JPS62236013A - Thyristor control type voltage phase regulator - Google Patents

Thyristor control type voltage phase regulator

Info

Publication number
JPS62236013A
JPS62236013A JP7910686A JP7910686A JPS62236013A JP S62236013 A JPS62236013 A JP S62236013A JP 7910686 A JP7910686 A JP 7910686A JP 7910686 A JP7910686 A JP 7910686A JP S62236013 A JPS62236013 A JP S62236013A
Authority
JP
Japan
Prior art keywords
winding
voltage
phase
thyristor
tap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7910686A
Other languages
Japanese (ja)
Inventor
Takashi Iwabuchi
隆 岩渕
Masaru Ono
小野 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7910686A priority Critical patent/JPS62236013A/en
Publication of JPS62236013A publication Critical patent/JPS62236013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To decrease the number of thyristors by improving both the overcurrent tolerance characteristics and the insulation resistance characteristics according to the turn ratio between a series winding and an energizing winding. CONSTITUTION:The short-circuit currents flowing to thyristor groups 7 and 8 are decided by a system current and the turn ratio between a series winding 9 and an energizing winding 10. In contrast, an abnormal voltage applied to those thyristor groups through the shift to the winding 10 from the winding 9 produces a problem. In other words, the value of the voltage shifted to both groups 7 and 8 from the winding 9 is reduced with the conduction current increased when the turn ratio between both windings 9 and 10 is increased. On the contrary, said shift voltage is increased with the conduction current reduced when said turn ratio is decreased. Thus it is possible to improve both the overcurrent tolerance characteristics and the insulation resistance characteristics and minimize the number of thyristors by setting the turn ratio between both windings 9 and 10 at proper level.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は電力系統に使用される電圧位相調整器に関する
ものであり、特にサイリスタを使用して間接切換方式の
回路構成を採ることにより高速制御を可能としたサイリ
スタ制御式電圧位相調整器に係る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a voltage phase regulator used in a power system, and in particular to an indirect switching type circuit configuration using a thyristor. This invention relates to a thyristor-controlled voltage phase regulator that enables high-speed control.

(従来の技術) 電圧位相調整器は、電圧変成を行うと共に1次側と2次
側の電圧位相を変化させて電力系統の潮流制御をも行う
装置でおり、そのタップ切換には従来、機械的接点を有
するタップ切換器が使用されてきた。この様な電圧位相
調整器の従来例の一つとしそ、第6図に示す様な主変圧
器21と直列変圧器22とから構成されたものが知られ
ている、同図において、主変圧器21には、高圧主巻線
23、同相分電圧調整用タップ巻線24、中圧巻線25
及び低圧巻線26が備えられ、同相分電圧調整用タップ
巻線24には単相用タップ切換器27が3台接続されて
いる。直列変圧器22には、直肉分電圧調整用タップ巻
線28と励vii巻線29及び安定巻線30が備えられ
、直角分電圧調整用タップ巻線28には3相中性点用タ
ップ切換器31が接続されている。
(Prior art) A voltage phase regulator is a device that performs voltage transformation and also changes the voltage phase on the primary and secondary sides to control power flow in the power system. Tap changers with fixed contacts have been used. One known example of such a voltage phase regulator is one constructed from a main transformer 21 and a series transformer 22 as shown in FIG. 21 includes a high voltage main winding 23, an in-phase voltage adjustment tap winding 24, and a medium voltage winding 25.
and a low voltage winding 26, and three single-phase tap changers 27 are connected to the in-phase voltage adjustment tap winding 24. The series transformer 22 is equipped with a tap winding 28 for direct voltage adjustment, an excitation VII winding 29, and a stabilizing winding 30, and the tap winding 28 for right angle voltage adjustment includes a three-phase neutral point tap. A switch 31 is connected.

この様な構成において同相分電圧調整は単相用タップ切
換器27によって、直角分電圧調整は3相中性点用タッ
プ切換器31によって各々直接切換方式の切換えを行っ
ている。しかしながらこれらのタップ切換器27.31
は、機械的接点を有するものであるので、切換に要する
時間が比較的長く、高速制御や連続切換等への対応は不
可能であり、緊急を要する系統事故時の過度安定度を向
上させる機能はない。
In this configuration, in-phase voltage adjustment is performed by the single-phase tap changer 27, and quadrature voltage adjustment is performed by the three-phase neutral point tap changer 31, respectively. However, these tap changers27.31
Since it has mechanical contacts, the time required for switching is relatively long, and it is impossible to handle high-speed control or continuous switching, etc., and it is a function that improves excessive stability in the event of an emergency system failure. There isn't.

