JPH06258354A - Three-phase current detection circuit - Google Patents

Three-phase current detection circuit

Info

Publication number
JPH06258354A
JPH06258354A JP5045590A JP4559093A JPH06258354A JP H06258354 A JPH06258354 A JP H06258354A JP 5045590 A JP5045590 A JP 5045590A JP 4559093 A JP4559093 A JP 4559093A JP H06258354 A JPH06258354 A JP H06258354A
Authority
JP
Japan
Prior art keywords
phase
current
circuit
operational amplifier
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5045590A
Other languages
Japanese (ja)
Other versions
JP3097375B2 (en
Inventor
Yoshihiro Matsumoto
吉弘 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP05045590A priority Critical patent/JP3097375B2/en
Publication of JPH06258354A publication Critical patent/JPH06258354A/en
Application granted granted Critical
Publication of JP3097375B2 publication Critical patent/JP3097375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To detect by means of two current transformers a current of each phase for protecting over-current and ground fault in a three-phase circuit. CONSTITUTION:In an inverter 2 that is an example of three-phase equipment forming three-phase circuit, primary-side-two-input type current transformers 3, 4 having a U, V phase output current and a V, W phase output current as primary inputs respectively, is provided. A circuit is so constituted that by using both secondary detection currents *Iu+*Iv and *Iv+*Iw, each current *Iu-*Iz, *Iv+*Iz, *Iw-*Iz including ground current *Iz is outputted as a protection current in the respective U, V and W phases via three computing circuits so that detection of over-current in the three phase circuit and detection of ground fault regardless of the phase that the ground fault happened thereto, are securely carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、三相電力変換装置等
の三相機器の過電流保護或いは地絡保護等を目的とした
三相各相電流の検出回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-phase current detection circuit for three-phase power converters and other three-phase equipment for overcurrent protection or ground fault protection.

【0002】[0002]

【従来の技術】従来のこの種の三相電流検出回路として
は、図4ないし図6の各回路図に例示する如きものが知
られている。先ず図4は三相電力変換装置の例としての
三相インバータの主回路図であり、1は直流電源、2は
逆並列ダイオードを有するトランシスタをそのスイッチ
ング素子とするインバータ、U,V,Wは各々インバー
タ2のU相,V相,W相の各出力端子、31はインバー
タ2のU相出力電流を1次側入力電流とし2次側よりそ
の検出電流 *u を出力する変流器、同様に41はイン
バータW相出力電流の検出電流 *w を出力する変流器
である。
2. Description of the Related Art As a conventional three-phase current detection circuit of this type, there are known ones illustrated in the circuit diagrams of FIGS. First, FIG. 4 is a main circuit diagram of a three-phase inverter as an example of a three-phase power conversion device. 1 is a DC power supply, 2 is an inverter having a transistor having an antiparallel diode as its switching element, U, V, W are U-phase, V-phase, and W-phase output terminals of the inverter 2, 31 are current transformers that use the U-phase output current of the inverter 2 as the primary-side input current and output the detected current * I u from the secondary side, Similarly, reference numeral 41 is a current transformer that outputs a detection current * I w of the inverter W-phase output current.

【0003】なお以下この文中においては、対象量表示
文字の左肩に付した *印を以てそのベクトル表示を行う
ものとし、また関連図面中においては前記表示文字の上
部に付した・印を以てそのベクトル表示を行うものとす
る。従って例えば前記 *uは電流Iu のベクトルを示
すものとなる。また図5は、図4に対応し前記の検出電
*u *w とを用いてV相所要電流の演算推定を
行う電流演算回路図を示すものである。
In the following, in this sentence, the vector display is made by using the * mark attached to the left shoulder of the target amount display character, and in the related drawings, the vector display is made by using the * mark attached above the display character. Shall be performed. Therefore, for example, the above * I u indicates the vector of the current I u . 5 is a current operation circuit diagram corresponding to FIG. 4 for performing operation estimation of the V-phase required current using the detected currents * I u and * I w .

