JPS6110968B2 - - Google Patents

Info

Publication number
JPS6110968B2
JPS6110968B2 JP54024475A JP2447579A JPS6110968B2 JP S6110968 B2 JPS6110968 B2 JP S6110968B2 JP 54024475 A JP54024475 A JP 54024475A JP 2447579 A JP2447579 A JP 2447579A JP S6110968 B2 JPS6110968 B2 JP S6110968B2
Authority
JP
Japan
Prior art keywords
phase
primary
winding
voltage
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54024475A
Other languages
Japanese (ja)
Other versions
JPS55117217A (en
Inventor
Keizo Inagaki
Yoshiaki Inui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2447579A priority Critical patent/JPS55117217A/en
Publication of JPS55117217A publication Critical patent/JPS55117217A/en
Publication of JPS6110968B2 publication Critical patent/JPS6110968B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings

Description

【発明の詳細な説明】 本発明は例えば電力系統に使用し、短絡、地絡
事故時の過電流を抑制する機能を備えた3相変圧
器装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a three-phase transformer device that is used, for example, in a power system and has a function of suppressing overcurrent in the event of a short circuit or ground fault.

従来、電力系統の地絡や短絡事故時の過電流を
抑制する機能を備えたものとしては、第1図に示
すように電力系統A,B間に挿入される系統連系
装置1がある。従来の系統連系装置1は、第2図
に示すように直列変圧器2の1次巻線3を電力系
統A,Bに直列に接続し、補償電源5と接続した
2次巻線4で電力系統の相電圧と直角成分の補償
電圧Vcを付勢するようにしている。これによつ
て、直列変圧器2のインピーダンスによる定常時
の電圧降下を補償するようにしていた。
BACKGROUND ART Conventionally, as shown in FIG. 1, there is a grid interconnection device 1 inserted between power systems A and B as a device having a function of suppressing overcurrent in the event of a ground fault or short circuit accident in a power system. As shown in FIG. 2, the conventional grid interconnection device 1 has a primary winding 3 of a series transformer 2 connected in series to power systems A and B, and a secondary winding 4 connected to a compensation power source 5. A compensation voltage Vc having a component orthogonal to the phase voltage of the power system is energized. This compensates for the steady voltage drop due to the impedance of the series transformer 2.

この系統連系装置による過電流抑制機能を第3
図a,bのベクトル図を併用して説明する。系統
連系装置となる直列変圧器2の補償電圧Vc=0
の場合、母線電流Iが流れると直列変圧器2の漏
れインピーダンスXによつて電圧降下IXが生ず
る。したがつて、第3図bに示すように直列変圧
器2で連系される電力系統の相電圧VA,VBには
位相差を生じる。直列変圧器2の漏れインピーダ
ンスXは事故時の過電流を抑制するために必要で
あるが、定常時はこのインピーダンスXは極力小
さい方が望ましい。このため、第2図に示すよう
に直列変圧器2の2次側に電力系統の相電圧とほ
ぼ直角の位相差を持つ補償電圧Vcを常時加えて
おくことにより、第3図bに示すように電圧降下
IXを補償電圧Vcで補償することができる。すな
わち、直列変圧器2に連らなる両電力系統の相電
圧VA,VBの相差角は小とすることができ、見か
け上定常時の装置のインピーダンスを小とするこ
とができる。電力系統の相電圧と直角位相を有す
る補償電圧Vcは、一般に各相の直列変圧器2の
1次側中点と大地間に接続される調整変圧器(図
示せず)による相電圧によつて得られる。
The overcurrent suppression function of this grid interconnection device is
This will be explained using the vector diagrams in Figures a and b. Compensation voltage Vc of series transformer 2, which is a grid interconnection device, = 0
In this case, when the bus current I flows, a voltage drop IX occurs due to the leakage impedance X of the series transformer 2. Therefore, as shown in FIG. 3b, a phase difference occurs between the phase voltages V A and V B of the power system interconnected by the series transformer 2. Leakage impedance X of the series transformer 2 is necessary to suppress overcurrent in the event of an accident, but it is desirable that this impedance X be as small as possible during steady state. Therefore, as shown in Fig. 2, by constantly applying a compensation voltage Vc, which has a phase difference almost at right angles to the phase voltage of the power system, to the secondary side of the series transformer 2, as shown in Fig. 3b, voltage drop to
IX can be compensated with compensation voltage Vc. That is, the phase difference angle between the phase voltages V A and V B of both power systems connected to the series transformer 2 can be made small, and the impedance of the device in an apparently steady state can be made small. The compensation voltage Vc, which has a quadrature phase with the phase voltage of the power system, is generally determined by the phase voltage by a regulating transformer (not shown) connected between the primary midpoint of the series transformer 2 of each phase and the ground. can get.

