JPS62184513A - Voltage phase regulating device of thyrister control type - Google Patents

Voltage phase regulating device of thyrister control type

Info

Publication number
JPS62184513A
JPS62184513A JP2595486A JP2595486A JPS62184513A JP S62184513 A JPS62184513 A JP S62184513A JP 2595486 A JP2595486 A JP 2595486A JP 2595486 A JP2595486 A JP 2595486A JP S62184513 A JPS62184513 A JP S62184513A
Authority
JP
Japan
Prior art keywords
voltage
winding
tap
phase
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2595486A
Other languages
Japanese (ja)
Inventor
Nobuteru Fujimura
藤村 宣輝
Masaru Ono
小野 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2595486A priority Critical patent/JPS62184513A/en
Publication of JPS62184513A publication Critical patent/JPS62184513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To attain quick control and continuous switching, to improve reliability and to simplify a constitution by phase regulating a voltage by thyrister control. CONSTITUTION:A regulating transformer 1 is comprised of the bypass coil 3 of a triangle connection, the same phase voltage regulating tap coil 4 and the perpendicular voltage regulating tap coil 5 of a star connection. The tap coils 4 and 5 are connected to the same phase voltage regulating thyrister group 6 and a perpendicular voltage regulating thyrister group 7, both of which connect two sets of thyristers in parallel reversely with each other. A serial transformer 2 is composed of a serial coil 8, an exciting coil 9 and a stable coil 10. In the coil 8, its one end is connected to the triangle junction of the coil 3 of the transformer 1, while both ends are serially connected to the line. The one end of the thyrister group 7 of the transformer 1 is connected to the junction in the middle of the thyrister group 6 which has no voltage of the same phase component as its own phase, and the other end is connected to some part of the coil 9 of the transformer 2. Thus a shorted current conducting to the thyrister groups is compiled to the exciting coil. By varying the turn ratio of the serial coil to the exciting one, the current value can be changed.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、高速制御を可能とした電力用のサイリスタ制
御式電圧位相調整器に関するものでおり、特に、間接切
換方式を採用して信頼性の向上及び構成の簡略化を実現
したサイリスタ制御式電圧位相調整器に係る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a thyristor-controlled voltage phase regulator for power that enables high-speed control, and in particular uses an indirect switching method to improve reliability. This invention relates to a thyristor-controlled voltage phase regulator that has been improved and has a simplified configuration.

[発明の技術的背景とその問題点] 電圧位相調整器または調整変圧器は、電圧変成を行うと
共に1次側と2次側の電圧位相を変化させて電力系統の
潮流制御も行う装置であり、従来そのタップ切換には機
械的接点の負荷時タップ切換器が使用されてきた。しか
し機械的動作を伴うタップ切換方式では、その切換時間
が長く、緊急を要する系統事故時の過渡安定度を向上さ
せる機能はない。
[Technical background of the invention and its problems] A voltage phase regulator or regulating transformer is a device that transforms voltage and also controls power flow in a power system by changing the voltage phase on the primary and secondary sides. Conventionally, an on-load tap changer with mechanical contacts has been used to change the taps. However, tap switching systems that involve mechanical operation have long switching times and do not have the ability to improve transient stability in the event of an emergency system failure.

一方、電力系統の増大化に伴い、信頼度の高い効率的な
設備が必要となっており、過渡友定度向上の機能をも有
した電圧位相調整単巻変圧器の実現が望まれている。
On the other hand, with the expansion of power systems, highly reliable and efficient equipment is required, and it is desired to realize voltage phase adjustment autotransformers that also have the function of improving transient voltage stability. .

ところで、近年シリコン制御整流素子(以後サイリスタ
と記す)を含めた半導体技術の著しい進歩に伴い、さま
ざまな分野でその適用が拡大されている。この様な状況
に伴い、電力分野においてもこのサイリスタ技術を利用
してサイリスタ制御によりタップ変換を行う電圧位相調
整器及び調整変圧器が研究され、その効果が認められる
に至っており、最近では、電力用高電圧・大容量器につ
いてもその実用化が検討されている。
Incidentally, in recent years, with the remarkable progress in semiconductor technology including silicon-controlled rectifying elements (hereinafter referred to as thyristors), their application has been expanded in various fields. In line with this situation, voltage phase regulators and regulating transformers that utilize this thyristor technology to perform tap conversion through thyristor control have been researched in the power field, and their effectiveness has come to be recognized. The practical application of high-voltage, large-capacity devices for industrial use is also being considered.