一方電力系統の増大化に伴い、信頼度の高い効率的な設
備が不要となっており、過度安定度向上の機能をも有し
た電圧位相調整器の実現が望まれ1、     ている
On the other hand, with the expansion of power systems, highly reliable and efficient equipment is no longer needed, and it is desired to realize a voltage phase regulator that also has the function of improving transient stability1.

ところで、近年シリコン制御整流素子(以後サイリスタ
と記す)を含めた半導体技術の著しい進歩に伴い、様々
な分野でサイリスタの適用が拡大しており、電力分野に
おいてもサイリスタ技術を利用してサイリスタ制御によ
るタップ切換器を行う電圧位相調整器が研究され、その
効果が認められるに至り、最近ではざらに進んで実用化
の検討がなされている。
By the way, in recent years, with the remarkable progress of semiconductor technology including silicon-controlled rectifying elements (hereinafter referred to as thyristors), the application of thyristors has expanded in various fields, and the use of thyristor technology has also been utilized in the power field. Research has been conducted on voltage phase regulators that operate as tap changers, and their effectiveness has been recognized, and recently, consideration has been given to putting them into practical use.

この様なサイリスタを用いた電圧位相調整器においては
1サイクル内の高速制御や連続切換が可能となり、従来
にはない勝れた特性が得られる。
In a voltage phase regulator using such a thyristor, high-speed control within one cycle and continuous switching are possible, and superior characteristics not available in the past can be obtained.

即ち、電圧と位相を高速に変化させることにより電力潮
流を制御して系統事故時等の過渡安定度を向上させる機
能を持たせられると共に、通常時はループ系の潮流を能
動的に制御することにより送電線の過負荷解消や送電損
失の低減等の役割を果すことができる。
In other words, it has the ability to control the power flow by rapidly changing the voltage and phase to improve transient stability in the event of a grid failure, and it also has the ability to actively control the power flow in the loop system during normal times. This can play a role in eliminating overloads on power transmission lines and reducing transmission losses.

しかしながら、高速切換実現のために、第6図における
タップ切換器27.31をサイリスタ方式に置換えた場
合、次の様な問題点を生ずる。
However, when the tap changers 27 and 31 in FIG. 6 are replaced with thyristor systems in order to realize high-speed switching, the following problems occur.

即ち、サイリスタは半導体であるため、その過電流耐量
特性と雷インパルス電圧などの異常電圧に対する耐絶縁
特性が変圧器巻線に比べ非常に悪いため、これらを十分
考慮した回路構成としなければならない。また、サイリ
スタに流れる電流は高圧側線路電流であり、且つ発生電
圧も大きくなる傾向があるため、サイリスタ使用個数が
非常に多くなり、構成が複雑化する問題もあった。従っ
て一般的にこの様な直接切換方式のサイリスタ制御より
、直列変圧器を用いる間接切換方式のサイリスタ制御が
有望視されていた。
That is, since thyristors are semiconductors, their overcurrent withstand characteristics and insulation characteristics against abnormal voltages such as lightning impulse voltages are much worse than transformer windings, so these must be taken into consideration in the circuit configuration. Furthermore, since the current flowing through the thyristor is a high-voltage side line current and the generated voltage also tends to increase, there is a problem that the number of thyristors used becomes extremely large and the configuration becomes complicated. Therefore, indirect switching type thyristor control using a series transformer has generally been considered more promising than such direct switching type thyristor control.

更に、第6図に示した電圧位相調整器において、直列変
圧器22本来の機能は、タップ巻線28とタップ切換器
31、及び励磁巻線29から成る構成のみで果せるが、
零相インピーダンスを小さくしたり、励磁電流中の第3
高調波成分を循環させるためには三角巻線が必要である
ことからこの役割だけのために安定巻線30を設けてお
り、この結果直列変圧器22の構成が複雑化してしまう
という問題もめった。
Furthermore, in the voltage phase regulator shown in FIG. 6, the original function of the series transformer 22 can be performed only by the configuration consisting of the tap winding 28, the tap changer 31, and the excitation winding 29;
By reducing the zero-sequence impedance or by reducing the
Since a triangular winding is required to circulate harmonic components, the stabilizing winding 30 is provided solely for this role, and as a result, the problem of complicating the configuration of the series transformer 22 is rarely encountered. .

(発明が解決しようとする問題点) 上記の様に、従来の電圧位相調整器において、タップ切
換器を直接切換方式のサイリスタ制御に置換えた場合に
は、耐絶縁特性が悪いことから回路構成が困難になり、
サイリスタ使用個数が増大し、また直列変圧器に安定巻
線が必要となる等して構成が複雑化してしまう等の問題
点があった。
(Problems to be Solved by the Invention) As mentioned above, in conventional voltage phase regulators, when the tap changer is replaced with direct switching type thyristor control, the circuit configuration is poor due to poor insulation properties. becomes difficult,
There were problems in that the number of thyristors used increased and the series transformer required a stable winding, making the configuration complicated.