一方、短絡や地絡等の事故時においては、事故
電流は直列変圧器2の漏れインピーダンスXによ
つて自動的に抑制されるが、補償電圧Vcの影響
については相電圧に対して直角成分電圧であるた
め、事故電流を増大させることはないこと、また
系統事故に伴う系統電圧の降下により補償電圧
Vc自体が小さくなることなどの理由で、事故電
流抑制機能に悪影響を殆んど与えないことは良く
知られている。
On the other hand, in the event of an accident such as a short circuit or ground fault, the fault current is automatically suppressed by the leakage impedance X of the series transformer 2, but the influence of the compensation voltage Vc is Therefore, the fault current will not increase, and the compensation voltage will decrease due to the drop in grid voltage due to a grid fault.
It is well known that this has almost no adverse effect on the fault current suppression function because Vc itself becomes smaller.

このように従来の系統連系装置は、定常時の見
かけ上のインピーダンスが小さいこと、事故時は
自動的に過電流を抑制できるなど優れた特徴と有
する一方、上記したように特別な直列変圧器や調
整変圧器を必要とするため、装置が大形となり広
い据付面積を必要とすると共に高価格となる欠点
があつた。
In this way, conventional grid interconnection devices have excellent features such as low apparent impedance during steady state and the ability to automatically suppress overcurrent in the event of an accident. Since the system requires a regulator and a regulating transformer, it has the disadvantage of being large in size, requiring a large installation area, and being expensive.

ところで、定常時の系統電圧の位相を調整する
ものとしては、負荷時電圧位相調整変圧器があ
る。これは、変圧器の三相の各巻線にそれぞれ2
個宛の補助巻線を設け、各相の主巻線に他の1相
の補助巻線1個と更に残りの1相の補助巻線1個
とを直列に接続するものである。これによると、
2個の補助巻線により主巻線電圧と直角位相の電
圧を生じさせることができ、各補助巻線のタツプ
調整によつて健全時の系統電圧の位相を調整する
ことができる。(特公昭33−3972号公報参照) しかし、このような負荷時電圧位相調整変圧器
は、効果的な位相調整を行うために、自分自身の
インピーダンスは極力低く抑えている。それ故、
事故時の過電流抑制のためには、他のインピーダ
ンス装置を付加しなければならないという欠点が
ある。また直列接続する2個の補助巻線のうち、
必ず1個は他の1個の補助巻線電圧の分だけ中性
点電位から高くなるため絶縁を強化せねばならな
いという欠点があつた。
By the way, as a device that adjusts the phase of the system voltage during steady state, there is a load voltage phase adjustment transformer. This requires two windings for each of the three phases of the transformer.
An auxiliary winding for each phase is provided, and one auxiliary winding for another phase and one auxiliary winding for the remaining one phase are connected in series to the main winding for each phase. according to this,
The two auxiliary windings can generate a voltage in phase quadrature with the main winding voltage, and the phase of the system voltage in normal operation can be adjusted by adjusting the taps of each auxiliary winding. (Refer to Japanese Patent Publication No. 33-3972.) However, in order to perform effective phase adjustment in such a load voltage phase adjustment transformer, its own impedance is kept as low as possible. Therefore,
A drawback is that another impedance device must be added to suppress overcurrent in the event of an accident. Also, of the two auxiliary windings connected in series,
There is a drawback that one of the auxiliary windings always has a voltage higher than the neutral point by the voltage of the other auxiliary winding, so the insulation must be strengthened.