このサイリスタ制御方式では、1サイクル以内の高速制
御又は連続切換が可能となることから、従来器では得ら
れなかった優れた特性を得ることができる。即ち、電圧
と位相を高速に変化させることにより、電力潮流を制御
して、系統事故時などの動態安定度を向上させるととも
に、常時ループ系の潮流を能動的に制御することにより
、送電線の過負荷解消や送電損失の低減などの役割を果
たすことができる。
This thyristor control system enables high-speed control within one cycle or continuous switching, and therefore can provide excellent characteristics that were not available with conventional devices. In other words, by rapidly changing voltage and phase, power flow is controlled to improve dynamic stability in the event of a grid failure, and by actively controlling power flow in a constant loop system, transmission line It can play a role in eliminating overloads and reducing power transmission losses.

電圧位相調整単巻変圧器の従来例の1つを第6図に示す
。これは、主変圧器21と直列変圧器22とから構成さ
れている。主変圧器21は、高圧主巻線23、同相分電
圧調整用タップ巻線24、中圧巻線25、及び低圧巻線
26を有し、同相分電圧調整用タップ巻線24には、単
相用タップ切換器27が3台接続されている。直列変圧
器22は、直角分電圧調整用タップ巻線28と励磁巻線
29及び安定巻線30を有し、直角分電圧調整用タップ
巻線28には、3相中性点用タップ切換器31が接続さ
れている。
One conventional example of a voltage phase adjusting autotransformer is shown in FIG. It consists of a main transformer 21 and a series transformer 22. The main transformer 21 has a high voltage main winding 23, an in-phase voltage adjustment tap winding 24, an intermediate voltage winding 25, and a low voltage winding 26. Three tap changers 27 are connected. The series transformer 22 has a tap winding 28 for quadrature voltage adjustment, an excitation winding 29, and a stabilizing winding 30, and the tap winding 28 for quadrature voltage adjustment includes a three-phase neutral point tap changer. 31 is connected.

このような構成において、同相分電圧調整は、タップ切
換器27により、直角分電圧調整はタップ切換器31に
より、各々直接切換方式にて行われているが、タップ切
換器27.31は機械的接点を有するため、前述した高
速制御等には対応できない。
In such a configuration, the in-phase voltage adjustment is performed by the tap changer 27, and the quadrature voltage adjustment is performed by the tap changer 31, each using a direct switching method, but the tap changers 27 and 31 are mechanically operated. Since it has a contact point, it cannot support the above-mentioned high-speed control, etc.

この様な問題を解消し、過渡安定度の向上等を目的とし
たタップ切換の高速制御を実現するためには、タップ切
換器27.31をサイリスタ制御式のものに置き換えれ
ばよい。しかしながら、サイリスタは半導体であるため
、その過電流耐量特性及び雷インパルス電圧などの異常
電圧に対する耐絶縁特性が、変圧器巻線に比べ非常に悪
く、故に系統事故時やサイリスタ誤動作時の過渡的な過
電流や過電圧に対し十分な耐性を有する構成とする必要
がある。
In order to solve such problems and realize high-speed control of tap switching for the purpose of improving transient stability, etc., the tap changers 27 and 31 may be replaced with thyristor-controlled ones. However, since thyristors are semiconductors, their overcurrent withstand characteristics and insulation characteristics against abnormal voltages such as lightning impulse voltages are very poor compared to transformer windings. It is necessary to have a configuration that has sufficient resistance to overcurrent and overvoltage.

例えば、第6図の例で、タップ切換器27,31をサイ
リスク制御方式に置き換えた場合には、サイリスタには
高圧側線路電流が流れ、またタップ巻線が高圧線路側に
接続されることから、発生電圧も大きくなり、更に、短
絡及び地絡事故が発生した際には、短絡電流がそのまま
サイリスタに流れるため、異常電圧・異常電流に囚って
決まるサイリスタの使用個数が非常に多くなり、構成が
複雑化する問題がある。また、サイリスタ誤動作時の不
具合現象、例えばサイリスタOFFによる欠相問題がそ
のまま系統に発生し、その運用上の信頼性において問題
がおる。
For example, in the example shown in Fig. 6, if the tap changers 27 and 31 are replaced with the thyristor control system, the high-voltage line current flows through the thyristor, and the tap winding is connected to the high-voltage line. The generated voltage also increases, and furthermore, when a short circuit or ground fault occurs, the short circuit current flows directly to the thyristor, so the number of thyristors to be used, which is determined by the abnormal voltage and current, becomes extremely large. There is a problem that the configuration becomes complicated. In addition, malfunctions caused by thyristor malfunctions, such as open-phase problems caused by thyristor OFF, continue to occur in the system, which poses a problem in its operational reliability.