【0004】図5において、増幅器AM3 と同一抵抗値
の3個の抵抗R3 とはそのゲインを1とし,且つ点Gに
おける零電位を基準としてその入出力信号間の位相反転
をなす演算増幅回路を構成するものであり、下記の式
(1)から導かれる式(2)の演算を行うものである。 *u *v *w *z ………………(1) ∴ *v *z =−( *u *w ) ………(2) ここに前記 *z は前記三相回路に地絡事故が発生した
場合の地絡電流 *0の3倍の値を有するものである。
[0004] In FIG. 5, and 1 the gain and amplifier AM 3 and three resistors R 3 of the same resistance value, and the operational amplifier which forms the phase reversal between its input and output signals based on the zero potential at point G It constitutes a circuit and performs the operation of the equation (2) derived from the following equation (1). * I u + * I v + * I w = * I z .................. (1) ∴ * I v - * I z = - (* I u + * I w) ......... (2) here In addition, * I z has a value three times as large as the ground fault current * I 0 when the ground fault occurs in the three-phase circuit.

【0005】即ち、前記三相回路に地絡事故が発生した
場合には式(1)に示す如く四辺形を形成するベクトル
関係にある4種の電流が存在するものであり、式(2)
に従い前記の検出電流 *u *w の和の位相反転信
号として得た *v *zを以て所要のV相電流とな
すものである。なお前記三相回路の正常時には *z
0となり式(1)の示すベクトル関係は、前記三相回路
の平衡か不平衡かを問わず、閉じた三角形を形成するも
のとなり、前記の式(2)は下記の式(3)の如くな
る。
That is, when a ground fault occurs in the three-phase circuit, there are four types of electric currents having a vector relationship that forms a quadrangle as shown in equation (1), and equation (2)
The detection current * I u and * I w of the sum of the phase-inverted signal as obtained * I v accordance - * with a I z in which form the desired V-phase current. When the above three-phase circuit is normal, * I z =
The vector relation of 0 becomes a closed triangle regardless of whether the three-phase circuit is balanced or unbalanced, and the equation (2) is expressed by the following equation (3). Become.

【0006】*v =−( *u *w ) …………………(3) また図6は、図4に示す主回路図においてそのV相に変
流器51を設けたものであり、図5に示す前記の演算増
幅回路を用いることなくV相電流の直接検出を行うもの
である。
* Iv =-( * Iu + * Iw ) (3) Further, FIG. 6 shows a current transformer 51 provided in the V phase of the main circuit diagram shown in FIG. The V-phase current is directly detected without using the operational amplifier circuit shown in FIG.

【0007】[0007]

【発明が解決しようとする課題】三相電力変換装置等の
三相機器の過電流保護又は地絡保護等を目的として図4
と図5とに示す回路構成により得られた各電流 *u
*v *z *wを用いる場合、前記三相回路に
地絡事故が無ければ *z =0となって正常な過電流保
護が可能である。
For the purpose of overcurrent protection or ground fault protection of three-phase equipment such as a three-phase power converter, FIG.
And each current * I u obtained by the circuit configuration shown in FIG.
When * I v* I z and * I w are used, if there is no ground fault in the three-phase circuit, * I z = 0 and normal overcurrent protection is possible.

【0008】しかしながら、もし前記三相回路に地絡事
故が発生すれば *z ≠0となり、この *z に関連す
る前記V相演算電流 *v *z の絶対値は地絡事故
発生相如何によっては前記 *v 自体のそれより小とな
り、前記V相に関してその過電流保護と共に過電流検出
を介した地絡検出が不能となる恐れがある。従って前記
の如き保護不能の危険性を回避した確実な保護を要する
場合、従来は図6に示す如く三相回路の全相に変流器を
挿入し、演算による推定を行うことなく所要電流の直接
検出を行っていた。
However, if a ground fault occurs in the three-phase circuit, * I z ≠ 0, and the absolute value of the V-phase operation current * I v* I z related to this * I z is the ground fault. Depending on the accident occurrence phase, it becomes smaller than that of * I v itself, and there is a risk that the overcurrent protection for the V phase and the ground fault detection via overcurrent detection may be disabled. Therefore, when reliable protection is required to avoid the risk of being unable to protect as described above, conventionally, as shown in FIG. 6, a current transformer is inserted in all phases of the three-phase circuit, and the required current is calculated without making an estimation by calculation. The detection was done directly.