本発明の過電流抑制機能を備えた3相変圧器装
置の目的は、各補助巻線の電位が高くなるのを防
止することにより、この巻線やタツプ切換器など
の絶縁負担を軽減して絶縁信頼性を向上させるこ
とにある。
The purpose of the three-phase transformer device with overcurrent suppression function of the present invention is to prevent the potential of each auxiliary winding from increasing, thereby reducing the burden of insulation on these windings, tap changers, etc. The purpose is to improve insulation reliability.

上記の目的を達成するため、本発明では各相の
鉄心脚に少くとも1次及び2次主巻線と複数のタ
ツプを設けてタツプ調整する1個の1次及び2次
補助巻線を巻装し、これら各相の1次巻線は隣接
する相の1次補助巻線と異相直列接続し、各相の
2次巻線と隣接する相の2次補助巻線とは、1次
側とは逆相順に直列に異相接続して3相結線する
ことにより、各相2個の補助巻線の電位を各々別
個に選定でき、しかも位相調整も支障なく行なえ
るようにしたものである。
In order to achieve the above object, in the present invention, the core leg of each phase is provided with at least a primary and secondary main winding and a plurality of taps and one primary and secondary auxiliary winding that is wound with tap adjustment. The primary winding of each phase is connected in series with the primary auxiliary winding of the adjacent phase, and the secondary winding of each phase and the secondary auxiliary winding of the adjacent phase are By connecting different phases in series in reverse phase order and making a three-phase connection, the potentials of the two auxiliary windings of each phase can be selected separately, and phase adjustment can be performed without any problems.

以下、本発明の3相変圧器装置の例を第4図及
び第5図を用いて説明する。
Hereinafter, an example of the three-phase transformer device of the present invention will be explained using FIGS. 4 and 5.

この装置では、各相の鉄心脚11,12,13
にそれぞれ1次主巻線U1,V1,W1と、1次補助
巻線U2,V2,W2と、2次主巻線u1,v1,w1と、
2次補助巻線u2,v2,w2を巻装し、これら各巻線
を以下に述べるような接続を行ない3相結線して
いる。また、各巻線のうち1次主巻線U1,V1
W1を除くものには、それぞれ複数のタツプを設
けている。U,V,Wは各相の1次端子、u,
v,wは各相の2次端子、O,oは1次及び2次
中性点である。
In this device, the iron core legs 11, 12, 13 of each phase are
respectively, primary main windings U 1 , V 1 , W 1 , primary auxiliary windings U 2 , V 2 , W 2 , and secondary main windings U 1 , V 1 , W 1 ,
Secondary auxiliary windings u 2 , v 2 , and w 2 are wound, and these windings are connected as described below to form a three-phase connection. In addition, among each winding, the primary main winding U 1 , V 1 ,
All except W 1 have multiple taps. U, V, W are the primary terminals of each phase, u,
v and w are secondary terminals of each phase, and O and o are primary and secondary neutral points.

各相の1次主巻線U1,V1,W1と1次補助巻線
U2,V2,W2間、各相の2次主巻線u1,v1,w1
2次補助巻線u2,v2,w2間は、それぞれ隣接する
他相のものと異相直列接続し、所定の3相結線を
行つている。
Primary main winding U 1 , V 1 , W 1 and primary auxiliary winding of each phase
Between U 2 , V 2 , W 2 and between the secondary main windings u 1 , v 1 , w 1 and the secondary auxiliary windings u 2 , v 2 , w 2 of each phase are those of the adjacent other phases. They are connected in series with different phases to form a predetermined three-phase connection.