本発明は、この様な問題点を解決するために提案された
ものであり、その目的は、間接切換方式のサイリスタ制
御を行うことで、高速制御、連続切換を可能として系統
事故時の過度安定度を向上し、無接点化による保守の簡
素化、高頻度動作を可能として信頼性を向上し、しかも
サイリスタの使用個数の低減、及び安定巻線の省略によ
る直列変圧器の構成の筒略化を実現し得る様なサイリス
ク制御式電圧位相調整器を提供することである。
The present invention was proposed to solve these problems, and its purpose is to perform indirect switching type thyristor control to enable high-speed control and continuous switching, thereby reducing excessive stability in the event of a system fault. This reduces the number of thyristors used, and simplifies the configuration of the series transformer by omitting the stabilizing winding. An object of the present invention is to provide a si-risk controlled voltage phase regulator that can realize the following.

[発明の構成] (問題点を解決するための手段) 本発明によるサイリスタ制御式電圧位相調整器は、分路
巻線とタップ巻線及び安定巻線を備えた調整変圧器と、
直列巻線と励磁巻線を備えた直列変圧器とから構成し、
前記タップ巻線を直角分電圧調整用の星形結線のものと
、同相分電圧調整用の開放星形結線のものとで構成し、
それらの接続は2組のサイリスタを互いに逆並列接続し
たサイリスタ群を介して行い、直角分電圧調整弁と同相
分電圧調整成分のベクトル和電圧が直列変圧器の励磁巻
線に加わるようにしたことを特徴とするものでおる。
[Structure of the Invention] (Means for Solving the Problems) A thyristor-controlled voltage phase regulator according to the present invention includes a regulating transformer having a shunt winding, a tap winding, and a stabilizing winding;
Consists of a series transformer with a series winding and an excitation winding,
The tap winding is configured with a star connection for quadrature voltage adjustment and an open star connection for in-phase voltage adjustment,
These connections are made through a thyristor group in which two sets of thyristors are connected in antiparallel to each other, so that the vector sum voltage of the quadrature voltage adjustment valve and the in-phase voltage adjustment component is applied to the excitation winding of the series transformer. It is characterized by the following.

(作用) 本発明は、以上の様な構成を有することにより、サイリ
スタ制御の特性である高速制御、連続切換、及び無接点
化による保守の簡素化、高頻度動作が可能となり、しか
も、直列巻線と励磁巻線の巻数比により過電流耐量特性
及び耐絶縁特性を向上してサイリスタの使用個数を低減
できる。更に、直列変圧器の安定巻線を省略できる利点
もある。
(Function) By having the above-described configuration, the present invention enables high-speed control, continuous switching, and non-contact operation, which are characteristics of thyristor control, to simplify maintenance and high-frequency operation. By changing the turn ratio between the wire and the excitation winding, the overcurrent withstand characteristics and insulation characteristics can be improved, and the number of thyristors used can be reduced. Furthermore, there is an advantage that the stabilizing winding of the series transformer can be omitted.

(実施例) 進んで、本発明によるサイリスタ制御式電圧位相調整器
の一実施例を図面を用いて具体的に説明する。
(Example) Next, an example of the thyristor-controlled voltage phase regulator according to the present invention will be specifically described with reference to the drawings.

本実施例の構成 第1図は本実施例の構成を示す結線図でおり、図中1は
調整変圧器、2は直列変圧器である。
Structure of this Embodiment FIG. 1 is a wiring diagram showing the structure of this embodiment, in which 1 is a regulating transformer and 2 is a series transformer.

第1図において、調整変圧器1は、星形結線された分路
巻線3と、星形結線された直角分電圧調整用タップ巻線
4と、中性点開放星形結線された同相分電圧調整用タッ
プ巻線5、及び三角結線された安定巻線6により構成さ
れ、両タップ巻線4゜5は2組のサイリスタを互いに逆
並列接続して成る直角分電圧調整用サイリスタ駐7と同
相分電圧調整用サイリスタ群8に各々接続される。
In FIG. 1, a regulating transformer 1 includes a star-connected shunt winding 3, a star-connected right-angle voltage regulating tap winding 4, and an in-phase component connected in a star-shaped manner with an open neutral point. It is composed of a voltage regulating tap winding 5 and a triangularly connected stabilizing winding 6, and both tap windings 4.5 are composed of a quadrature voltage regulating thyristor parking 7 consisting of two sets of thyristors connected in antiparallel to each other. Each is connected to a group of in-phase voltage adjusting thyristors 8.

