JP3097375B2 - Three-phase current detection circuit - Google Patents

Three-phase current detection circuit

Info

Publication number
JP3097375B2
JP3097375B2 JP05045590A JP4559093A JP3097375B2 JP 3097375 B2 JP3097375 B2 JP 3097375B2 JP 05045590 A JP05045590 A JP 05045590A JP 4559093 A JP4559093 A JP 4559093A JP 3097375 B2 JP3097375 B2 JP 3097375B2
Authority
JP
Japan
Prior art keywords
phase
current
operational amplifier
circuit
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05045590A
Other languages
Japanese (ja)
Other versions
JPH06258354A (en
Inventor
吉弘 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP05045590A priority Critical patent/JP3097375B2/en
Publication of JPH06258354A publication Critical patent/JPH06258354A/en
Application granted granted Critical
Publication of JP3097375B2 publication Critical patent/JP3097375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、三相電力変換装置等
の三相機器の過電流保護或いは地絡保護等を目的とした
三相各相電流の検出回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-phase current detection circuit for protecting three-phase devices such as three-phase power converters from overcurrent or ground faults.

【0002】[0002]

【従来の技術】従来のこの種の三相電流検出回路として
は、図4ないし図6の各回路図に例示する如きものが知
られている。先ず図4は三相電力変換装置の例としての
三相インバータの主回路図であり、1は直流電源、2は
逆並列ダイオードを有するトランシスタをそのスイッチ
ング素子とするインバータ、U,V,Wは各々インバー
タ2のU相,V相,W相の各出力端子、31はインバー
タ2のU相出力電流を1次側入力電流とし2次側よりそ
の検出電流 *u を出力する変流器、同様に41はイン
バータW相出力電流の検出電流 *w を出力する変流器
である。
2. Description of the Related Art As a conventional three-phase current detection circuit of this type, there are known those shown in the respective circuit diagrams of FIGS. First, FIG. 4 is a main circuit diagram of a three-phase inverter as an example of a three-phase power converter, wherein 1 is a DC power supply, 2 is an inverter whose switching element is a transistor having an anti-parallel diode, and U, V, and W are each U-phase of the inverter 2, V-phase, the output terminals of the W-phase, 31 current transformer for outputting the detected current * I u from the secondary side to the U-phase output current of the inverter 2 and the primary input current, Similarly 41 is a current transformer that outputs a detection current * I w inverter W-phase output current.

【0003】なお以下この文中においては、対象量表示
文字の左肩に付した *印を以てそのベクトル表示を行う
ものとし、また関連図面中においては前記表示文字の上
部に付した・印を以てそのベクトル表示を行うものとす
る。従って例えば前記 *uは電流Iu のベクトルを示
すものとなる。また図5は、図4に対応し前記の検出電
*u *w とを用いてV相所要電流の演算推定を
行う電流演算回路図を示すものである。
[0003] In the following, in the following description, the vector display is performed by using an asterisk ( *) attached to the left shoulder of the target amount display character. Shall be performed. Therefore, for example, * Iu indicates a vector of current Iu . FIG. 5 is a current operation circuit diagram corresponding to FIG. 4 and performing operation estimation of the required V-phase current using the detected currents * Iu and * Iw .

【0004】図5において、増幅器AM3 と同一抵抗値
の3個の抵抗R3 とはそのゲインを1とし,且つ点Gに
おける零電位を基準としてその入出力信号間の位相反転
をなす演算増幅回路を構成するものであり、下記の式
(1)から導かれる式(2)の演算を行うものである。 *u *v *w *z ………………(1) ∴ *v *z =−( *u *w ) ………(2) ここに前記 *z は前記三相回路に地絡事故が発生した
場合の地絡電流 *0の3倍の値を有するものである。
[0004] In FIG. 5, and 1 the gain and amplifier AM 3 and three resistors R 3 of the same resistance value, and the operational amplifier which forms the phase reversal between its input and output signals based on the zero potential at point G It constitutes a circuit and performs the operation of equation (2) derived from equation (1) below. * I u + * I v + * I w = * I z .................. (1) ∴ * I v - * I z = - (* I u + * I w) ......... (2) here The * I z has a value three times the ground fault current * I 0 when a ground fault occurs in the three-phase circuit.

