JPS6244818A - Single winding transformer for adjusting voltage/phase - Google Patents

Single winding transformer for adjusting voltage/phase

Info

Publication number
JPS6244818A
JPS6244818A JP60183044A JP18304485A JPS6244818A JP S6244818 A JPS6244818 A JP S6244818A JP 60183044 A JP60183044 A JP 60183044A JP 18304485 A JP18304485 A JP 18304485A JP S6244818 A JPS6244818 A JP S6244818A
Authority
JP
Japan
Prior art keywords
winding
voltage
transformer
series
tap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60183044A
Other languages
Japanese (ja)
Inventor
Akira Hotta
明 堀田
Kikuo Takagi
喜久雄 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60183044A priority Critical patent/JPS6244818A/en
Publication of JPS6244818A publication Critical patent/JPS6244818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To improve the dynamic stability and to increase the reliability of a device by constituting tap windings of the combinations of specific connections and connecting the combinations by anti-parallel bodies consisting of two pairs of thyristors. CONSTITUTION:A voltage/phase adjusting single winding transformer is constituted of a single winding main transformer 1 and a serial transformer 2, the single winding main transformer 1 consists of a serial winding 3, a shunt winding 5 and a low voltage winding 6 and the serial transformer 2 consists of an exciting winding 9, a stable winding 10 and a serial winding 13. In this case, an adjusting transformer 12 is added and thyristor groups are used in stead of tap switches. The serial winding 13 is connected to a node between the serial winding 3 and the shunt winding 5 and the adjusting transformer 12 is constituted of an adjusting winding 14 connected in parallel with the low voltage winding 6, voltage adjusting tap windings 15, 16 for a quadrature component and an in-phase component and their thyristor groups 17, 18 and connected as shown in a wiring diagram. Consequently, voltage and phase adjustment can be attained by thyristor control and rapid control and continuous switching can be attained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高速制御を可能とした電力用の電圧位相調整単
巻変圧器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a voltage phase adjustment autotransformer for electric power that enables high-speed control.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電圧位相調整単巻変圧器は電圧変成を行なうと共に1次
側と2次側の電圧位相を変化させて電力系統の潮汁制御
をも行なう装置であシ、そのタップ切換には機械的接点
のタップ切換器が使用されてきた。
A voltage phase adjustment autotransformer is a device that not only transforms the voltage but also controls the power system by changing the voltage phase on the primary and secondary sides.The taps are changed using mechanical contact taps. A switch has been used.

しかし、機械的動作をともなうタップ切換器方式では、
その切換に必要とする時間が長く、緊急を要する系統事
故時の過渡安定度を向上させる機能はない。
However, in the tap changer method that involves mechanical operation,
The time required for switching is long, and there is no function to improve transient stability in the event of an emergency system failure.

一方、電力系統の増大化に伴い信頼変の高い効率的な設
備が必要となっており、過渡安定度向上の機能をも有し
た電圧位相調整単巻変圧器の実現が望まれるようになっ
た。
On the other hand, with the expansion of power systems, efficient equipment with high reliability is required, and it has become desirable to realize voltage phase adjustment autotransformers that also have the function of improving transient stability. .

近年、シリコン制御整流素子(以後サイリスタと記す)
を含めた半導体技術の著しい進歩に伴いさまざまな分野
でサイリスタの適用が拡大しており、そのサイリスタ技
術を利用して、サイリスタ制御によるタップ切換を行な
う電圧位相調整変圧器・調整器が研究され、その効果が
認められている。そして最近では電力用高電圧大容量器
についてその実用化が検討されている。
In recent years, silicon-controlled rectifying elements (hereinafter referred to as thyristors) have been developed.
The application of thyristors is expanding in various fields due to the remarkable progress of semiconductor technology including thyristor technology, and research has been conducted into voltage phase adjustment transformers and regulators that perform tap switching by thyristor control using thyristor technology. Its effectiveness has been recognized. Recently, the practical application of high-voltage, large-capacity devices for power use has been studied.

