の大小関係を比較して大き
い方を導出する第1の最大値導出要素と、前記複
数系統から取り込んだ電流量を整流する整流要素
と、前記整流要素により整流された各系統の電流
量のうち、最も大きい電流量を導出する第2の最
大値導出要素と、前記第2の最大値導出要素によ
り導出された電流量が、前記第1の最大値導出要
素により導出されたベクトル加算量の所定倍値以
上か否かを判定する第1の判定要素と、前記第1
の判定要素により前記電流量が前記ベクトル加算
量の所定倍値以上であると判定された回数が、所
定時間内に所定回数以上になつたとき、動作信号
を出力する動作回数検出要素と、前記第2の最大
値導出要素により導出された電流量が基準値以上
であるか否かを判定する第2の判定要素と、前記
第1の判定要素により前記電流量が前記ベクトル
加算量の所定倍値以上であると判定され、かつ、
前記第2の判定要素により前記電流量が前記基準
値以上であると判定され、かつ、前記動作回数検
出要素により動作信号が出力されていないとき、
所定時間ロツク信号を出力する第1の動作タイマ
ーと、前記第1の判定要素により前記電流量が前
記ベクトル加算量の所定倍値以上であると判定さ
れ、かつ、前記第2の判定要素により前記電流量
が前記基準値以上であると判定され、かつ、前記
動作回数検出要素により動作信号が出力されたと
き、前記所定時間より長い時間ロツク信号を出力
する第2の動作タイマーと、前記整流要素により
整流されたベクトル加算量と前記記憶要素により
記憶された数サンプリング前のベクトル加算量の
2乗和をとり、その2乗和が基準値以上か否かを
判定する第2の比較判定要素と、前記第2の比較
判定要素により2乗和が基準値以上と判定され、
かつ、前記第1及び第2の動作タイマーの何れか
らもロツク信号が出力されていないとき、動作指
令を出力するインヒビツト要素とを備えた保護継
電器。
1. A vector addition element that takes in instantaneous values of current amounts from multiple systems and adds the vectors, a rectification element that rectifies the vector addition amount vector-added by the vector addition element, and a vector addition amount rectified by the rectification element. and a first maximum value derivation that compares the magnitude relationship between the vector addition amount rectified by the rectification element and the vector addition amount before several samplings stored by the storage element and derives the larger one. a rectifying element that rectifies the amount of current taken in from the plurality of systems, a second maximum value deriving element that derives the largest amount of current from among the amounts of current of each system rectified by the rectifying element; a first determination element that determines whether the amount of current derived by the second maximum value derivation element is equal to or greater than a predetermined multiple of the vector addition amount derived by the first maximum value derivation element; 1
an operation number detection element that outputs an operation signal when the number of times the current amount is determined to be at least a predetermined multiple of the vector addition amount by the determination element becomes equal to or more than a predetermined number within a predetermined time; a second determination element that determines whether the current amount derived by the second maximum value derivation element is equal to or greater than a reference value; and a second determination element that determines whether the current amount derived by the second maximum value derivation element is a predetermined times the vector addition amount. It is determined that the value is greater than or equal to the value, and
When the second determination element determines that the current amount is equal to or greater than the reference value, and the operation number detection element does not output an operation signal,
a first operation timer that outputs a lock signal for a predetermined period of time; the first determination element determines that the current amount is equal to or greater than a predetermined multiple of the vector addition amount; and the second determination element determines that the a second operation timer that outputs a lock signal for a time longer than the predetermined time when the amount of current is determined to be equal to or greater than the reference value and the operation number detection element outputs an operation signal; and the rectification element. a second comparison determination element that calculates the square sum of the vector addition amount rectified by the vector addition amount and the vector addition amount several samplings ago stored in the storage element, and determines whether the sum of squares is equal to or greater than a reference value; , the sum of squares is determined to be greater than or equal to the reference value by the second comparison determination element;
and an inhibit element that outputs an operation command when neither the first nor second operation timer outputs a lock signal.
JP61127156A 1986-06-03 1986-06-03 Protective relay Granted JPS62285616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61127156A JPS62285616A (en) 1986-06-03 1986-06-03 Protective relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127156A JPS62285616A (en) 1986-06-03 1986-06-03 Protective relay

Publications (2)

Publication Number Publication Date
JPS62285616A JPS62285616A (en) 1987-12-11
JPH0546769B2 true JPH0546769B2 (en) 1993-07-14

Family

ID=14953019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127156A Granted JPS62285616A (en) 1986-06-03 1986-06-03 Protective relay

Country Status (1)

Country Link
JP (1) JPS62285616A (en)

Also Published As

Publication number Publication date
JPS62285616A (en) 1987-12-11

Similar Documents

Publication Publication Date Title
US6341055B1 (en) Restraint-type differential relay
US5963404A (en) Restricted earth fault protection for transformers using a directional element
US7906970B2 (en) Current differential protection relays
US4689710A (en) Protective relay for an electric power system including decision-making computer means
CN108475913A (en) method and control device for current differential protection
US9899830B2 (en) Method for detecting fault and current differential protection system thereof
JPH0546769B2 (en)
JPH0546768B2 (en)
JPS6356121A (en) Ratio differential relay
JPH01190215A (en) Phase selector
JPH0447545B2 (en)
JP2003199244A (en) Bus-bar protective relay
JP2971298B2 (en) Protective relay
JPH0363299B2 (en)
JP3305084B2 (en) Ratio actuation protection relay
JPH11326393A (en) Fault detector circuit for dc current detector
JPH0438118A (en) Variation width detector
JP3746493B2 (en) Ratio differential relay
JP2002017037A (en) Pcm carrier relay
JPS6011722Y2 (en) Digital protective relay device
JP2856826B2 (en) Differential relay
JPH0514502B2 (en)
JP3833821B2 (en) Busbar protection relay device
CN114825283A (en) Bus self-adaptive differential protection method and system based on waveform characteristics
JPS607453B2 (en) digital differential relay