【0009】即ち前記の如き保護を目的とする電流検出
において、三相各相の電流を図4と図5の回路構成に従
い2個の変流器を用いて行う場合には保護動作の確実性
に難があり、また保護動作の確実性を保つために図6の
如く3個の変流器を用いれば装置全体としての大形化と
高価格化とは避けられなかった。上記に鑑みこの発明
は、三相電力変換装置等の三相機器の過電流保護又は地
絡保護等を目的とする三相各相電流の検出を、保護の確
実性を保持しながら、2個の変流器によって行い得る三
相電流検出回路の提供を目的とするものである。
That is, in the current detection for the purpose of protection as described above, when the current of each of the three phases is performed by using two current transformers according to the circuit configurations of FIGS. 4 and 5, the reliability of the protection operation is ensured. In addition, if three current transformers are used as shown in FIG. 6 in order to maintain the reliability of the protection operation, it is inevitable that the size and cost of the entire device will be increased. In view of the above, the present invention detects three-phase currents for the purpose of overcurrent protection or ground-fault protection of three-phase equipment such as three-phase power converters, while maintaining the reliability of protection, and It is an object of the present invention to provide a three-phase current detection circuit that can be performed by the current transformer.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の三相電流検出回路は、三相回路における3
相中の2相の電流を共にその1次入力とする第一の変流
器と、前記3相中の残り1相と前記の如く選択された2
相中の1相の電流を共にその1次入力とする第二の変流
器と、その入出力信号間の位相反転特性を有し前記第一
の変流器の2次出力をその入力とする第一の演算増幅器
と、前記第二の変流器の2次出力をその入力とし且つそ
の位相特性とゲインとに関して前記第一の演算増幅器と
同一特性を有する第二の演算増幅器と、前記の第一と第
二両演算増幅器の出力の和をその入力とし且つその位相
特性とゲインとに関して前記第一の演算増幅器と同一特
性を有する第三の演算増幅器とを備えて成り、前記3組
の演算増幅器の出力を以てそれぞれ前記三相各相電流の
所要の検出値となすものとする。
In order to achieve the above object, the three-phase current detection circuit of the present invention is a three-phase current detection circuit.
A first current transformer that uses both of the two phase currents as its primary inputs, the remaining one phase of the three phases, and the two selected as described above.
A second current transformer which has as its primary input both the currents of one of the phases, and a secondary output of the first current transformer having its phase inversion characteristic between its input and output signals as its input And a second operational amplifier having the secondary output of the second current transformer as its input and having the same characteristics as the first operational amplifier with respect to its phase characteristics and gain. Of the first and second operational amplifiers as an input, and a third operational amplifier having the same characteristics as the first operational amplifier with respect to its phase characteristic and gain, and the three sets The output of the operational amplifier is used as a required detection value for each of the three-phase currents.

【0011】[0011]

【作用】一般に三相回路各相の電流或いは電圧のベクト
ルは、前記回路に地絡事故の無い正常時には三角形を、
また地絡事故発生時には四辺形を形成する。図3は、三
相回路における各相電流ベクトルの相互関係を地絡事故
発生時を含めて一般的に示す電流ベクトル図であり、前
記の三相各相をU,V,Wとすれば、四辺形OABCを
形成する各辺AO,BA,CB,COがそれぞれ前記各
電流ベクトル *u *v *w *z に対応す
るものとなり、それぞれ前記の式(1)により相互に関
係付けられる。
In general, the current or voltage vector of each phase of a three-phase circuit is a triangle when the circuit is normal without a ground fault,
It also forms a quadrilateral when a ground fault occurs. FIG. 3 is a current vector diagram that generally shows the mutual relation of the phase current vectors in the three-phase circuit, including when a ground fault occurs. If the three-phase phases are U, V, W, then Each side AO, BA, CB, CO forming the quadrangle OABC corresponds to each of the current vectors * I u , * I v , * I w , * I z , respectively, according to the above equation (1). Be related to each other.