このようなサイリスタ式は1サイクル以内の高速制御や
連続切換が可能となシ、従来器にはない特性が得られる
。すなわち電圧と位相を高速に変化させることによシミ
力潮流を制御して系統事故時などの動態安定度を向上ざ
ぜる機能を持たせると共に、常時はループ系の潮流を能
動的に制御することにより、送電線の過負荷解消や送電
損失の低減などの役割をはだすことができる。
Such a thyristor type is capable of high-speed control within one cycle and continuous switching, providing characteristics not found in conventional devices. In other words, it has the function of controlling the stain force flow by rapidly changing the voltage and phase to improve dynamic stability in the event of a system failure, and also actively controls the loop system power flow at all times. This can play a role in eliminating overloads on power transmission lines and reducing transmission losses.

電圧位相調整単巻変圧器の従来例の一つとして第7図に
示すものが6!l、単巻主変圧器1と直列変圧器2とか
ら構成されている。単巻主変圧器1には直列巻’ftt
M a 、同相分電圧調整用タップ巻線4、分路巻線5
および低圧巻線6とがアシ、タップ巻線4には単相用タ
ップ切換器7が3台取付けである。直列変圧器2には直
角分電圧調整用タップ巻線8と励磁巻線9および安定巻
線10とからり、タップ巻線8には単相用タップ切換器
11が3台取付けである。
One of the conventional examples of voltage phase adjustment autotransformers is shown in Figure 7.6! 1. It consists of an auto main transformer 1 and a series transformer 2. Auto main transformer 1 has series winding 'ftt
M a , in-phase voltage adjustment tap winding 4, shunt winding 5
and a low voltage winding 6, and three single-phase tap changers 7 are attached to the tap winding 4. The series transformer 2 includes a quadrature voltage adjustment tap winding 8, an excitation winding 9, and a stabilizing winding 10, and the tap winding 8 has three single-phase tap changers 11 attached thereto.

このような構成において、同相分電圧調整はタップ切換
器7によって、直角分電圧調整はタップ切換器11によ
って、各々直接切換方式によって切換えているが、タッ
プ切換器7,11は機械的接点を有するものであるので
、前述の高速制御等には対応するととはできない。
In such a configuration, the in-phase voltage adjustment is performed by the tap changer 7, and the right-angle voltage adjustment is performed by the tap changer 11, each using a direct switching method, but the tap changers 7 and 11 have mechanical contacts. Therefore, it cannot be said that it is compatible with the above-mentioned high-speed control.

一方、サイリスタは半導体でおるため、その過電流耐量
特性と雷インパルス電圧などの異常電圧に対する耐絶縁
特性が、変圧器巻線に比べ非常に悪い。故に系統事故時
やサイリスタの誤動作時の過渡的な過電流や過電圧に対
しては十分に留意した構成とする必要がある。
On the other hand, since thyristors are made of semiconductor, their overcurrent withstand characteristics and insulation characteristics against abnormal voltages such as lightning impulse voltages are much worse than transformer windings. Therefore, it is necessary to design a structure that takes sufficient precautions against transient overcurrents and overvoltages in the event of a system failure or thyristor malfunction.

そのため第7図におけるタップ切換器7.11をサイリ
スタ方式に置き換える手段では、サイリスタに流れる電
流は中圧側線路電流でめシ、またタップ巻線が中圧線路
端に接続されているため発生電圧も大きくなシ、サイリ
スタの使用回数が非常に多くなると共に、サイリスタ誤
動作時の不具合現象、例えにサイリスタOFFによる欠
相問題がそのまま系統に発生し、その運用上の信頼性に
おいて問題がある。従って一般的には、このような直接
切換方式より、直列変圧器を使用する間接切換方式の方
が有利になることが多い。
Therefore, in the means of replacing the tap changer 7.11 in Fig. 7 with a thyristor system, the current flowing through the thyristor is the medium voltage side line current, and since the tap winding is connected to the medium voltage line end, the generated voltage is also Due to the large size, the number of times the thyristor is used becomes very large, and malfunctions when the thyristor malfunctions, for example, open phase problems due to the thyristor being turned off, occur in the system, which poses a problem in its operational reliability. Therefore, in general, an indirect switching method using a series transformer is often more advantageous than such a direct switching method.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みて、高速制御や連続切換が可能
となり、系統事故時の動態安定度が向上し、保守の簡素
化が計れ高頻度動作の可能な信頼性の高い電圧位相調整
単巻変圧器を得ることを目的とする。
In view of the above points, the present invention provides a highly reliable voltage phase adjustment unit that enables high-speed control and continuous switching, improves dynamic stability in the event of a system fault, simplifies maintenance, and enables high-frequency operation. The purpose is to obtain a winding transformer.