従って、一般的に、サイリスタ方式を採用した場合には
、直接切換方式よりも、□直列変圧器を使用する間接切
換方式の方が有利になる。
Therefore, in general, when a thyristor system is adopted, an indirect switching system using a series transformer is more advantageous than a direct switching system.

[発明の目的] 本発明の目的は、系統の過渡安定度向上のために必要な
高速度切換動作が可能な、新しい技術課題であるサイリ
スタ制御タップ切換方式を採用して、信頼性が高く且つ
構成の簡略化を実現し得る様なサイリスタ制御式電圧位
相調整器を提供することである。
[Objective of the Invention] The object of the present invention is to adopt a thyristor-controlled tap switching method, which is a new technical issue, and which is capable of high-speed switching operations necessary to improve the transient stability of the system, and to achieve high reliability and It is an object of the present invention to provide a thyristor-controlled voltage phase regulator that can simplify the configuration.

[発明の概要] 本発明によるサイリスタ制御式電圧位相調整器は、調整
変圧器のタップ巻線を、直角分電圧調整用の星形結線の
ものと、同相分電圧調整用の三角結線のものとで構成し
、それらの接続は各々2組のサイリスタを互いに逆並列
接続したサイリスタ群を介して行い、直角分電圧調整用
タップ巻線の一端を、自相と同相成分の電圧を有しない
同相分電圧調整用タップ巻線の2相の接続点に接続し、
直角分電圧調整用タップ巻線の他端を直列変圧器の励磁
巻線に接続し、直列変圧器の直列巻線の一端を調整変圧
器の分路巻線の三角接続点に接続したことを特徴とする
ものである。
[Summary of the Invention] The thyristor-controlled voltage phase regulator according to the present invention has a tap winding of a regulating transformer that has a star connection for quadrature voltage adjustment and a triangular connection for in-phase voltage adjustment. The connection is made through a thyristor group in which two sets of thyristors are connected in antiparallel to each other, and one end of the tap winding for quadrature voltage adjustment is connected to an in-phase component that does not have a voltage of the same-phase component as the own-phase component. Connect to the 2-phase connection point of the voltage adjustment tap winding,
The other end of the quadrature voltage regulating tap winding is connected to the excitation winding of the series transformer, and one end of the series winding of the series transformer is connected to the triangular connection point of the shunt winding of the regulating transformer. This is a characteristic feature.

−〇 − そして、この様な構成を有することにより、サイリスタ
群に流れる短絡電流は、励磁巻線に編成されたものとな
り、直列変圧器の直列巻線と励磁巻線との巻数比を変え
ることにより、適宜その電流値を変化させることができ
る。従って、過電流や過電圧が加わった際も、サイリス
タ群に流れる電流値を低く抑えられるため、信頼性を向
上でき、また、構成の簡略化を実現できる。
−〇 − With such a configuration, the short-circuit current flowing through the thyristor group is organized into the excitation winding, and the turns ratio between the series winding and the excitation winding of the series transformer can be changed. Therefore, the current value can be changed as appropriate. Therefore, even when overcurrent or overvoltage is applied, the current value flowing through the thyristor group can be suppressed to a low value, so reliability can be improved and the configuration can be simplified.

[発明の実施例] 以上説明した様な本発明によるサイリスク制御式電圧位
相調整器の実施例を、第1図乃至第5図(A>(B>を
用いて具体的に説明する。
[Embodiments of the Invention] An embodiment of the si-risk controlled voltage phase regulator according to the present invention as described above will be specifically described using FIGS. 1 to 5 (A>(B>).

*構成 第1図において、1は調整変圧器、2は直列変圧器であ
る。調整変圧器1は三角結線された分路巻線3と、三角
結線された同相分電圧調整用タップ巻線4、及び星形結
線された直角分電圧調整用タップ巻線5により構成され
ている。両タップ巻線4,5は、2組のサイリスタを互
いに逆並列接続してなる同相分電圧調整用サイリスタ群
6と直角分電圧調整用サイリスタ群7とに各々接続され
ている。
*Configuration In Fig. 1, 1 is a regulating transformer and 2 is a series transformer. The regulating transformer 1 is composed of a triangularly connected shunt winding 3, a triangularly connected in-phase voltage adjusting tap winding 4, and a star-connected right-angle voltage adjusting tap winding 5. . Both tap windings 4 and 5 are respectively connected to an in-phase voltage adjustment thyristor group 6 and a quadrature voltage adjustment thyristor group 7, which are formed by connecting two sets of thyristors in antiparallel to each other.