【0012】なお前記三相回路の正常時には *z =0
となり前記四辺形OABCは三角形ABCに変化する。
今、三相中の二相例えばUとV両相の電流と、前記三相
中の残り一相と前記のの如く選択された二相中の一相例
えばWとV両相の電流とをそれぞれの1次入力とする1
次2入力形の2組の変流器を用い、これら各変流器の2
次出力より2組の電流合成ベクトル *u *v *
v *w とを検出すれば、これら両検出値を用い前
記の式(1)から導かれる下記の式(4)〜式(6)に
よる演算を行うことができる。
When the three-phase circuit is normal, * I z = 0
Then, the quadrangle OABC changes into a triangle ABC.
Now, the currents of two phases of the three phases, for example, U and V phases, the remaining one phase of the three phases, and the currents of one phase of the two phases selected as described above, for example, W and V phases. 1 for each primary input
Next, two sets of current transformers with two inputs are used.
From the next output, two sets of current composition vectors * I u + * I v and *
If I v + * I w is detected, it is possible to perform the calculation by the following formulas (4) to (6) derived from the above formula (1) using these detected values.

【0013】 *u *z =−( *v *w ) …………(4) *v *z =−〔( *u *z ) +( *w *z )〕……(5) *w *z =−( *u *v ) …………(6) 前記各電流間の相互関係は図3に示す如くなり、各電流
ベクトルの絶対値比較において下記の式(7)〜式
(9)が成り立つ。
* Iu- * Iz =-( * Iv + * Iw ) (4) * Iv + * Iz =-[( * Iu- * Iz ) + ( * Iw− * Iz )] (5) * Iw− * Iz = − ( * Iu + * Iv ) (6) The mutual relationship between the currents is shown in FIG. As a result, the following equations (7) to (9) are established in the absolute value comparison of the respective current vectors.

【0014】 | *u *z |≧| *u | …………………(7) | *v *z |≧| *v | …………………(8) | *w *z |≧| *w | …………………(9) 式(7)〜式(9)に示す大小関係は、前記三相回路に
おける地絡事故の発生する相如何により変化するが、地
絡事故発生相がどの相であっても少なくも2組の相にお
いて式(7)〜式(9)に示す大小関係が成り立つもの
となる。
* I u* I z │ ≧ │ * I u │ ……………… (7) | * I v + * I z │ ≧ │ * I v │ …………………… (8) | * I w* I z | ≧ | * I w | ………………………………………………………………………………………………………………………………… (9) Although the phase changes depending on the occurrence of the accident, the magnitude relationship shown in Expressions (7) to (9) is established in at least two phases regardless of which phase the ground fault accident occurs.

【0015】即ち、前記の如く三相電流中の一相を共通
とした2相電流からなる2組の電流を2個の変流器のそ
れぞれに通電して得た検出電流を用い式(4)〜式
(6)に従って変成した各電流演算値を以て前記U,
V,Wの三相各相における保護動作用の所要検出電流と
すれば、三相回路正常時の過電流検出と共に、地絡事故
発生相の如何に係わらず地絡検出を確実に行うことが可
能となる。
That is, as described above, the equation (4) is used by using the detected current obtained by passing two sets of currents, each of which is a two-phase current having a common one phase among the three-phase currents, to each of the two current transformers. ) To Eq. (6), the U,
If the required detection current for the protection operation in each of the three phases of V and W is used, it is possible to surely detect the ground fault regardless of the phase in which the ground fault occurs, as well as the overcurrent when the three-phase circuit is normal. It will be possible.