すなわち、U相の1次主巻線U1はW相の1次
補助巻線W2と、V相の1次主巻線V1はU相の1
次補助巻線U2と、W相の1次主巻線W1はV相の
1次補助巻線V2とそれぞれ異相直列接続され、
これら1次補助巻線U2,V2,W2の他端は一括接
続されて星形結線の中性点Oを形成している。ま
た、各相の2次主巻線u1,v1,w1と2次補助巻線
u2,v2,w2とは、第4図に示すように上記した1
次側とは逆相順となるように異相直列接続され、
各これら2次補助巻線u2,v2,w2の他端は一括接
続されて星形結線の中性点oを形成している。こ
のような接続をすれば、各相の1次及び2次補助
巻線U2,V2,W2,u2,v2,w2の一端を、全て中
性点電位に保つことができる。
That is, the U-phase primary main winding U 1 is connected to the W-phase primary auxiliary winding W 2 , and the V-phase primary main winding V 1 is connected to the U-phase primary auxiliary winding W 2.
The secondary auxiliary winding U 2 and the W-phase primary main winding W 1 are connected in out-of-phase series with the V-phase primary auxiliary winding V 2 , respectively.
The other ends of these primary auxiliary windings U 2 , V 2 , and W 2 are connected together to form a neutral point O of the star-shaped connection. In addition, the secondary main windings u 1 , v 1 , w 1 and the secondary auxiliary windings of each phase
u 2 , v 2 , w 2 are the above-mentioned 1 as shown in Figure 4.
Connected in series with different phases so that the next side is in reverse phase order,
The other ends of each of these secondary auxiliary windings u 2 , v 2 , w 2 are connected together to form a neutral point o of the star-shaped connection. With this kind of connection, one end of the primary and secondary auxiliary windings U 2 , V 2 , W 2 , u 2 , v 2 , w 2 of each phase can all be maintained at the neutral point potential. .

本発明の第4図の実施例における定常時の各巻
線及び端子電圧の3相電圧のベクトルは、第5図
aに示すようになる。つまり、1次各相電圧V
U,VV,VWは、それぞれ1次主巻線電圧VU1
V1,VW1と1次補助巻線電圧VU2,VV2
W2の合成電圧、また2次各相電圧VU,VV
Wは、それぞれ2次主巻線電圧VU1,VV1
W1と2次補助巻線電圧VU2,VV2,VW2
合成電圧となる。
In the embodiment of FIG. 4 of the present invention, the three-phase voltage vectors of each winding and terminal voltage during steady state are as shown in FIG. 5a. In other words, the primary each phase voltage V
U , V V , and V W are primary main winding voltages V U1 and V W, respectively.
V V1 , V W1 and primary auxiliary winding voltage V U2 , V V2 ,
The composite voltage of V W2 and the secondary phase voltages V U , V V ,
V W is the secondary main winding voltage V U1 , V V1 , respectively.
It becomes a composite voltage of V W1 and secondary auxiliary winding voltages V U2 , V V2 , and V W2 .

この装置において、1次及び2次を同一巻数に
換算したときの各相の電圧ベクトルを、U相の例
で第5図bに示している。Iは負荷電流、Xは1
次、2次間の漏れインピーダンスである。この第
5図bの、1次、2次電圧の関係は次のようなこ
とを意味している。すなわち、定常時に3相変圧
器装置へ負荷電流Iが流れると、この1次、2次
間の漏れインピーダンスXにより電圧降下IXが
生じ、1次主巻線及び2次主巻線電圧VU1,Vu
には位相差を生ずるが、他相の1次及び2次補
助巻線電圧Vv2,Vw2を調整することにより、
1次及び2次U相電圧VU,Vuの位相差を制御す
ることができる。その上、本発明では、各補助巻
線の巻数やタツプを選定することにより、健全時
の装置のインピーダンスを見かけ上ほぼ零にする
ことができる。
In this device, the voltage vector of each phase when the primary and secondary are converted into the same number of turns is shown in FIG. 5b for an example of the U phase. I is the load current, X is 1
Next is the leakage impedance between the two dimensions. The relationship between the primary and secondary voltages in FIG. 5b means the following. That is, when a load current I flows to the three-phase transformer device during steady state, a voltage drop IX occurs due to the leakage impedance X between the primary and secondary, and the primary and secondary main winding voltages V U1 , V u
1 , but by adjusting the primary and secondary auxiliary winding voltages V v2 and V w2 of the other phases,
The phase difference between the primary and secondary U-phase voltages V U and V u can be controlled. Furthermore, in the present invention, by selecting the number of turns and taps of each auxiliary winding, the impedance of the device when it is healthy can be made to appear to be approximately zero.