直列変圧器2は、直列巻線9と、励16巻線10とによ
り構成されており、直列巻線9の一端は分路巻線3の線
路側接続点(U、V、W>に接続され、直列巻線の他端
は2次側線路(U、V、W>に接続されている。
The series transformer 2 is composed of a series winding 9 and an excitation winding 10, and one end of the series winding 9 is connected to the line side connection point (U, V, W>) of the shunt winding 3. The other end of the series winding is connected to the secondary line (U, V, W>).

励磁巻線10の一端(Xz 、 ’)’1 、 Zt 
)は、調整変圧器1の同相分電圧調整用サイリスタ群8
の一端に接続され、励1巻線10の他の一端(×2、V
z、Zz)は、前記同相分電圧調整用サイリスタ群8と
120°位相の異なる直角分電圧調整用サイリスタ群7
の中性点側でない一端と、更に120°位相の異なる同
相分電圧調整用サイリスタ群8の一端とに各々接続され
ている。
One end of the excitation winding 10 (Xz, ')'1, Zt
) is the in-phase voltage regulating thyristor group 8 of the regulating transformer 1.
and the other end of the excitation 1 winding 10 (×2, V
z, Zz) is a quadrature voltage adjusting thyristor group 7 having a phase difference of 120° from the in-phase voltage adjusting thyristor group 8.
They are each connected to one end that is not on the neutral point side and one end of the in-phase voltage adjusting thyristor group 8 having a phase difference of 120 degrees.

第2図(A>(B)はタップコイル11〜13とサイリ
スタ群14の接続とその作用を示す図でおる。第2図(
A)に示す様にサイリスタ群14は2組のサイリスタを
互いに逆接続し、信号パルスにより両者をそれぞれ一方
向に導通させ、また信号パルスを停止することにより一
両者が不導通となる様に構成されている。そしてタップ
コイル11〜13の誘起電圧比は1:3:9とされ、第
2図(B)に示す様に各サイリスタ■〜@の導通・不導
通制御によりサイリスタ群14の端子k。
FIG. 2 (A>(B) is a diagram showing the connections between the tap coils 11 to 13 and the thyristor group 14 and their effects.
As shown in A), the thyristor group 14 is configured such that two sets of thyristors are connected in reverse to each other, and both are made conductive in one direction by a signal pulse, and one and both are made non-conductive by stopping the signal pulse. has been done. The induced voltage ratio of the tap coils 11 to 13 is set to 1:3:9, and as shown in FIG. 2(B), the terminal k of the thyristor group 14 is controlled by conduction/nonconduction control of each thyristor (1) to (2).

愛に発生する電圧Eが+13e〜0〜−138のタップ
点数27点に調整されるものであり、この構成作用は周
知のところである。
The voltage E generated at the voltage is adjusted to 27 tap points ranging from +13e to 0 to -138, and this configuration is well known.

なお、第1図に示した実施例は直角分電圧調整用タップ
巻線4とサイリスタ群7にはタップコイル数3個を、同
相分電圧調整用タップ巻線5とサイリスタ群8にはタッ
プコイル2個を各々適用したものである。
In the embodiment shown in FIG. 1, the quadrature voltage adjustment tap winding 4 and the thyristor group 7 have three tap coils, and the in-phase voltage adjustment tap winding 5 and the thyristor group 8 have three tap coils. The two are applied respectively.

本実施例の作用 次に、本実施例の作用について説明する。第3図(A>
(B)乃至第5図(A)(B)は電圧と位相の調整を説
明する誘起電圧ベクトル図でおり、第1図より必要な部
分のみ抜出して示している。
Effects of this embodiment Next, the effects of this embodiment will be explained. Figure 3 (A>
5(B) to 5(A) and 5(B) are induced voltage vector diagrams for explaining voltage and phase adjustment, and only necessary portions are extracted from FIG. 1 and shown.

第3図(A>(B)は、直角分電圧調整用サイリスタ群
7の発生電圧が零であり、同相分電圧調整用サイリスタ
群8の発生電圧だけが生じ、その電圧で励vi1巻線1
0が励磁され、直列巻線9には同相分電圧E1のみが発
生している状態を示す。
In FIG. 3 (A>(B), the voltage generated by the thyristor group 7 for quadrature voltage adjustment is zero, only the voltage generated by the thyristor group 8 for in-phase voltage adjustment is generated, and that voltage is used for the excitation vi1 winding 1.
0 is excited, and only the in-phase voltage E1 is generated in the series winding 9.