〔発明の概要〕[Summary of the invention]

本発明による電圧位相調整単巻変圧器はタップ巻線を直
角分電圧調整用の三角結線のものと、同相分電圧調整用
の星形結線のものとで構成し、それらの接続は2組のサ
イリスタを互に逆並列接続したサイリスタ群を介して行
ない、直角分電圧調整成分と同相分電圧調整成分のベク
トル和電圧が1台の直列変圧器の励磁巻線に加かるよう
にしたことを特徴とするものでおる。
The voltage phase adjusting autotransformer according to the present invention has tap windings consisting of a triangular connection for quadrature voltage adjustment and a star connection for in-phase voltage adjustment, and these connections are made in two sets. This is achieved through a group of thyristors connected in anti-parallel to each other, so that the vector sum voltage of the quadrature voltage adjustment component and the in-phase voltage adjustment component is applied to the excitation winding of one series transformer. That's what I mean.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第1図から第6図に示す実施例について説
明する。第1図は第7図と同一部分は同符号をつけて7
りJ)、その構成における大きな相違紘調整変圧器12
を追加し、タップ切換器をサイリスタに変更したことで
ある。
The present invention will be described below with reference to embodiments shown in FIGS. 1 to 6. In Figure 1, the same parts as in Figure 7 are designated with the same reference numerals as 7.
J), large differences in its configuration
and changed the tap changer to a thyristor.

単巻主変圧器lには星形結線された直列巻線3と分路巻
線5および三角結線の低圧巻線6が主変圧器用鉄心(図
示しない)に巻装されている。
The automain transformer l has a star-connected series winding 3, a shunt winding 5, and a triangular-connected low-voltage winding 6 wound around a main transformer core (not shown).

直列変圧器2には前記直列巻線3と分路巻線5の接続点
に接続されたもう1つの直列巻線13と、その中性点n
が接地された星形結線の励磁巻線9および安定巻線10
が直列変圧器用鉄心(図示しない)に巻装されている。
The series transformer 2 has another series winding 13 connected to the connection point between the series winding 3 and the shunt winding 5, and its neutral point n.
The excitation winding 9 and the stabilizing winding 10 are connected in a star shape and are grounded.
is wound around a series transformer core (not shown).

調整変圧器12には低圧巻線6と並列接続された調整巻
線14と直角分電圧調整用タップ巻線15と同相分電圧
調整用タップ巻線16が、調整変圧器用鉄心(図示しな
い)に巻装され、両タップ巻線15゜16は、2組のサ
イリスタを互に逆並列接続した直角分電圧調整用サイリ
スタ群17と同相分電圧調整用サイリスタ群18により
各々接続されるようにしである。そして直角分電圧調整
用サイリスタ群17は三角結線され、同相分電圧調整用
サイリスタ群18は自相と同相成分の電圧を有しない直
角分電圧調整用サイリスタ群17の相の接続点(xI 
+ V+ + )t)に各々一端を接続し、他の一端を
励磁巻線9の線路端子(Xz r Yt + 1)2)
に各々接続する。
In the regulating transformer 12, a regulating winding 14 connected in parallel with the low voltage winding 6, a quadrature voltage regulating tap winding 15, and an in-phase voltage regulating tap winding 16 are connected to a regulating transformer iron core (not shown). Both tap windings 15 and 16 are connected by a right-angle voltage adjusting thyristor group 17 and an in-phase voltage adjusting thyristor group 18, each of which has two sets of thyristors connected in antiparallel to each other. . The thyristor group 17 for quadrature voltage adjustment is triangularly connected, and the thyristor group 18 for in-phase voltage adjustment is connected to the phase connection point (xI
+ V+ + ) t), and the other end is connected to the line terminal (Xz r Yt + 1) 2) of the excitation winding 9.
Connect to each.