【0005】即ち、前記三相回路に地絡事故が発生した
場合には式(1)に示す如く四辺形を形成するベクトル
関係にある4種の電流が存在するものであり、式(2)
に従い前記の検出電流 *u *w の和の位相反転信
号として得た *v *zを以て所要のV相電流とな
すものである。なお前記三相回路の正常時には *z
0となり式(1)の示すベクトル関係は、前記三相回路
の平衡か不平衡かを問わず、閉じた三角形を形成するも
のとなり、前記の式(2)は下記の式(3)の如くな
る。
That is, when a ground fault occurs in the three-phase circuit, there are four types of currents having a vector relationship forming a quadrilateral as shown in equation (1).
The detection current * I u and * I w of the sum of the phase-inverted signal as obtained * I v accordance - * with a I z in which form the desired V-phase current. When the three-phase circuit is normal, * I z =
0, and the vector relationship represented by equation (1) forms a closed triangle irrespective of whether the three-phase circuit is balanced or unbalanced. The equation (2) is represented by the following equation (3). Become.

【0006】*v =−( *u *w ) …………………(3) また図6は、図4に示す主回路図においてそのV相に変
流器51を設けたものであり、図5に示す前記の演算増
幅回路を用いることなくV相電流の直接検出を行うもの
である。
* I v = − ( * I u + * I w ) (3) FIG. 6 shows that a current transformer 51 is provided in the V phase in the main circuit diagram shown in FIG. This directly detects the V-phase current without using the operational amplifier circuit shown in FIG.

【0007】[0007]

【発明が解決しようとする課題】三相電力変換装置等の
三相機器の過電流保護又は地絡保護等を目的として図4
と図5とに示す回路構成により得られた各電流 *u
*v *z *wを用いる場合、前記三相回路に
地絡事故が無ければ *z =0となって正常な過電流保
護が可能である。
FIG. 4 is a diagram showing the purpose of protecting an overcurrent or a ground fault of a three-phase device such as a three-phase power converter.
And the currents * I u , obtained by the circuit configuration shown in FIG.
When * Iv- * Iz and * Iw are used, if there is no ground fault in the three-phase circuit, * Iz = 0 and normal overcurrent protection is possible.

【0008】しかしながら、もし前記三相回路に地絡事
故が発生すれば *z ≠0となり、この *z に関連す
る前記V相演算電流 *v *z の絶対値は地絡事故
発生相如何によっては前記 *v 自体のそれより小とな
り、前記V相に関してその過電流保護と共に過電流検出
を介した地絡検出が不能となる恐れがある。従って前記
の如き保護不能の危険性を回避した確実な保護を要する
場合、従来は図6に示す如く三相回路の全相に変流器を
挿入し、演算による推定を行うことなく所要電流の直接
検出を行っていた。
However, if when a ground fault occurs in the three-phase circuit * I z ≠ 0, and this * the V-phase operation currents related to I z * I v - absolute value of * I z is ground Depending on the accident occurrence phase, it becomes smaller than that of * Iv itself, and there is a possibility that ground fault detection via overcurrent detection and overcurrent detection for the V phase may become impossible. Therefore, when reliable protection is required to avoid the danger of unprotection as described above, current transformers are conventionally inserted in all phases of a three-phase circuit as shown in FIG. Direct detection was performed.