直列変圧器2は、直列巻線8と励磁巻線9と安定巻線1
0とにより構成されている。直列巻線8は、その一端を
調整変圧器1の分路巻線3の三角接続点(U、V、W>
に接続され、且つ直列巻線の両@(U、V、W>、(u
、v、w) は線路に直列接続されている。
The series transformer 2 includes a series winding 8, an excitation winding 9, and a stabilizing winding 1.
0. The series winding 8 connects one end to the triangular connection point (U, V, W>
and both of the series winding @(U, V, W>, (u
, v, w) are connected in series to the line.

調整変圧器1の直角分電圧調整用サイリスタ群7は、そ
の−@(Xt 、 Vt 、 zt )を、自相と同相
成分の電圧を有しない同相分電圧調整用サイリスタ群6
の2相の接続点(Xl、’11.Zt )に各々接続さ
れており、直角分電圧調整用サイリスタ群7の他端(X
2.’J2.Z2 )は、直列変圧器2の励磁巻線9の
一端(×2 、 y2 、 Z2 )に接続されている
The quadrature voltage regulating thyristor group 7 of the regulating transformer 1 converts its −@(Xt, Vt, zt) into the in-phase voltage regulating thyristor group 6 which does not have a voltage of its own phase and an in-phase component.
are connected to the two-phase connection points (Xl, '11.Zt), respectively, and the other end (X
2. 'J2. Z2) is connected to one end (x2, y2, Z2) of the excitation winding 9 of the series transformer 2.

続いて、第2図(A>  (B)に、周知であるタップ
巻線とサイリスタ群の構成の一例及びその作用を示す。
Next, FIG. 2 (A>(B)) shows an example of the configuration of a well-known tap winding and thyristor group and its operation.

第2図(A)において、タップ巻線11〜13は、サイ
リスタ群14によって接続されている。
In FIG. 2(A), tap windings 11 to 13 are connected by a thyristor group 14. In FIG.

サイリスタ群14は2組のサイリスタを互いに逆並列に
接続し、ゲートパルスにより両者をそれぞれ一方向に導
通させ、且つ信号パルスを停止することにより両者が不
導通になるように構成されている。第2図(A>(B)
の例は、タップ巻線11〜13の巻数比(誘起電圧比)
が1:3:9の場合で、各サイリスタ■〜■のON、O
FF制御により、同図からも明らかな様に、サイリスタ
群14の端子に、愛に発生する電圧Eを+136〜O〜
−13eのタップ点数27点に調整できる。
The thyristor group 14 has two sets of thyristors connected in antiparallel to each other, and is configured such that both are made conductive in one direction by a gate pulse, and are made non-conductive by stopping the signal pulse. Figure 2 (A>(B)
The example is the turns ratio (induced voltage ratio) of tap windings 11 to 13.
When the ratio is 1:3:9, each thyristor ■~■ is turned on and off.
As is clear from the figure, by FF control, the voltage E generated at the terminal of the thyristor group 14 is increased from +136 to O.
-13e can be adjusted to 27 tap points.

従って、タップ巻線数が少なくともタップ点数が多くと
れる利点があり、サイリスタ制御式においてこの様な構
成作用があることは周知のところである。
Therefore, there is an advantage that at least the number of tap windings can be increased, and it is well known that such a configuration effect exists in the thyristor control type.

なお、第1図の実施例では、直角分電圧調整用タップ巻
線5とサイリスタ群7にはタップ巻線数が3個、同相分
電圧調整用タップ巻線4とサイリスタ群6にはタップ巻
線が2個の場合を示しているが、これらの組合せは、適
宜その時の必要に応じて決定される。
In the embodiment shown in FIG. 1, the quadrature voltage adjustment tap winding 5 and the thyristor group 7 have three tap windings, and the in-phase voltage adjustment tap winding 4 and the thyristor group 6 have three tap windings. Although the case where there are two lines is shown, the combination of these lines is appropriately determined according to the needs at the time.

*作用 以上の様な構成を有する7に実施例の作用を第3図(A
)(B)乃至第5図(A>(、B)を参照して説明する
。ここで、第3図(A>(B)乃至第5図(A>(B)
は、第1図より必要な部分のみ抜き出して示したもので
あり、電圧と位相との調整を説明する誘起電圧のベクト
ル図でおる。
*Effect The effect of the embodiment is shown in Figure 3 (A
)(B) to FIG. 5(A>(,B). Here, FIG. 3(A>(B) to FIG. 5(A>(B)).
FIG. 1 shows only the necessary parts extracted from FIG. 1, and is a vector diagram of induced voltage to explain adjustment of voltage and phase.