第2図はタップコイル19,20.21  とサイリス
タ群22の接続とを示したものである。サイリスタ群2
2は2組のサイリスタを互に逆並列に接続して、信号パ
ルスによQ両者をそれぞれ一方向に導通させ、また信号
を停止することによ)両者が不導通となるように構成し
である。タップコイル19,20゜21の誘起電圧比が
113:9となるようにしておき次表に示すように各サ
イリスタ■〜[相]のON。
FIG. 2 shows the connections between the tap coils 19, 20, 21 and the thyristor group 22. Thyristor group 2
2 is configured so that two sets of thyristors are connected in antiparallel to each other, and both Q and Q are made conductive in one direction by a signal pulse, and both are made non-conductive by stopping the signal. be. Set the induced voltage ratio of the tap coils 19 and 20°21 to 113:9, and turn on each thyristor (1) to [phase] as shown in the following table.

OFF制御により、サイリスタ群22の端子に、1に発
生する電圧Eを+13e〜0〜−13e  のタップ点
数27点に調整するものである。
By OFF control, the voltage E generated at the terminal of the thyristor group 22 is adjusted to 27 tap points from +13e to 0 to -13e.

(以下余白) タップコイル19.20の2個でサイリスタ■〜■の場
合には端子に、lに発生する電圧Eを+4e〜0〜−4
eのタップ点数9点に調整できる。
(Left below) If the two tap coils 19 and 20 are thyristors ■ to ■, the voltage E generated at the terminal and l should be +4e to 0 to -4.
The number of tap points for e can be adjusted to 9 points.

この構成作用は周知のところであり、タップコイル数が
少なくても、タップ点数が多くとれる利点がらる。
This structural effect is well known, and it has the advantage that even if the number of tap coils is small, the number of taps can be increased.

第1図は直角分電圧調整用のタップ巻線15とサイリス
タ群17にはタップコイル数2個を、同相分電圧調整用
のタップ巻線16とサイリスタ群18にはタップコイル
数3個を各々適用した場合を示している。
In Figure 1, two tap coils are used for the tap winding 15 and thyristor group 17 for quadrature voltage adjustment, and three tap coils are used for the tap winding 16 and thyristor group 18 for in-phase voltage adjustment. The case where it is applied is shown.

次に本発明の作用効果について説明する。第3図から第
5図は電圧と位相を調整できることを説明する誘起電圧
のベクトル図でア勺、第1図より必要な部分のみをぬき
出し示したものである。
Next, the effects of the present invention will be explained. FIGS. 3 to 5 are vector diagrams of induced voltage to explain that the voltage and phase can be adjusted, and only the necessary portions are extracted from FIG.

まず第3図は同相分電圧調整用サイリスタ群18の発生
電圧が零でメジ、直角分電圧調整用サイリスタ群17の
発生電圧だけが生じ、その電圧で励磁巻線9を励磁し直
列変圧器直列巻線13には直角分電圧E1のみを発生し
ている状態を示す。
First, in FIG. 3, when the voltage generated by the in-phase voltage adjustment thyristor group 18 is zero, only the voltage generated by the quadrature voltage adjustment thyristor group 17 is generated, and this voltage excites the excitation winding 9 to connect the series transformer. A state in which only the quadrature voltage E1 is generated in the winding 13 is shown.