【0009】即ち前記の如き保護を目的とする電流検出
において、三相各相の電流を図4と図5の回路構成に従
い2個の変流器を用いて行う場合には保護動作の確実性
に難があり、また保護動作の確実性を保つために図6の
如く3個の変流器を用いれば装置全体としての大形化と
高価格化とは避けられなかった。上記に鑑みこの発明
は、三相電力変換装置等の三相機器の過電流保護又は地
絡保護等を目的とする三相各相電流の検出を、保護の確
実性を保持しながら、2個の変流器によって行い得る三
相電流検出回路の提供を目的とするものである。
That is, in the current detection for the purpose of protection as described above, when the current of each of the three phases is performed using two current transformers according to the circuit configurations of FIGS. 4 and 5, the reliability of the protection operation is ensured. In addition, if three current transformers are used as shown in FIG. 6 in order to maintain the reliability of the protection operation, it is inevitable that the device as a whole becomes larger and more expensive. In view of the above, the present invention detects two-phase currents of three phases each for the purpose of overcurrent protection or ground fault protection of three-phase equipment such as a three-phase power converter, while maintaining the reliability of protection. It is an object of the present invention to provide a three-phase current detection circuit that can be performed by the current transformer.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の三相電流検出回路は、三相回路における3
相中の2相の電流を共にその1次入力とする第一の変流
器と、前記3相中の残り1相と前記の如く選択された2
相中の1相の電流を共にその1次入力とする第二の変流
器と、その入出力信号間の位相反転特性を有し前記第一
の変流器の2次出力をその入力とする第一の演算増幅器
と、前記第二の変流器の2次出力をその入力とし且つそ
の位相特性とゲインとに関して前記第一の演算増幅器と
同一特性を有する第二の演算増幅器と、前記の第一と第
二両演算増幅器の出力の和をその入力とし且つその位相
特性とゲインとに関して前記第一の演算増幅器と同一特
性を有する第三の演算増幅器とを備えて成り、前記3組
の演算増幅器の出力を以てそれぞれ前記三相各相電流の
所要の検出値となすものとする。
In order to achieve the above object, a three-phase current detection circuit according to the present invention comprises a three-phase current detection circuit.
A first current transformer having both of the two phases of the current as its primary inputs, and the remaining one of the three phases and the two selected as described above.
A second current transformer having one phase current as its primary input, and a second output of the first current transformer having a phase inversion characteristic between its input and output signals. A second operational amplifier having as its input the secondary output of the second current transformer and having the same characteristics as the first operational amplifier with respect to its phase characteristics and gain; And a third operational amplifier having as its input the sum of the outputs of the first and second operational amplifiers and having the same characteristics as the first operational amplifier in terms of its phase characteristics and gain. Are used as the required detection values of the three-phase currents.

【0011】[0011]

【作用】一般に三相回路各相の電流或いは電圧のベクト
ルは、前記回路に地絡事故の無い正常時には三角形を、
また地絡事故発生時には四辺形を形成する。図3は、三
相回路における各相電流ベクトルの相互関係を地絡事故
発生時を含めて一般的に示す電流ベクトル図であり、前
記の三相各相をU,V,Wとすれば、四辺形OABCを
形成する各辺AO,BA,CB,COがそれぞれ前記各
電流ベクトル *u *v *w *z に対応す
るものとなり、それぞれ前記の式(1)により相互に関
係付けられる。
In general, the current or voltage vector of each phase of a three-phase circuit is represented by a triangle when the circuit is normal without a ground fault,
When a ground fault occurs, a quadrilateral is formed. FIG. 3 is a current vector diagram generally showing the mutual relationship of each phase current vector in a three-phase circuit including the time of occurrence of a ground fault. If the three phases are U, V, and W, sides AO to form a quadrilateral OABC, BA, CB, CO, respectively the respective current vector * I u, * I v, * I w, * will correspond to I z, respectively by the above formula (1) Be correlated.

【0012】なお前記三相回路の正常時には *z =0
となり前記四辺形OABCは三角形ABCに変化する。
今、三相中の二相例えばUとV両相の電流と、前記三相
中の残り一相と前記のの如く選択された二相中の一相例
えばWとV両相の電流とをそれぞれの1次入力とする1
次2入力形の2組の変流器を用い、これら各変流器の2
次出力より2組の電流合成ベクトル *u *v *
v *w とを検出すれば、これら両検出値を用い前
記の式(1)から導かれる下記の式(4)〜式(6)に
よる演算を行うことができる。
When the three-phase circuit is normal, * I z = 0
And the quadrilateral OABC changes to a triangle ABC.
Now, the currents of two phases of the three phases, for example, U and V phases, the remaining one phase of the three phases, and the currents of one phase, for example, both W and V phases of the two phases selected as described above, are obtained. 1 for each primary input
Using two sets of current transformers of the following two-input type,
From the next output, two sets of current composite vectors * Iu + * Iv and *
If Iv + * Iw is detected, it is possible to perform calculations by the following equations (4) to (6) derived from the above equation (1) using both detected values.

【0013】 *u *z =−( *v *w ) …………(4) *v *z =−〔( *u *z ) +( *w *z )〕……(5) *w *z =−( *u *v ) …………(6) 前記各電流間の相互関係は図3に示す如くなり、各電流
ベクトルの絶対値比較において下記の式(7)〜式
(9)が成り立つ。
* I u* I z = − ( * I v + * I w ) (4) * I v + * I z = − [( * I u* I z ) + ( * Iw− * Iz )] (5) * Iw− * Iz = − ( * Iu + * Iv ) (6) FIG. 3 shows the interrelationship between the currents. As a result, the following expressions (7) to (9) hold in the absolute value comparison of each current vector.