この場合U、V、W側の相間電圧をEl)とするとU、
V、W側に発生する相間電圧ESは(Ep+2EtCO
330°)=Ep+/TEtとなり、位相差はU、V、
W側とU、V、W側で零となる。
In this case, if the phase-to-phase voltage on U, V, and W sides is El), then U,
The phase-to-phase voltage ES generated on the V and W sides is (Ep+2EtCO
330°)=Ep+/TEt, and the phase difference is U, V,
It becomes zero on the W side and on the U, V, and W sides.

第4図(A)(B)は同相分電圧調整用サイリスタ群8
の発生電圧が零であり、直角分電圧調整用サイリスタ群
7の発生電圧だけが生じ、その電圧で励磁巻線10が励
磁され、直列巻線9には直角成分のみが発生している状
態を示す。この場合U、V、W側に発生する電圧Esは
その大きざがテ位相差θハtan −’  (/’ff
 E2 / E p)となる。
Figure 4 (A) and (B) show the in-phase voltage adjustment thyristor group 8.
The generated voltage is zero, only the voltage generated by the quadrature component voltage adjustment thyristor group 7 is generated, the excitation winding 10 is excited by this voltage, and only the quadrature component is generated in the series winding 9. show. In this case, the voltage Es generated on the U, V, and W sides is determined by the phase difference θha tan −'(/'ff
E2/E p).

第5図(A>(B)は、直角分電圧調整用サイリスタ群
7と同相分電圧調整用サイリスタ群8の両者に発生電圧
が生じ、その合成電圧で励fifle線10が励磁され
、直列巻線9には同相分電圧E1と直角分電圧E2のベ
クトル和 Es ” +E2 ”−を発生している状態
を示す。この場合、U、V。
FIG. 5 (A>(B)) shows that a voltage is generated in both the thyristor group 7 for quadrature voltage adjustment and the thyristor group 8 for in-phase voltage adjustment, and the combined voltage excites the excitation line 10, and the series winding Line 9 shows a state in which a vector sum Es '' +E2 ''- of the in-phase voltage E1 and the quadrature voltage E2 is generated. In this case, U, V.

W側に発生する電圧E s、は で位相差θはtan ’ (E2 / (E l)//
ff+Et ) )となる。
The voltage E s generated on the W side, and the phase difference θ is tan ' (E2 / (E l)//
ff+Et)).

この様に、本実施例は同相分電圧と直角分電圧を別々の
直列変圧器に印加するのではなく1台の直列変圧器に印
加する方式でおるため、サイリス’t りのON、OFF制御によりサイリスタ群7,8の端子
に、交間の電圧の大きざと極性を調整し、直列変圧器2
の直列巻線9に発生する電圧の大きざと位相を変化させ
ることにより2次側に発生する電圧ESの大きざと、1
次側(U、V、W>と2次側(U、V、W)との位相差
θを任意に調整することができる。
In this way, in this embodiment, the in-phase voltage and the quadrature voltage are applied to one series transformer instead of being applied to separate series transformers. By adjusting the magnitude and polarity of the alternating voltage at the terminals of thyristor groups 7 and 8, the series transformer 2
The amplitude of the voltage ES generated on the secondary side by changing the amplitude and phase of the voltage generated in the series winding 9 of
The phase difference θ between the next side (U, V, W> and the secondary side (U, V, W)) can be adjusted as desired.

次にサイリスタに流れる電流と印加電圧について説明す
る。一般にサイリスタの過電流耐量及び絶縁耐量は通常
の負荷電流や定常の運転電圧で決まるのでなく、系統事
故時の短絡・地格電流や系統に発生する雷インパルス電
圧・開閉インパルス電圧によって決まる場合が多いこと
は周知の事実でおる。本実施例の切換方式は間接切換方
式なので、サイリスタ群7,8に流れる短絡電流は系統
の電流及び直列巻線9と励磁巻線10の巻数比により決
まる。これに対し、サイリスタ群に加わる異常電圧とし
ては、分路巻線3からタップ巻線4゜5へ、或いは直列
巻線9から励磁巻線10への移行を通して来るものの両
者があるが、この場合問題となるのは後者である。即ち
、直列巻線9と励磁巻線10の巻数比を大きくすると直
列巻線9からのサイリスタ群7.8への移行電圧は小さ
くなるが、通電電流は大きくなる。逆に巻数比を小さく
すると移行電圧は大きくなるが通電電流は小さくなる。
Next, the current flowing through the thyristor and the applied voltage will be explained. In general, the overcurrent withstand capacity and dielectric withstand capacity of a thyristor are not determined by normal load current or steady operating voltage, but are often determined by short circuits and ground currents in the event of a grid fault, as well as lightning impulse voltage and switching impulse voltage that occur in the grid. This is a well-known fact. Since the switching system of this embodiment is an indirect switching system, the short circuit current flowing through the thyristor groups 7 and 8 is determined by the system current and the turns ratio between the series winding 9 and the excitation winding 10. On the other hand, the abnormal voltage applied to the thyristor group includes both those coming from the shunt winding 3 to the tap winding 4.5 or from the series winding 9 to the excitation winding 10. The latter is the problem. That is, when the turns ratio between the series winding 9 and the excitation winding 10 is increased, the voltage transferred from the series winding 9 to the thyristor group 7.8 becomes smaller, but the current flowing therein becomes larger. Conversely, if the turns ratio is decreased, the transition voltage will increase, but the conducting current will decrease.