この場合の中圧側に発生する電圧Esけ、その大きさが
mで位相差θはtan−’ E’/Emとなる。但しh
は分路巻線の電圧とする。
In this case, the voltage Es generated on the intermediate voltage side has a magnitude of m and a phase difference θ of tan-'E'/Em. However, h
is the voltage of the shunt winding.

次に第4図は直角分電圧調整用サイリスタ群170発生
電圧が零であり、同相分電圧調整用サイリスタ群18の
発生゛電圧だけが生じ、その電圧で励磁巻線9を励磁し
、直列変圧器直列巻線13には同相分電圧Eyのみを発
生している状態を示す。
Next, in FIG. 4, the voltage generated by the thyristor group 170 for quadrature voltage adjustment is zero, and only the voltage generated by the thyristor group 18 for in-phase voltage adjustment is generated, which excites the excitation winding 9 and transforms the series transformer. A state in which only the in-phase voltage Ey is generated in the series winding 13 is shown.

この場合の中圧側に発生する電圧E8は、その大きさが
(Ev+Em)で位相差θは零である。
In this case, the voltage E8 generated on the intermediate voltage side has a magnitude of (Ev+Em) and a phase difference θ of zero.

第5図は直角分電圧調整用サイリスタ群17と同相分電
圧調整用サイリスタ群18の両方に発生電圧が生じ、そ
の合成電圧で励磁巻線9を励磁し、直列変圧器直列巻線
13には同相分N1圧Dvと直角分電圧用のベクトル和
である電圧Et−5を発生している状態を示す。
FIG. 5 shows that a voltage is generated in both the quadrature voltage adjustment thyristor group 17 and the in-phase voltage adjustment thyristor group 18, the combined voltage excites the excitation winding 9, and the series transformer series winding 13 This shows a state in which a voltage Et-5, which is a vector sum of the in-phase voltage N1 voltage Dv and the quadrature voltage component, is generated.

この場合の中圧側に発生する電圧Esはその大きさが 
(Ern+ Ev)” +Ei”で位相差θはtan−
’ El /(Em+Ev) となる。
In this case, the voltage Es generated on the medium voltage side has a magnitude of
(Ern+Ev)"+Ei" and the phase difference θ is tan-
'El/(Em+Ev).

このように、同相分電圧と直角分電圧を別々の直列変圧
器に印加するのではなく、1台の直列変圧器に印加する
方法であシ、サイリスタのON。
In this way, instead of applying the in-phase voltage and the quadrature voltage to separate series transformers, there is a method in which they are applied to one series transformer, and the thyristor is turned on.

OFF制御によりサイリスタ群17.18の端子k。Terminal k of thyristor group 17, 18 by OFF control.

1間の電圧Eの大きざと極性を調整し、直列変圧器直列
巻線13に発生する電圧Etの大きさと位相を変化させ
ることによシ、中圧側に発生する電圧E8の大きさと位
相差θを任意に調整することができる0 次に、サイリスタに流れる電流と印加電圧について説明
する。
By adjusting the magnitude and polarity of the voltage E between 1 and 1 and changing the magnitude and phase of the voltage Et generated in the series winding 13 of the series transformer, the magnitude and phase difference θ of the voltage E8 generated on the intermediate voltage side can be adjusted. 0 can be arbitrarily adjusted. Next, the current flowing through the thyristor and the applied voltage will be explained.

サイリスタの過電流耐量は、定常の負荷電流や過負荷電
流ではなく系統短絡時に発生する短絡電流によって決定
される場合が多いが、第1図に示す場合には直列変圧器
直列巻線13に流れる中圧線路側短絡電流が励磁巻線9
に変成されサイリスタ群17.18に流れる。サイリス
クに流れる短絡電流の大きさは直列巻線13と励磁巻線
9の巻数比に比例する。
The overcurrent capability of a thyristor is often determined by the short-circuit current that occurs when a system short-circuits, rather than by the steady load current or overload current. The short circuit current on the medium voltage line side is the excitation winding 9.
It is transformed into and flows to the thyristor groups 17 and 18. The magnitude of the short-circuit current flowing through the silisk is proportional to the turns ratio between the series winding 13 and the excitation winding 9.