【0016】[0016]

【実施例】以下この発明の実施例を、図1の三相インバ
ータの主回路図と図2の電流演算回路図とに従い説明す
る。なお図1と図2とにおいては、図4と図5とに示す
従来技術の実施例の場合と同一機能の構成要素に対して
は同一の表示符号を付している。
Embodiments of the present invention will be described below with reference to the main circuit diagram of the three-phase inverter shown in FIG. 1 and the current operation circuit diagram shown in FIG. 1 and 2, components having the same functions as those in the embodiment of the prior art shown in FIGS. 4 and 5 are designated by the same reference numerals.

【0017】先ず図1は、図4に示す両変流器31と4
1とに代えて1次2入力形の変流器3と4とを設け、変
流器3の1次側にはインバータ2のU,V両相の電流
を、また変流器4の1次側にはインバータ2のV,W両
相の電流を通電させ、それぞれ検出電流 *u *v
*v *w とを出力させる如く回路構成したもの
である。
First, FIG. 1 shows both current transformers 31 and 4 shown in FIG.
In place of 1, the primary and secondary input type current transformers 3 and 4 are provided. On the primary side of the current transformer 3, currents of both U and V phases of the inverter 2 and 1 of the current transformer 4 are provided. The V and W phase currents of the inverter 2 are passed to the next side, and the detected currents * I u + * I v
And * I v + * I w are output.

【0018】次に図2は、位相反転特性とゲインとに関
して同一特性の3組の演算増幅回路を設け、増幅器AM
1 と3個の抵抗R1 とからなる第一の演算増幅回路に対
しては前記の電流 *u *v をその入力となし、増
幅器AM2 と3個の抵抗R2とからなる第二の演算増幅
回路に対しては前記の電流 *v *w をその入力と
なし、更に増幅器AM3 と3個の抵抗R3 とからなる第
三の演算増幅回路に対しては前記の第一と第二両演算増
幅回路の演算出力の和を入力となす如く構成した電流演
算回路を示すものである。
Next, in FIG. 2, three sets of operational amplifier circuits having the same characteristics with respect to the phase inversion characteristic and the gain are provided, and the amplifier AM is provided.
For the first operational amplifier circuit consisting of 1 and 3 resistors R 1 , the current * I u + * I v is used as its input and consists of an amplifier AM 2 and 3 resistors R 2. For the second operational amplifier circuit, the current * Iv + * Iw is used as its input, and for the third operational amplifier circuit consisting of the amplifier AM 3 and the three resistors R 3. 1 shows a current operation circuit configured so that a sum of operation outputs of both the first and second operational amplifier circuits is used as an input.

【0019】従って前記の式(4),式(5),式
(6)により決定され図3に示す如くなる三相各相電流
をそれぞれ前記第二,第三,第一の各演算増幅回路の出
力として得ることができ、これら各相電流をU,V,W
の三相各相における保護動作用の所要検出電流となすこ
とにより、過電流検出と共に地絡検出の確実化を図るこ
とができる。
Therefore, the respective three-phase currents determined by the equations (4), (5), and (6) as shown in FIG. 3 are supplied to the second, third, and first operational amplifier circuits, respectively. Can be obtained as the output of U, V, W
By setting the required detection current for the protection operation in each of the three phases, it is possible to ensure overcurrent detection and ground fault detection.