【0014】 | *u *z |≧| *u | …………………(7) | *v *z |≧| *v | …………………(8) | *w *z |≧| *w | …………………(9) 式(7)〜式(9)に示す大小関係は、前記三相回路に
おける地絡事故の発生する相如何により変化するが、地
絡事故発生相がどの相であっても少なくも2組の相にお
いて式(7)〜式(9)に示す大小関係が成り立つもの
となる。
| * Iu− * Iz | ≧ | * Iu | (7) | * Iv + * Iz | ≧ | * Iv |...... (8) | * I w - * I z | ≧ | * I w | ..................... (9) the magnitude relation shown in the expression (7) to (9), ground fault in the three-phase circuit Although the phase varies depending on the phase in which the accident occurs, the magnitude relationship shown in Equations (7) to (9) is established in at least two sets of phases regardless of the phase in which the ground fault accident occurs.

【0015】即ち、前記の如く三相電流中の一相を共通
とした2相電流からなる2組の電流を2個の変流器のそ
れぞれに通電して得た検出電流を用い式(4)〜式
(6)に従って変成した各電流演算値を以て前記U,
V,Wの三相各相における保護動作用の所要検出電流と
すれば、三相回路正常時の過電流検出と共に、地絡事故
発生相の如何に係わらず地絡検出を確実に行うことが可
能となる。
That is, as described above, the two sets of currents consisting of the two-phase currents having one phase common among the three-phase currents are applied to each of the two current transformers, and the detected currents obtained by the equations (4) are used. )-(6)
Assuming that the required detection current for the protection operation in each of the three phases of V and W is the overcurrent detection when the three-phase circuit is normal, the ground fault detection can be reliably performed regardless of the ground fault occurrence phase. It becomes possible.

【0016】[0016]

【実施例】以下この発明の実施例を、図1の三相インバ
ータの主回路図と図2の電流演算回路図とに従い説明す
る。なお図1と図2とにおいては、図4と図5とに示す
従来技術の実施例の場合と同一機能の構成要素に対して
は同一の表示符号を付している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the main circuit diagram of the three-phase inverter of FIG. 1 and the current calculation circuit diagram of FIG. In FIGS. 1 and 2, components having the same functions as those of the embodiment of the prior art shown in FIGS. 4 and 5 are denoted by the same reference numerals.

【0017】先ず図1は、図4に示す両変流器31と4
1とに代えて1次2入力形の変流器3と4とを設け、変
流器3の1次側にはインバータ2のU,V両相の電流
を、また変流器4の1次側にはインバータ2のV,W両
相の電流を通電させ、それぞれ検出電流 *u *v
*v *w とを出力させる如く回路構成したもの
である。
First, FIG. 1 shows both current transformers 31 and 4 shown in FIG.
1 is provided with current transformers 3 and 4 of a primary two-input type, and the primary side of the current transformer 3 receives the current of both U and V phases of the inverter 2 and the current transformer 1 The currents of both the V and W phases of the inverter 2 are supplied to the secondary side, and the detected currents * I u + * I v
And * I v + * is obtained by the circuit constructed as to output and I w.

【0018】次に図2は、位相反転特性とゲインとに関
して同一特性の3組の演算増幅回路を設け、増幅器AM
1 と3個の抵抗R1 とからなる第一の演算増幅回路に対
しては前記の電流 *u *v をその入力となし、増
幅器AM2 と3個の抵抗R2とからなる第二の演算増幅
回路に対しては前記の電流 *v *w をその入力と
なし、更に増幅器AM3 と3個の抵抗R3 とからなる第
三の演算増幅回路に対しては前記の第一と第二両演算増
幅回路の演算出力の和を入力となす如く構成した電流演
算回路を示すものである。
FIG. 2 shows three sets of operational amplifier circuits having the same characteristics with respect to the phase inversion characteristic and the gain, and
1 and No the current * I u + * I v and its input to the first operational amplifier circuit consisting of three resistors R 1 Tokyo, consisting amplifier AM 2 and three resistors R 2 Metropolitan for the second operational amplifier circuit without the current * I v + * I w and the input for the third operational amplifier circuit further comprising an amplifier AM 3 and three resistors R 3 Metropolitan 9 shows a current operation circuit configured so that the sum of the operation outputs of the first and second operation amplifier circuits is used as an input.