一方、サイリスタの絶縁耐量は定常の誘起電圧ではなく
、線路端子に信インパルス電圧が印加された場合に、移
行してくる電圧によって決定される場合が多く、第1図
に示す場合には、直列変圧器直列巻線13から励磁巻線
9に移行してくる分と調整巻線14からタップ巻線15
.16に移行してくる分とがあるが、前者は励磁巻線9
の巻回数を小さくすることで、その値は小ざくでき、後
者は低圧回路なので、その電圧値が低いことになり、使
用されるサイリスタの直列個数を少なくできる。
On the other hand, the dielectric strength of a thyristor is often determined not by the steady induced voltage but by the voltage that shifts when a signal impulse voltage is applied to the line terminal. The portion transferred from the transformer series winding 13 to the excitation winding 9 and the portion transferred from the adjustment winding 14 to the tap winding 15
.. 16, but the former is the excitation winding 9
By reducing the number of turns of the circuit, its value can be reduced, and since the latter is a low-voltage circuit, its voltage value is low, and the number of thyristors used in series can be reduced.

励磁巻線9とタップ巻線15.16の巻回数を大きくす
ると移行電圧は大きくなるか通電電流は小さく々す、逆
に巻回数を少なくすると移行電圧は小さく、通電電流は
大きくなる。このような関係から、それらの巻回数を決
定する場合には、使用するサイリスタが最適となるよう
に選定できるという大きな利点がある。
Increasing the number of turns of the excitation winding 9 and the tap windings 15, 16 increases the transition voltage or decreases the conducting current; conversely, decreasing the number of turns decreases the transition voltage and increases the conducting current. Based on this relationship, when determining the number of turns, there is a great advantage that the thyristor to be used can be optimally selected.

又、サイリスタの誤動作ONによるタップコイル短絡が
万一発生したとしても、調整変圧器12の巻線インピー
ダンスを直接切換方式に比べ、比較的容易に大きくする
ことかで巻るので、横流を小さくでき、その横流によっ
てサイリスタの並列個数が決定される場合には、その分
だけサイリスタの使用個数が減る。
Furthermore, even if a short circuit occurs in the tap coil due to a malfunction of the thyristor, it is relatively easy to increase the winding impedance of the regulating transformer 12 compared to the direct switching method, so the cross current can be reduced. , when the number of parallel thyristors is determined by the cross current, the number of thyristors used is reduced by that amount.

このように通電電流と印加電圧が小ざくなれば使用され
るサイリスタの総個数が低減できその装置の小形化、低
価格化ができる。
If the applied current and applied voltage are reduced in this way, the total number of thyristors used can be reduced, and the device can be made smaller and lower in price.

そしてサイリスタの腺動作OFFにより励磁巻線9の開
放状態が万一発生したとしても直列巻線13は常に接続
されているので、直接切換方式のようにサイリスタのO
FFによる系統回路の一時開放という不具合現象の発生
はなくなる。
Even if the excitation winding 9 is opened due to the thyristor's gland operation being turned off, the series winding 13 is always connected, so the thyristor's O
The problem of temporary opening of the system circuit due to the FF will no longer occur.

ところで第1図に示すようなサイリスタ制御式電圧位相
調整単巻変圧器の適用は大きな電力系統の連系用で必シ
、その電圧が高く単器容量も非常に大きいので、その据
付場所までの輸送方法が問題となることでらる。貨車わ
るいはトレーラ輸送が必要となる場合には単相器単位で
製作し輸送制限に対処している場合が多いのは周知のと
ζろでらる。このような観点から第1図の構成をみると
次のことがわかる。
By the way, the application of a thyristor-controlled voltage phase-adjusting autotransformer as shown in Figure 1 is essential for interconnection of large power systems, and since its voltage is high and the unit capacity is very large, it is difficult to get to the installation location. This is due to the transportation method being an issue. It is well known that when transportation by freight car or trailer is required, single-phase units are often manufactured to overcome transportation restrictions. If we look at the configuration of FIG. 1 from this perspective, we can see the following.