この様な関係から直列巻線9と励磁巻線10の巻数比を
適切に選ぶことにより過電流耐量特性及び耐絶縁特性を
向上して、使用するサイリスタ個数を最も少なくなるよ
うにすることができる。またサイリスタ群7,8が接続
されている回路は系統に直接接続されておらず、絶縁レ
ベルを自由に選ぶことができる関係上、最近の高性能非
直線抵抗素子を用いた避雷器でサイリスタ群7゜8を保
護すればサイリスタ群への移行をざらに小ざくでき、サ
イリスタの直列接続個数をより低減できる。
From this relationship, by appropriately selecting the turns ratio between the series winding 9 and the excitation winding 10, the overcurrent withstand characteristics and insulation characteristics can be improved, and the number of thyristors used can be minimized. . In addition, the circuit to which the thyristor groups 7 and 8 are connected is not directly connected to the grid, and the insulation level can be freely selected. By protecting 0.8, the transition to a thyristor group can be made smaller, and the number of thyristors connected in series can be further reduced.

更に、本実施例の回路によれば、従来必要であった直列
変圧器2の安定巻線が不要となる利点がある。この理由
を次に説明する。
Furthermore, the circuit of this embodiment has the advantage that the stabilizing winding of the series transformer 2, which was conventionally necessary, is not required. The reason for this will be explained next.

まず、同相分電圧調整用サイリスタ群8だけが電圧を発
生している場合の第3図では、励1巻線10と同相分電
圧調整用タップ巻線5が単相回路を構成している関係で
、零相電流は、励vi1巻線10と同相分電圧調整用タ
ップ巻線5の間を循環し、同相分電圧調整用タップ巻線
5に流れる電流は、調整変圧器1の三角結線された安定
巻線6を循環する零相電流で打消されるため、直列変圧
器2の安定巻線が不要となる。
First, in FIG. 3 when only the in-phase voltage adjustment thyristor group 8 is generating voltage, the first excitation winding 10 and the in-phase voltage adjustment tap winding 5 constitute a single-phase circuit. The zero-sequence current circulates between the excitation vi1 winding 10 and the in-phase voltage adjustment tap winding 5, and the current flowing through the in-phase voltage adjustment tap winding 5 flows through the triangular connection of the adjustment transformer 1. Since the current is canceled by the zero-sequence current circulating through the stable winding 6, the stable winding of the series transformer 2 becomes unnecessary.

次に、直角分電圧調整用サイリスタ群7だけが電圧を発
生している場合の第4図では、励磁巻線10が三角結線
されているのと等価となり、この回路に零相電流が流れ
るので直列変圧器2の安定巻線が不要となる。
Next, in FIG. 4, where only the quadrature voltage adjustment thyristor group 7 is generating voltage, it is equivalent to the excitation winding 10 being triangularly connected, and a zero-sequence current flows through this circuit. The stabilizing winding of the series transformer 2 is not required.

続いて、直角分、同相分電圧調整用サイリスタ群7,8
の両者共電圧を発生している場合の第5図では、零相電
流は例えば、励磁巻線(Xl)−同相分電圧調整用タッ
プ巻線(Xl −V2 )−励磁巻線(yz−Vl)−
同相分電圧調整用タップ巻線(Vt −22)−励磁巻
線(Z2−Zt ) −同相分電圧調整用タップ巻線(
Zl−X2 )−励磁巻線(X2)−励磁巻線(Xl)
の回路を流れ、同相分電圧調整用タップ巻線4に流れる
電流は、調整変圧器1の三角結線された安定巻線6の循
環零相電流で打消されるため、直列変圧器2の安定巻線
が不要となる。
Next, thyristor groups 7 and 8 for right-angle and in-phase voltage adjustment
In FIG. 5, when both are generating voltages, the zero-phase current is, for example, excitation winding (Xl) - in-phase voltage adjustment tap winding (Xl - V2 ) - excitation winding (yz - Vl )−
In-phase voltage adjustment tap winding (Vt -22) - Excitation winding (Z2-Zt) - In-phase voltage adjustment tap winding (
Zl-X2) - Excitation winding (X2) - Excitation winding (Xl)
The current that flows through the circuit and the in-phase voltage adjustment tap winding 4 is canceled by the circulating zero-sequence current of the triangularly connected stable winding 6 of the regulating transformer 1. Lines are no longer needed.