【0020】[0020]

【発明の効果】この発明によれば、三相回路における3
相中の2相(例えばUとV両相)の電流を共にその1次
入力とする第一の変流器と、前記3相中の残り1相と前
記の如く選択された2相中の1相の電流とを(例えばW
とV両相電流)共にその1次入力とする第二の変流器
と、その入出力信号間の位相反転特性を有し前記第一の
変流器の2次出力をその入力とする第一の演算増幅器
と、前記第二の変流器の2次出力をその入力とし且つそ
の位相特性とゲインとに関して前記第一の演算増幅器と
同一特性を有する第二の演算増幅器と、前記第一と第二
両演算増幅器の出力の和をその入力とし且つその位相特
性とゲインとに関して前記第一の演算増幅器と同一特性
を有する第三の演算増幅器とを設け、前記3組の演算増
幅器の出力を以て前記三相回路を構成する三相電力変換
装置等三相機器の過電流保護或いは地絡保護等を目的と
する三相各相電流の所要の検出値となすことにより、所
要の変流器を2個として三相回路における過電流検出と
共に地絡検出を確実に行うことができ、前記変換装置等
の装置全体としての小形低廉化と共にその保護の確実性
を保つことが可能となる。
According to the present invention, the three-phase circuit is used.
A first current transformer having currents of two phases (for example, both U and V phases) as its primary inputs, a remaining one phase of the three phases, and two phases selected as described above. 1-phase current (for example, W
And V both-phase current) both have their primary inputs as the second current transformer, and a second current transformer having the phase inversion characteristic between its input and output signals and having the secondary output of the first current transformer as its input. One operational amplifier, a second operational amplifier having the secondary output of the second current transformer as its input and having the same phase characteristics and gains as the first operational amplifier; And a third operational amplifier having the sum of the outputs of both the second operational amplifiers as its input and having the same phase characteristics and gains as the first operational amplifier, and the outputs of the three sets of operational amplifiers. A required current transformer is obtained by setting a required detection value of each three-phase current for the purpose of overcurrent protection or ground fault protection of a three-phase device such as a three-phase power converter that constitutes the three-phase circuit. Assures overcurrent detection and ground fault detection in a three-phase circuit with two Ukoto can, it is possible to maintain the reliability of the protection with small cost reduction of the entire device, such as the conversion device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す三相インバータの主回路
FIG. 1 is a main circuit diagram of a three-phase inverter showing an embodiment of the present invention.

【図2】図1に対応する電流演算回路図FIG. 2 is a current operation circuit diagram corresponding to FIG.

【図3】三相回路における電流ベクトル図FIG. 3 is a current vector diagram in a three-phase circuit.

【図4】従来技術の実施例を示す三相インバータの主回
路図(その1)
FIG. 4 is a main circuit diagram of a three-phase inverter showing a prior art embodiment (No. 1).

【図5】図4に対応する電流演算回路図FIG. 5 is a current operation circuit diagram corresponding to FIG.

【図6】従来技術の実施例を示す三相インバータの主回
路図(その2)
FIG. 6 is a main circuit diagram of a three-phase inverter showing an example of a conventional technique (part 2).

【符号の説明】[Explanation of symbols]

1 直流電源 2 インバータ 3 変流器(U,V両相電流の2入力形) 4 変流器(V,W両相電流の2入力形) 31 変流器(U相電流の1入力形) 41 変流器(W相電流の1入力形) 51 変流器(V相電流の1入力形) AM 増幅器(AM1,AM2,AM3 ) R 抵抗(R1,2,3 1 DC power supply 2 Inverter 3 Current transformer (2 input type of both U and V phase current) 4 Current transformer (2 input type of both V and W phase current) 31 Current transformer (1 input type of U phase current) 41 Current transformer (W-phase current 1-input type) 51 Current transformer (V-phase current 1-input type) AM amplifier (AM 1, AM 2, AM 3 ) R resistance (R 1, R 2, R 3 )