本発明の第4図の実施例では、1次、2次間の
漏れインピーダンスを大きくする配置、例えば各
相の1次及び2次補助巻線を、1次及び2次主巻
線の間に配置することにより、事故時の過電流は
自動的に抑制されるが、補助巻線電圧の影響につ
いては、相電圧に対して直角成分電圧であるため
事故電流を増大させることはないことや、系統事
故に伴う系統電圧の降下により補助巻線電圧自体
が小さくなることなどの理由で事故電流抑制機能
に悪影響を与えることはほとんどない。
In the embodiment of the present invention shown in FIG. 4, the arrangement increases the leakage impedance between the primary and secondary windings, for example, the primary and secondary auxiliary windings of each phase are placed between the primary and secondary main windings. By arranging the auxiliary windings, overcurrents in the event of an accident are automatically suppressed, but as for the influence of the auxiliary winding voltage, since it is a component voltage at right angles to the phase voltage, it does not increase the accident current. Because the auxiliary winding voltage itself decreases due to a drop in system voltage due to a system fault, there is almost no negative effect on the fault current suppression function.

しかも、第4図の例では2次主巻線u1,v1,w1
に、複数のタツプを設けたものであるが、これに
代えて1次主巻線U1,V1,W1にタツプを設ける
こともでき、また主巻線にタツプを設ける代りに
別個の調整巻線を直列接続して、電圧を調整する
ことができる。
Moreover, in the example of Fig. 4, the secondary main windings u 1 , v 1 , w 1
Although a plurality of taps are provided in the main windings, instead of this, taps can be provided in the primary main windings U 1 , V 1 , W 1 , and instead of providing taps in the main windings, separate taps can be provided. Adjustment windings can be connected in series to adjust the voltage.

更に上述の例では1次側及び2次側とも星形結
線の場合を示したが、例えば2次側が三角結線の
場合にも適用して効果がある。1次及び2次補助
巻線U2,V2,W2,u2,v2,w2のうち、各相1個
の補助巻線を星形結線する巻線側に、残りの各相
1個の補助巻線を三角結線する巻線側に接続する
ことができるため、少くとも星形結線の巻線側に
接続する各相1個の補助巻線の一端を中性点電位
に保つことができる。
Further, in the above example, the case where both the primary side and the secondary side are star-shaped connections is shown, but the present invention can also be applied to, for example, a case where the secondary side is a triangular connection. Among the primary and secondary auxiliary windings U 2 , V 2 , W 2 , u 2 , v 2 , w 2 , one auxiliary winding for each phase is connected to the winding side that is star-connected, and the remaining phases are Since one auxiliary winding can be connected to the winding side of the triangular connection, at least one end of the auxiliary winding of each phase connected to the winding side of the star connection is kept at the neutral point potential. be able to.

本発明のように構成すれば、過電流抑制機能を
持つ3相変圧器装置における1次及び2次補助巻
線のすべての一端、或いは1次または2次補助巻
線の一端を中性点電位に保つことができるため、
これら補助巻線などの絶縁負担が軽減されるの
で、変圧器の絶縁信頼性を大幅に向上できる効果
がある。
If configured as in the present invention, one end of all the primary and secondary auxiliary windings or one end of the primary or secondary auxiliary winding in a three-phase transformer device having an overcurrent suppression function is set to the neutral point potential. Because it can be kept in
Since the insulation burden on these auxiliary windings is reduced, the insulation reliability of the transformer can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の系統連系装置を示す概
略図、第3図は第2図の動作説明のベクトル図、
第4図は本発明の一実施例である3相変圧器装置
の結線図、第5図a,bは第4図の動作説明のベ
クトル図である。 11,12,13…鉄心脚、U1,V1,W1…1
次主巻線、U2,V2,W2…1次補助巻線、u1
v1,w1…2次主巻線、u2,v2,w2…2次補助巻
線。
Figures 1 and 2 are schematic diagrams showing conventional grid interconnection equipment, Figure 3 is a vector diagram explaining the operation of Figure 2,
FIG. 4 is a wiring diagram of a three-phase transformer device according to an embodiment of the present invention, and FIGS. 5a and 5b are vector diagrams illustrating the operation of FIG. 4. 11, 12, 13... Iron core legs, U 1 , V 1 , W 1 ...1
Secondary main winding, U 2 , V 2 , W 2 ...Primary auxiliary winding, u 1 ,
v 1 , w 1 ... secondary main winding, u 2 , v 2 , w 2 ... secondary auxiliary winding.