第3図(A>(B)においては、直角分電圧調整用サイ
リスタ群7の発生電圧が零でおり、同相分電圧調整用サ
イリスタ群6の発生電圧だけか生じ、その電圧で励磁巻
線9が励磁され、直列変圧器2の直列巻線8には同相分
電圧E1のみが発生している。この場合、u、y、w側
の相間電圧をEpとすると、U、V、W側に発生する相
間電圧Esの大きさは、(El)+2Et cos30
°)=ElD十FE1となり、位相差は零となる。
In FIG. 3 (A>(B), the voltage generated by the thyristor group 7 for quadrature voltage adjustment is zero, only the voltage generated by the thyristor group 6 for in-phase voltage adjustment is generated, and that voltage is applied to the excitation winding 9. is excited, and only the in-phase voltage E1 is generated in the series winding 8 of the series transformer 2.In this case, if the phase-to-phase voltage on the u, y, and w sides is Ep, the voltage on the U, V, and W sides is The magnitude of the generated phase-to-phase voltage Es is (El)+2Et cos30
)=ElD+FE1, and the phase difference becomes zero.

第4図(A)(B)においては、同相分電圧調整用サイ
リスタ群6の発生電圧が零であり、直角分電圧調整用サ
イリスタ群7の発生電圧だけが生じ、その電圧で励磁巻
線9が励磁され、直列巻線8には、直角分電圧E2のみ
が発生している。この場合、U、V、W側に発生する相
間電圧ESの大きさは、ix  v’7下蚕7万Y丁+
E2丁−r百■肩]〒7丁で、位相差θはtan−’(
ffE2/Ep)となる。
In FIGS. 4(A) and 4(B), the voltage generated by the thyristor group 6 for in-phase voltage adjustment is zero, only the voltage generated by the thyristor group 7 for quadrature voltage adjustment is generated, and that voltage is applied to the excitation winding 9. is excited, and only the quadrature voltage E2 is generated in the series winding 8. In this case, the magnitude of the phase-to-phase voltage ES generated on the U, V, and W sides is ix v'7 70,000Y +
E2-r 100cm shoulder] At 7-inch, the phase difference θ is tan-'(
ffE2/Ep).

第5図(A>(B)においては、直角分電圧調整用サイ
リスタ群7と、同相分電圧調整用サイリスタ群6との両
方に発生電圧が生じ、これらの合成電圧で励磁巻線9が
励磁されており、直列変圧器2の直列巻線8には、同相
分電圧E1と直角分電圧E2のベクトル和であるf「T
]+−E2’−が発生している。この場合、U、V、W
側に発生する相間電圧ESの大きさは、 相差θはjan’ [E2 /((Ep//’ff> 
十Et )]となる。
In FIG. 5 (A>(B), a voltage is generated in both the quadrature voltage adjustment thyristor group 7 and the in-phase voltage adjustment thyristor group 6, and the excitation winding 9 is excited by the combined voltage. The series winding 8 of the series transformer 2 has f'T, which is the vector sum of the in-phase voltage E1 and the quadrature voltage E2.
]+-E2'- is occurring. In this case, U, V, W
The phase difference θ is jan' [E2 /((Ep//'ff>
10Et)].

この様に、本実施例では同相分電圧と直角分電圧の合成
電圧を1台の直列変圧器に印加しているため、第2図に
示す様なサイリスタのON・OF「制御によりサイリス
タ群6,7の端子に2丈間に発生する電圧Eの大きざ・
極性を調整することで、直列変圧器2の直列巻線8に発
生する電圧E1、E2の大きざ・位相を変化させ、U、
V、W側に発生する電圧の大きさES、位相差θを任意
に調整できる。
In this way, in this embodiment, since the composite voltage of the in-phase voltage and the right-angle voltage is applied to one series transformer, the thyristor group 6 , 7 is the magnitude of the voltage E generated between the two terminals.
By adjusting the polarity, the magnitude and phase of the voltages E1 and E2 generated in the series winding 8 of the series transformer 2 are changed, and U,
The magnitude ES of the voltage generated on the V and W sides and the phase difference θ can be adjusted as desired.

次に、サイリスタに流れる電流と印加電圧について説明
する。
Next, the current flowing through the thyristor and the applied voltage will be explained.