【0019】従って前記の式(4),式(5),式
(6)により決定され図3に示す如くなる三相各相電流
をそれぞれ前記第二,第三,第一の各演算増幅回路の出
力として得ることができ、これら各相電流をU,V,W
の三相各相における保護動作用の所要検出電流となすこ
とにより、過電流検出と共に地絡検出の確実化を図るこ
とができる。
Accordingly, the three-phase currents determined by the above equations (4), (5) and (6) and shown in FIG. 3 are supplied to the second, third and first operational amplifier circuits, respectively. , And each of these phase currents is expressed as U, V, W
By using the required detection current for the protection operation in each of the three phases, the overcurrent detection and the ground fault detection can be reliably performed.

【0020】[0020]

【発明の効果】この発明によれば、三相回路における3
相中の2相(例えばUとV両相)の電流を共にその1次
入力とする第一の変流器と、前記3相中の残り1相と前
記の如く選択された2相中の1相の電流とを(例えばW
とV両相電流)共にその1次入力とする第二の変流器
と、その入出力信号間の位相反転特性を有し前記第一の
変流器の2次出力をその入力とする第一の演算増幅器
と、前記第二の変流器の2次出力をその入力とし且つそ
の位相特性とゲインとに関して前記第一の演算増幅器と
同一特性を有する第二の演算増幅器と、前記第一と第二
両演算増幅器の出力の和をその入力とし且つその位相特
性とゲインとに関して前記第一の演算増幅器と同一特性
を有する第三の演算増幅器とを設け、前記3組の演算増
幅器の出力を以て前記三相回路を構成する三相電力変換
装置等三相機器の過電流保護或いは地絡保護等を目的と
する三相各相電流の所要の検出値となすことにより、所
要の変流器を2個として三相回路における過電流検出と
共に地絡検出を確実に行うことができ、前記変換装置等
の装置全体としての小形低廉化と共にその保護の確実性
を保つことが可能となる。
According to the present invention, the three-phase circuit
A first current transformer having both primary currents of two phase currents (for example, both U and V phases); and a remaining one phase among the three phases and a current among the two phases selected as described above. The current of one phase (for example, W
And V-phase currents), and a second current transformer whose primary input is both, and a second current transformer having a phase inversion characteristic between its input and output signals and having a secondary output of the first current transformer as its input. An operational amplifier, a second operational amplifier having a secondary output of the second current transformer as an input, and a second operational amplifier having the same characteristics as the first operational amplifier with respect to its phase characteristics and gain; And a third operational amplifier having as its input the sum of the outputs of the two operational amplifiers and having the same characteristics as the first operational amplifier in terms of its phase characteristics and gain. With the required detection value of each three-phase current for the purpose of overcurrent protection or ground fault protection of three-phase equipment such as a three-phase power converter that constitutes the three-phase circuit, To ensure that ground faults are detected together with overcurrent detection in a three-phase circuit. Ukoto can, it is possible to maintain the reliability of the protection with small cost reduction of the entire device, such as the conversion device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す三相インバータの主回路
FIG. 1 is a main circuit diagram of a three-phase inverter showing an embodiment of the present invention.

【図2】図1に対応する電流演算回路図FIG. 2 is a current operation circuit diagram corresponding to FIG.

【図3】三相回路における電流ベクトル図FIG. 3 is a current vector diagram in a three-phase circuit.

【図4】従来技術の実施例を示す三相インバータの主回
路図(その1)
FIG. 4 is a main circuit diagram of a three-phase inverter showing an embodiment of the prior art (part 1);

【図5】図4に対応する電流演算回路図FIG. 5 is a current calculation circuit diagram corresponding to FIG.

【図6】従来技術の実施例を示す三相インバータの主回
路図(その2)
FIG. 6 is a main circuit diagram of a three-phase inverter showing an embodiment of the prior art (part 2).