Claims (1)

【特許請求の範囲】 1 3相の各鉄心脚に、それぞれ少なくとも1次
及び2次主巻線と、複数のタツプを設けてタツプ
調整する1個の1次及び2次補助巻線を巻装し、
各相の前記1次巻線は隣接する相の1次補助巻線
と異相直列接続して3相結線し、各相の前記2次
主巻線は隣接する相の2次補助巻線と前記1次側
とは逆相順となるように異相直列接続して3相結
線したことを特徴とする3相変圧器装置。 2 少なくとも前記1次または2次主巻線には、
複数のタツプを設けたことを特徴とする特許請求
の範囲第1項記載の3相変圧器装置。
[Claims] 1. Each of the three-phase core legs is wound with at least a primary and secondary main winding, and one primary and secondary auxiliary winding that is provided with a plurality of taps and whose taps are adjusted. death,
The primary winding of each phase is connected in out-of-phase series with the primary auxiliary winding of the adjacent phase to form a three-phase connection, and the secondary main winding of each phase is connected to the secondary auxiliary winding of the adjacent phase. A three-phase transformer device characterized in that the three phases are connected in series with different phases so that the phase order is reversed from the primary side. 2 At least the primary or secondary main winding,
A three-phase transformer device according to claim 1, characterized in that a plurality of taps are provided.
JP2447579A 1979-03-05 1979-03-05 Three-phase transformer Granted JPS55117217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2447579A JPS55117217A (en) 1979-03-05 1979-03-05 Three-phase transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2447579A JPS55117217A (en) 1979-03-05 1979-03-05 Three-phase transformer

Publications (2)

Publication Number Publication Date
JPS55117217A JPS55117217A (en) 1980-09-09
JPS6110968B2 true JPS6110968B2 (en) 1986-04-01

Family

ID=12139185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2447579A Granted JPS55117217A (en) 1979-03-05 1979-03-05 Three-phase transformer

Country Status (1)

Country Link
JP (1) JPS55117217A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456298B1 (en) * 2003-06-24 2004-11-10 이성호 3 phases 3 lines transformer

Also Published As

Publication number Publication date
JPS55117217A (en) 1980-09-09

Similar Documents

Publication Publication Date Title
JP3598126B2 (en) Three-phase load voltage phase adjustment transformer
JP5026029B2 (en) Current balancer and low voltage distribution system
JPS6110968B2 (en)
JPH05207660A (en) Troubleshooting system for power supply
KR100534144B1 (en) a device of decreasing harmonic with keep improve the balance of voltage and current
US4831352A (en) Rectifier transformer
JPS6048082B2 (en) 3 phase transformer equipment
JP2682241B2 (en) Power failure countermeasure device
US2667617A (en) Polyphase transformer system with grounded neutral
JPS62182815A (en) Thyristor control type voltage phase controlled auto-transformer
JPS5834922B2 (en) Tansoutanmakihen Atsukino Denatsuchiyouseihoshiki
US3614599A (en) Three-phase delta-connected voltage-regulating system and method therefor
KR200338373Y1 (en) a device of decreasing harmonic with keep improve the balance of voltage and current
US2378800A (en) Protective system
JP3381645B2 (en) Transformer
US1959162A (en) Electrical distribution system
JPS6140621A (en) On-load adjuster
JP2791992B2 (en) Load sharing control system
JPH0150176B2 (en)
JPH0528059B2 (en)
US1899406A (en) Means for compounding voltage regulators for three-phase generators
US1860175A (en) Two-phase circuit connection for vapor electric devices
JPS6246316A (en) Voltage phase regulating transformer
JPS62236013A (en) Thyristor control type voltage phase regulator
JPH0263281B2 (en)