サイリスタの必要個数が、サイリスタに加わる常規運転
電圧・電流よりも、線路端から侵入してくる雷インパル
ス電圧や系統短絡時に発生する短絡電流によって決まる
ことが多く、また、第6図に示す従来構成においてサイ
リスタ制御式を適用する場合には、サイリスタ群が高圧
巻線に位置するため、サイリスタ数が多くなり、構成が
複雑化し、信頼性も低下することは、前述の通りでおる
The required number of thyristors is often determined by the lightning impulse voltage that enters from the line end or the short-circuit current that occurs when the system is short-circuited, rather than by the normal operating voltage and current applied to the thyristor. As described above, when a thyristor control type is applied in a thyristor control system, the thyristor group is located in the high-voltage winding, so the number of thyristors increases, the configuration becomes complicated, and the reliability decreases.

これに対し、前記の様な本実施例の構成によれば、以下
のごとく、必要なサイリスタの個数を少なくでき、構造
の簡略化及び信頼性の向上を達成できる。
In contrast, according to the configuration of this embodiment as described above, the number of necessary thyristors can be reduced, and the structure can be simplified and reliability can be improved, as described below.

まず、本実施例は、間接切換方式なので、実際にサイリ
スタ群6,7に流れる短絡電流−は、直列変圧器2の直
列巻線8に流れる短絡電流が励磁巻線9に変成されたも
のである。従って、サイリスタ群6,7に流れる短絡電
流の大きさは、直列巻線8と励磁巻線9の巻数比を変え
ることにより、比例して変化させることができる。
First, since this embodiment uses an indirect switching method, the short-circuit current that actually flows through the thyristor groups 6 and 7 is the short-circuit current that flows through the series winding 8 of the series transformer 2 and is transformed into the excitation winding 9. be. Therefore, the magnitude of the short circuit current flowing through the thyristor groups 6 and 7 can be changed proportionally by changing the turns ratio between the series winding 8 and the excitation winding 9.

また、サイリスタの絶縁耐量は、定常の誘起電圧ではな
く、線路端子に雷インパルス電圧が印加された場合に移
行してくる異常電圧によって決定される場合が多い。本
実施例の構成において、線路端子に雷インパルス電圧が
印加された場合にサイリスタ群6,7に加わる異常電圧
としては、分路巻線3からタップ巻線4,5へ移行して
くる分と、直列巻線8から励磁巻線9へ移行してくる分
とがおる。このうち前者の電圧値は低く、余り問題とな
らない一方、後者の異常電圧については、次のことが言
える。即ち、直列巻線8と励磁巻線9の巻数比を大きく
すると、直列巻線からのサイリスク群6,7への移行電
圧は小さくなるが、通電電流は大きくなる。逆に、巻数
比を小さくすると移行電圧は大きくなるが、通電電流は
小さくなる。この様な関係から、直列巻線と励磁巻線の
巻数比を適切に選ぶことにより、使用するサイリスタ個
数を最少とすることができる利点がある。
Furthermore, the dielectric strength of a thyristor is often determined not by a steady induced voltage but by an abnormal voltage that occurs when a lightning impulse voltage is applied to a line terminal. In the configuration of this embodiment, when a lightning impulse voltage is applied to the line terminal, the abnormal voltage applied to the thyristor groups 6 and 7 is the amount that transfers from the shunt winding 3 to the tap windings 4 and 5. , there is a transition from the series winding 8 to the excitation winding 9. Among these, the former voltage value is low and does not pose much of a problem, while the following can be said about the latter abnormal voltage. That is, when the turns ratio between the series winding 8 and the excitation winding 9 is increased, the transition voltage from the series winding to the thyrisk groups 6 and 7 becomes smaller, but the current flowing therein becomes larger. Conversely, if the turns ratio is decreased, the transition voltage will increase, but the current flowing will decrease. From this relationship, there is an advantage that the number of thyristors used can be minimized by appropriately selecting the turns ratio between the series winding and the excitation winding.

更に、サイリスタ群6,7が接続されている回路は系統
に直接接続されていないことから、絶縁レベルを自由に
選ぶことができる為、最近の高性能・非直線性抵抗素子
を用いた避雷器でサイリスタ群を保護すれば、サイリス
タ群への移行電圧を更に小さくでき、この点からも、サ
イリスタの直列接続個数を低減できる。
Furthermore, since the circuit to which the thyristor groups 6 and 7 are connected is not directly connected to the grid, the insulation level can be freely selected. By protecting the thyristor group, the transition voltage to the thyristor group can be further reduced, and from this point of view as well, the number of thyristors connected in series can be reduced.

加えて、サイリスタの誤動作OFFにより、タップ巻線
4,5の開放状態が万一発生したとしても、系統に直接
接続されている巻線は開放状態にならないので直接切換
方式の様にサイリスタOFFによる系統回路の一時開放
という不具合減少の発生は解消される。
In addition, even if the tap windings 4 and 5 open due to a thyristor malfunction turning OFF, the windings directly connected to the grid will not become open, so it will not be possible to turn off the thyristor as in the direct switching method. The occurrence of malfunction reduction due to temporary opening of the grid circuit is eliminated.