*他の実施例 なあ、サイリスタ方式には前述してきたような点弧角制
御無しのタップ切換式の外に、点弧角制御を行う点弧角
制御式のものがおる。この点弧角制御式は、第2図にお
ける3個のタップコイル11〜13に相当する1個のタ
ップコイルを使用してサイリスタ■〜■の様な4セツト
からなるサイリスタ群の端子に、吏間の電圧Eの大きざ
と極性を、サイリスタの点弧角制御で調整するものでお
る。この方式はタップ切替式に比ベサイリスタ制御が複
雑となり歪波形による高周波の発生もあるが、タップ巻
線の構成が単純化し、サイリスタ群との接続方法が簡単
になる利点がおり、本発明を全く同様に適用できること
は明白である。
*Another embodiment: In addition to the above-mentioned tap-switching type without firing angle control, the thyristor system includes a firing angle control type that controls firing angle. This firing angle control method uses one tap coil corresponding to the three tap coils 11 to 13 in Fig. 2 to connect the terminals of a thyristor group consisting of four sets such as thyristors ■ to ■. The magnitude and polarity of the voltage E between the two are adjusted by controlling the firing angle of the thyristor. In this method, the thyristor control is complicated compared to the tap switching type, and high frequencies may be generated due to the distorted waveform. It is clear that the same applies.

[発明の効果] 以上の様に本発明によれば電圧と位相の調整をサイリス
タ制御により行うことができるので、高速制御や連続切
換が可能となることから系統事故時の過渡安定度を向上
し、且つ無接点化による保守の簡素化及び高頻度動作が
可能となることから信頼性を向上し、ざらに従来困難で
あったサイリスタの使用個数の低減及び直列変圧器にお
ける安定巻線の省略による構成の簡略化を実現できる様
な、新しい型のサイリスタ制御式電圧位相調整器を提供
できる。
[Effects of the Invention] As described above, according to the present invention, voltage and phase adjustment can be performed by thyristor control, which enables high-speed control and continuous switching, which improves transient stability in the event of a system fault. , and reliability is improved by simplifying maintenance and enabling high-frequency operation due to the non-contact system, and by reducing the number of thyristors used and omitting the stabilizing winding in the series transformer, which was difficult in the past. It is possible to provide a new type of thyristor-controlled voltage phase regulator that can simplify the configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるサイリスタ制御式電圧位相調整器
の一実施例を示す結線図、第2図(A>(8)はそれぞ
れ周知であるタップコイルとサイリスタ群の構成と作用
を示す結線図と表、第3図(A>(B)、第4図(A)
(B)、第5図(A)(B)はそれぞれ第1図の実施例
における電圧位相調整の原理を示す電圧ベクトル図で、
各図とも(A>は分路巻線と直列巻線、(B)は励磁巻
線とタップ巻線、第6図は従来の電圧位相調整器を示す
結線図である。 1・・・調整変圧器、2,22・・・直列変圧器、3・
・・分路巻線、4.28・・・直角分電圧調整用タップ
巻線、5,24・・・同相分電圧調整用タップ巻線、6
゜30・・・安定巻線、7・・・直角分電圧調整用サイ
リスタ群、8・・・同相分電圧調整用サイリスタ群、9
・・・直列巻線、10.29・・・励vi1巻線、11
〜13・・・タップコイル、14・・・サイリスタ群、
21・・・主変圧器、23・・・高圧主巻線、25・・
・中圧巻線、26・・・低圧巻線、27.31・・・機
能的接点を有するタップ切換器。
Fig. 1 is a wiring diagram showing an embodiment of the thyristor-controlled voltage phase regulator according to the present invention, and Fig. 2 (A>(8) is a wiring diagram showing the configuration and operation of a well-known tap coil and thyristor group, respectively. and table, Figure 3 (A>(B), Figure 4 (A)
(B), FIGS. 5A and 5B are voltage vector diagrams showing the principle of voltage phase adjustment in the embodiment of FIG. 1, respectively.
In each figure (A> is a shunt winding and a series winding, (B) is an excitation winding and a tap winding, and FIG. 6 is a wiring diagram showing a conventional voltage phase regulator. 1... Adjustment Transformer, 2, 22... Series transformer, 3.
...Shunt winding, 4.28...Tap winding for quadrature voltage adjustment, 5,24...Tap winding for in-phase voltage adjustment, 6
゜30... Stable winding, 7... Thyristor group for quadrature voltage adjustment, 8... Thyristor group for in-phase voltage adjustment, 9
...Series winding, 10.29...Excitation vi1 winding, 11
~13...Tap coil, 14...Thyristor group,
21... Main transformer, 23... High voltage main winding, 25...
- Medium voltage winding, 26...low voltage winding, 27.31...tap changer with functional contacts.