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】三相回路における3相中の2相の電流を共
にその1次入力とする第一の変流器と、前記3相中の残
り1相と前記の如く選択された2相中の1相の電流を共
にその1次入力とする第二の変流器と、その入出力信号
間の位相反転特性を有し前記第一の変流器の2次出力を
その入力とする第一の演算増幅器と、前記第二の変流器
の2次出力をその入力とし且つその位相特性とゲインと
に関して前記第一の演算増幅器と同一特性を有する第二
の演算増幅器と、前記の第一と第二両演算増幅器の出力
の和をその入力とし且つその位相特性とゲインとに関し
て前記第一の演算増幅器と同一特性を有する第三の演算
増幅器とを備えて成り、前記3組の演算増幅器の出力を
以てそれぞれ前記三相各相電流の所要の検出値となすこ
とを特徴とする三相電流検出回路。
1. A first current transformer having as primary inputs both two-phase currents of three phases in a three-phase circuit, one remaining phase of the three phases, and two phases selected as described above. A second current transformer, which has a current of one phase as its primary input, and a phase inversion characteristic between its input and output signals, and the secondary output of said first current transformer is its input A first operational amplifier, a second operational amplifier having the secondary output of the second current transformer as its input and having the same phase characteristics and gain as the first operational amplifier; And a third operational amplifier having the same output characteristics of the first and second operational amplifiers as its input and having the same phase characteristics and gains as the first operational amplifier. The output of the operational amplifier is used as a required detection value for each of the three-phase currents. Current detection circuit.
JP05045590A 1993-03-08 1993-03-08 Three-phase current detection circuit Expired - Lifetime JP3097375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05045590A JP3097375B2 (en) 1993-03-08 1993-03-08 Three-phase current detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05045590A JP3097375B2 (en) 1993-03-08 1993-03-08 Three-phase current detection circuit

Publications (2)

Publication Number Publication Date
JPH06258354A true JPH06258354A (en) 1994-09-16
JP3097375B2 JP3097375B2 (en) 2000-10-10

Family

ID=12723570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05045590A Expired - Lifetime JP3097375B2 (en) 1993-03-08 1993-03-08 Three-phase current detection circuit

Country Status (1)

Country Link
JP (1) JP3097375B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749492A (en) * 2012-06-19 2012-10-24 江苏科技大学 Short-circuit current computing method for ring-shaped ship power grid
CN103364683A (en) * 2013-07-01 2013-10-23 东南大学 Method for detecting open-circuit fault of inverter circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749492A (en) * 2012-06-19 2012-10-24 江苏科技大学 Short-circuit current computing method for ring-shaped ship power grid
CN103364683A (en) * 2013-07-01 2013-10-23 东南大学 Method for detecting open-circuit fault of inverter circuit

Also Published As

Publication number Publication date
JP3097375B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
US3192442A (en) Electrical protective relay systems
JPS60210119A (en) Leakage proecting circuit
US3949272A (en) Ground-fault protective scheme for multiple-source electric distribution system
JPS5893422A (en) Protecting device for high voltage transmission line
US3811073A (en) Alternating current sensing circuit and method
JP3097375B2 (en) Three-phase current detection circuit
JPH0630579A (en) Current detecting circuit
JPS63290122A (en) Overcurrent releasing device for breaker
US6560132B1 (en) System for obtaining phase-ground voltages from a broken delta VT voltage connection system
US1752947A (en) Protective system
US3024389A (en) Three-phase protective relay systems
JPS5843402Y2 (en) Hogokeiden Sochi
JP2594682B2 (en) Transformer protection relay
Sezi A new approach for transformer ground differential protection
JPH0626037Y2 (en) Ground fault protection device
JP3641388B2 (en) Inverter protection device
Solak et al. Differential protection of single-core symmetrical phase shifting transformers
JP3254765B2 (en) Phase protection equipment shunt reactor protection relay
JPH11341684A (en) Voltage sensing type active filter
JPH03108011A (en) Static reactive power compensating device
JPH0850150A (en) Wide range current sensor and current detecting device for three-phase circuit
JPS63129812A (en) Network protector
JPH10174271A (en) Current differential protective relay device
JPS6295923A (en) Protective relay of transformer
JPH06284556A (en) Grounding current detection method for three-phase four-wire circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 13

EXPY Cancellation because of completion of term