し他の実施例] なお、サイリスタ制御式には、前記実施例に示した様な
点弧角制御なしのタップ切換式の他に、点弧角制御を行
う点弧角制御式がある。この点弧角制御式は、第2図(
A)における3個のタップ巻線11〜13を1個のタッ
プ巻線にまとめ、サイリスタ■〜■の様な4セツトから
なるサイリスタ群の端子に、愛間の電圧Eの大きさと極
性を、サイリスタの点弧角制御で調整するものである。
[Other Embodiments] The thyristor control type includes, in addition to the tap switching type without firing angle control as shown in the above embodiment, a firing angle control type that performs firing angle control. This firing angle control formula is shown in Figure 2 (
The three tap windings 11 to 13 in A) are combined into one tap winding, and the magnitude and polarity of the voltage E between the two are connected to the terminals of the thyristor group consisting of four sets such as thyristors ■ to ■. This is adjusted by controlling the firing angle of the thyristor.

この点弧角制御式は、タップ切換式に比べ、サイリスタ
制御が複雑となり、歪波形による高調波の発生もあるが
、タップ巻線の構成が単純化し、サイリスク群との接続
方法が簡単になる利点がある。
Compared to the tap-switching type, this firing angle control type has more complicated thyristor control and may generate harmonics due to distorted waveforms, but the configuration of the tap winding is simplified and the connection method with the thyrisk group is simpler. There are advantages.

そして、この点弧角制御式においても、本発明を全く同
様に適用でき、同様の効果を奏することは明白である。
It is clear that the present invention can be applied in exactly the same way to this firing angle control type, and the same effects can be achieved.

[発明の効果] 以上説明した様に本発明によれば、電圧と位相調整をサ
イリスタ制御により行っているため、高速制御や連続切
換が可能になり、系統事故時の動態安定度の向上に役立
つと共に、サイリスタ群に流れる電流値を調節できるた
め、信頼性の向上及びサイリスタ数の低減による構成の
簡略化を実現したサイリスタ制御式電圧位相調整器を提
供できる。
[Effects of the Invention] As explained above, according to the present invention, voltage and phase adjustment is performed by thyristor control, which enables high-speed control and continuous switching, which is useful for improving dynamic stability in the event of a system fault. In addition, since the current value flowing through the thyristor group can be adjusted, it is possible to provide a thyristor-controlled voltage phase regulator that has improved reliability and simplified configuration by reducing the number of thyristors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明によるサイリスタ制御式電圧位相調整
器の一実施例を示す結線図、第2図(A>(B)は、周
知であるタップ巻線とサイリスタ群の構成及び作用を示
す結線図及びON・OFF表、第3図(A)(B)乃至
第5図(A>(B)は本発明による電圧位相調整の原理
を示す電圧ベクトル図であり、各図共(A>は分路巻線
と直列巻線、(B)は励磁巻線とタップ巻線、第6図は
従来の電圧位相調整変圧器の一例を示す結線図である。 1・・・調整変圧器、2,22・・・直列変圧器、3・
・・分路巻線、4,24・・・同相分電圧調整用タップ
巻線、5,28・・・直角分電圧調整用タップ巻線、6
・・・同相分電圧調整用サイリスタ群、7・・・直角分
電圧調整用サイリスタ群、8・・・直列巻線、9.29
・・・励磁巻線、10.30・・・安定巻線、11〜1
3・・・タップ巻線、14・・・サイリスタ群。
FIG. 1 is a wiring diagram showing an embodiment of the thyristor-controlled voltage phase regulator according to the present invention, and FIG. 2 (A>(B) shows the configuration and operation of the well-known tap winding and thyristor group. Connection diagrams, ON/OFF tables, and FIGS. 3 (A), (B) to 5 (A>(B)) are voltage vector diagrams showing the principle of voltage phase adjustment according to the present invention, and each figure (A> 6 is a wiring diagram showing an example of a conventional voltage phase adjustment transformer. 1... Adjustment transformer, 2, 22...Series transformer, 3.
... Shunt winding, 4, 24... Tap winding for in-phase voltage adjustment, 5, 28... Tap winding for right-angle voltage adjustment, 6
... Thyristor group for in-phase voltage adjustment, 7... Thyristor group for right-angle voltage adjustment, 8... Series winding, 9.29
... Excitation winding, 10.30 ... Stability winding, 11-1
3...Tap winding, 14...Thyristor group.