Claims (1)

【特許請求の範囲】 星形結線された分路巻線と、星形結線された直角分電圧
調整用タップ巻線と、開放星形結線された同相分電圧調
整用タップ巻線、及び三角結線された安定巻線を備えた
調整変圧器と、直列巻線と励磁巻線を備えた直列変圧器
とにより構成される電圧位相調整器において、 前記直列巻線の一端は前記分路巻線に接続され、前記タ
ップ巻線は各々2組のサイリスタを互いに逆並列接続し
たサイリスタ群により接続され、同相分電圧調整用タッ
プ巻線の一端は励磁巻線の一端に接続され、励磁巻線の
他の一端は前記同相分電圧調整用タップ巻線と異なる相
の直角分電圧調整用タップ巻線の一端、及び更に異なる
相の同相分電圧調整用タップ巻線の一端に接続されたこ
とを特徴とするサイリスタ制御式電圧位相調整器。
[Claims] A star-connected shunt winding, a star-connected right-angle voltage adjustment tap winding, an open star-connected in-phase voltage adjustment tap winding, and a triangular connection. A voltage phase regulator comprising a regulating transformer with a stabilizing winding, and a series transformer with a series winding and an excitation winding, wherein one end of the series winding is connected to the shunt winding. The tap windings are each connected by a thyristor group in which two sets of thyristors are connected in antiparallel to each other, one end of the in-phase voltage adjustment tap winding is connected to one end of the excitation winding, and the other end of the excitation winding is One end is connected to one end of a quadrature voltage adjustment tap winding of a phase different from the in-phase voltage adjustment tap winding, and further connected to one end of an in-phase voltage adjustment tap winding of a different phase. Thyristor-controlled voltage phase regulator.
JP7910686A 1986-04-08 1986-04-08 Thyristor control type voltage phase regulator Pending JPS62236013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7910686A JPS62236013A (en) 1986-04-08 1986-04-08 Thyristor control type voltage phase regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7910686A JPS62236013A (en) 1986-04-08 1986-04-08 Thyristor control type voltage phase regulator

Publications (1)

Publication Number Publication Date
JPS62236013A true JPS62236013A (en) 1987-10-16

Family

ID=13680641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7910686A Pending JPS62236013A (en) 1986-04-08 1986-04-08 Thyristor control type voltage phase regulator

Country Status (1)

Country Link
JP (1) JPS62236013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645320U (en) * 1992-11-24 1994-06-14 株式会社明電舎 Voltage regulator with built-in transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645320U (en) * 1992-11-24 1994-06-14 株式会社明電舎 Voltage regulator with built-in transformer

Similar Documents

Publication Publication Date Title
US5408171A (en) Combined solid-state and mechanically-switched transformer tap-changer
US5461300A (en) Phase angle regulating transformer with a single core per phase
US4493016A (en) Rectifier transformer
US4156174A (en) Phase-angle regulator
EP0993008B1 (en) A combination apparatus of distribution transformer and switch
US4463400A (en) DC Static switch with phase commutation
US4750098A (en) Unrestricted frequency changer with current source output
JP3598126B2 (en) Three-phase load voltage phase adjustment transformer
US6011381A (en) Three-phase auto transformer with two tap changers for ratio and phase-angle control
JPS62182815A (en) Thyristor control type voltage phase controlled auto-transformer
JPS62236013A (en) Thyristor control type voltage phase regulator
US2224755A (en) Electrical transformation apparatus
RU2006135C1 (en) Device for balancing open-phase conditions
Herskind et al. Rectifier fault currents
JPS62236012A (en) Thyristor control type voltage phase regulator
JPS62184514A (en) Voltage phase regulating device of thyrister control type
JPS62184512A (en) Voltage phase regulating device of thyrister control type
JPS63106021A (en) Voltage phase regulating autotransformer
JPS62182814A (en) Thyristor control type voltage phase controlled transformer
JPS62184513A (en) Voltage phase regulating device of thyrister control type
JPS6244818A (en) Single winding transformer for adjusting voltage/phase
JPS6244820A (en) Single winding transformer for adjusting voltage/phase
JPS62182813A (en) Thyristor control type voltage phase controlled autotransformer
JPS63106022A (en) Thyristor control type voltage phase regulator
JPS63106023A (en) Thyristor control type voltage phase regulator