【符号の説明】[Explanation of symbols]

1 直流電源 2 インバータ 3 変流器(U,V両相電流の2入力形) 4 変流器(V,W両相電流の2入力形) 31 変流器(U相電流の1入力形) 41 変流器(W相電流の1入力形) 51 変流器(V相電流の1入力形) AM 増幅器(AM1,AM2,AM3 ) R 抵抗(R1,2,3 DESCRIPTION OF SYMBOLS 1 DC power supply 2 Inverter 3 Current transformer (two-input type of U and V dual phase current) 4 Current transformer (two-input type of V and W dual phase current) 31 Current transformer (one input type of U phase current) 41 current transformer (1 input type of W-phase current) 51 current transformer (V-phase 1 input type of the current) AM amplifier (AM 1, AM 2, AM 3) R resistor (R 1, R 2, R 3)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】三相回路における3相中の2相の電流を共
にその1次入力とする第一の変流器と、前記3相中の残
り1相と前記の如く選択された2相中の1相の電流を共
にその1次入力とする第二の変流器と、その入出力信号
間の位相反転特性を有し前記第一の変流器の2次出力を
その入力とする第一の演算増幅器と、前記第二の変流器
の2次出力をその入力とし且つその位相特性とゲインと
に関して前記第一の演算増幅器と同一特性を有する第二
の演算増幅器と、前記の第一と第二両演算増幅器の出力
の和をその入力とし且つその位相特性とゲインとに関し
て前記第一の演算増幅器と同一特性を有する第三の演算
増幅器とを備えて成り、前記3組の演算増幅器の出力を
以てそれぞれ前記三相各相電流の所要の検出値となすこ
とを特徴とする三相電流検出回路。
1. A first current transformer having two primary currents of three phases in a three-phase circuit as primary inputs, and a remaining one phase of the three phases and a two phase selected as described above. A second current transformer having the primary current therein as its primary input, and a secondary output of the first current transformer having phase inversion characteristics between its input and output signals. A first operational amplifier, a second operational amplifier having as its input a secondary output of the second current transformer, and having the same characteristics as the first operational amplifier in terms of its phase characteristics and gain; A third operational amplifier having as its input the sum of the outputs of the first and second operational amplifiers and having the same characteristics as the first operational amplifier in terms of its phase characteristics and gain; The output of the operational amplifier is used as a required detection value for each of the three-phase currents. Current detection circuit.
JP05045590A 1993-03-08 1993-03-08 Three-phase current detection circuit Expired - Lifetime JP3097375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05045590A JP3097375B2 (en) 1993-03-08 1993-03-08 Three-phase current detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05045590A JP3097375B2 (en) 1993-03-08 1993-03-08 Three-phase current detection circuit

Publications (2)

Publication Number Publication Date
JPH06258354A JPH06258354A (en) 1994-09-16
JP3097375B2 true JP3097375B2 (en) 2000-10-10

Family

ID=12723570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05045590A Expired - Lifetime JP3097375B2 (en) 1993-03-08 1993-03-08 Three-phase current detection circuit

Country Status (1)

Country Link
JP (1) JP3097375B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749492B (en) * 2012-06-19 2014-11-05 江苏科技大学 Short-circuit current computing method for ring-shaped ship power grid
CN103364683B (en) * 2013-07-01 2015-05-06 东南大学 Method for detecting open-circuit fault of inverter circuit

Also Published As

Publication number Publication date
JPH06258354A (en) 1994-09-16

Similar Documents

Publication Publication Date Title
JPH02197295A (en) Current detector for inverter device
JPS60210119A (en) Leakage proecting circuit
JP3097375B2 (en) Three-phase current detection circuit
US3949272A (en) Ground-fault protective scheme for multiple-source electric distribution system
US4853819A (en) Overcurrent tripping unit for a circuit breaker
KR102115243B1 (en) Protection relay device
JP4153211B2 (en) Inverter device
US6560132B1 (en) System for obtaining phase-ground voltages from a broken delta VT voltage connection system
JP3274274B2 (en) Demagnetization suppression control circuit
US2378800A (en) Protective system
JP3216463B2 (en) Parallel operation power supply system
JP2008141896A (en) Protection relay
JP2594682B2 (en) Transformer protection relay
JP2777491B2 (en) Interphase reactor multiplex inverter
JPH06133534A (en) Semiconductor ac switch
JPH10174271A (en) Current differential protective relay device
JP3254765B2 (en) Phase protection equipment shunt reactor protection relay
JPH06187888A (en) Circuit breaker
JP3562789B2 (en) Overcurrent detection device
JPS6066620A (en) Transformer protecting relay system
JPS63129812A (en) Network protector
JPH11341684A (en) Voltage sensing type active filter
JPS6295923A (en) Protective relay of transformer
JPS6110968B2 (en)
JPH0465613B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 13

EXPY Cancellation because of completion of term