Claims (1)

【特許請求の範囲】  三角結線された分路巻線と、三角結線された同相分電
圧調整用タップ巻線、及び星形結線の直角分電圧調整用
タップ巻線を備えた調整変圧器と、直列巻線と星形結線
の励磁巻線、及び安定巻線を備えた直列変圧器とにより
構成される電圧位相調整器において、 前記直列巻線の一端は前記分路巻線の三角接続点に接続
され、前記タップ巻線は各々2組のサイリスタを互いに
逆並列接続したサイリスタ群により接続され、星形結線
の直角分電圧調整用タップ巻線は自相と同相成分の電圧
を有しない三角結線の同相分電圧調整用タップ巻線の2
相の接続点に各々一端を接続され、星形結線の直角分電
圧調整用タップ巻線の他の一端は前記励磁巻線に接続さ
れたことを特徴とするサイリスタ制御式電圧位相調整器
[Claims] A regulating transformer comprising a triangularly connected shunt winding, a triangularly connected in-phase voltage regulating tap winding, and a star-shaped right-angle voltage regulating tap winding; In a voltage phase regulator composed of a series winding, a star-connected excitation winding, and a series transformer with a stabilizing winding, one end of the series winding is connected to a triangular connection point of the shunt winding. The tap windings are each connected by a thyristor group in which two sets of thyristors are connected in antiparallel to each other, and the star-connected tap windings for quadrature voltage adjustment have triangular connections that do not have voltages of their own phase and in-phase components. 2 of the tap winding for adjusting the in-phase voltage of
A thyristor-controlled voltage phase regulator, characterized in that one end of each of the tap windings is connected to a phase connection point, and the other end of a star-connected quadrature voltage adjustment tap winding is connected to the excitation winding.
JP2595486A 1986-02-10 1986-02-10 Voltage phase regulating device of thyrister control type Pending JPS62184513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2595486A JPS62184513A (en) 1986-02-10 1986-02-10 Voltage phase regulating device of thyrister control type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2595486A JPS62184513A (en) 1986-02-10 1986-02-10 Voltage phase regulating device of thyrister control type

Publications (1)

Publication Number Publication Date
JPS62184513A true JPS62184513A (en) 1987-08-12

Family

ID=12180150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2595486A Pending JPS62184513A (en) 1986-02-10 1986-02-10 Voltage phase regulating device of thyrister control type

Country Status (1)

Country Link
JP (1) JPS62184513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645320U (en) * 1992-11-24 1994-06-14 株式会社明電舎 Voltage regulator with built-in transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645320U (en) * 1992-11-24 1994-06-14 株式会社明電舎 Voltage regulator with built-in transformer

Similar Documents

Publication Publication Date Title
US5408171A (en) Combined solid-state and mechanically-switched transformer tap-changer
US5461300A (en) Phase angle regulating transformer with a single core per phase
EP0663115B1 (en) Hvdc transmission
CZ300880B6 (en) Polarized PECS device for electric charge storage and method for using PECS device in alternating networks
JPH0782402B2 (en) Phase shifter
US5990667A (en) Regulator with asymmetrical voltage increase/decrease capability for utility system
WO1996015572A1 (en) Methods of enhancing capacity of transformer equipment and of power flow control using phase-shifting transformers and series impedances in parallel arrangements
KR102522753B1 (en) transformer device
US6011381A (en) Three-phase auto transformer with two tap changers for ratio and phase-angle control
US4750098A (en) Unrestricted frequency changer with current source output
JP3598126B2 (en) Three-phase load voltage phase adjustment transformer
JPS62182815A (en) Thyristor control type voltage phase controlled auto-transformer
JPS62184513A (en) Voltage phase regulating device of thyrister control type
JPS62184512A (en) Voltage phase regulating device of thyrister control type
JPS62184514A (en) Voltage phase regulating device of thyrister control type
JPS63106023A (en) Thyristor control type voltage phase regulator
KR0173719B1 (en) Method and interconnecting two synchronous polyphase ac networks and interconnecting apparatus for the same
JPS6244818A (en) Single winding transformer for adjusting voltage/phase
JPS62182814A (en) Thyristor control type voltage phase controlled transformer
JPS62236013A (en) Thyristor control type voltage phase regulator
JPS62236012A (en) Thyristor control type voltage phase regulator
JPS62182908A (en) Thyristor control type voltage phase adjusting transformer
JPS63106022A (en) Thyristor control type voltage phase regulator
JPS62182813A (en) Thyristor control type voltage phase controlled autotransformer
JPS63106021A (en) Voltage phase regulating autotransformer