単巻主変圧器1は直列巻線3、分路巻線5、低圧巻線6
だけで、複雑なタップ巻線やタップ切換装置がないので
、単相器3台構成にすればより大きな容量まで適用でき
る。
The automain transformer 1 has a series winding 3, a shunt winding 5, and a low voltage winding 6.
Since there is no complicated tap winding or tap switching device, it can be applied to a larger capacity by configuring three single-phase generators.

そり、て部列変圧器2と脚整変圧診12は分割されてい
るので輸送は容易でらり、単巻主変圧器1を含む各変圧
器間の接続IJ−トも必要最小限の3本ですむ利点があ
る。
Since the sled, lever row transformer 2 and leg adjustment transformer 12 are separated, transportation is easy, and the number of connections between each transformer, including the single-winding main transformer 1, is reduced to the minimum number of three. There is an advantage to using books.

ざらに、サイリスタの点検や万一、故障した場合などに
は単巻生変EF:、器1だけによる運転も可能でらる。
In addition, when inspecting the thyristor or in the unlikely event that it breaks down, it is also possible to operate with only the single-winding modified EF: 1.

容量が比較的小さく、あるいは据付場所が海上輸送で可
能な場合には第6図に示すようにタップ巻線15.16
をも単巻主変圧器用鉄心に巻装し、調整巻線14すなわ
ち調整変圧器12を省略することが可能でわる。
If the capacity is relatively small or the installation location allows for sea transportation, tap winding 15.16 as shown in Figure 6.
It is also possible to wind the coil around the single-turn main transformer core and omit the adjustment winding 14, that is, the adjustment transformer 12.

第2図に示すようなタップコイルとサイリスタ群の構成
については、そのタップコイルの誘起電圧比をl:2:
4+8にする方法も周知のととるでロシ、そのようなコ
イル構成にしても適用できるO 伺、サイリスタ方式にはいままで記述してきたように点
弧角制御無しのタップ切換式のほかに、点弧角制御を行
なう点弧角制御式がちる。
For the configuration of the tap coil and thyristor group as shown in Figure 2, the induced voltage ratio of the tap coil is l:2:
The thyristor system is also well known and can be applied to such a coil configuration.In addition to the tap-switching type without firing angle control as described above, the thyristor system also includes a tap switching type without firing angle control. There is a firing angle control type that controls the firing angle.

点弧角制御式は第2図における3個のタップコイル19
,20.21  に相当する1個のタップコイルにして
、サイリスタは■〜■のような4セツトからなるサイリ
スタ群の端子に、7間の電圧Eの大きさと極性をサイリ
スタの点弧角制御で調整するものである。
The firing angle control formula is the three tap coils 19 in Figure 2.
, 20.21, and the thyristor is connected to the terminals of a thyristor group consisting of four sets such as It is something to be adjusted.

この方式はタップ切換式に比ベサイリスタ制御が複雑と
なシ、歪波形による高調波の発生もあるが、タップ巻線
の構成が単純化し、サイリスタ群との接続方法が簡単に
なる利点がある。これにも本発明を全く同様に適用でき
ることは明白である。
This method requires complicated thyristor control compared to the tap switching type, and harmonics may be generated due to distorted waveforms, but it has the advantage of simplifying the configuration of the tap winding and simplifying the connection method with the thyristor group. It is clear that the present invention can be applied to this case in exactly the same way.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、従来の電圧位相調整単巻
変圧器の作用を有すると共に、電圧と位相調整をサイリ
スタ制御により行なうことができるので高速制御や連続
切換が可能となり系統事故時の動態安定度向上に役立ち
、かつ、無接点化による保守の簡素化および高頻度動作
も可能となり信頼性向上になる。
As described above, according to the present invention, it has the function of a conventional voltage phase adjustment autotransformer, and voltage and phase adjustment can be performed by thyristor control, so high-speed control and continuous switching are possible, and in the event of a system fault. This helps improve dynamic stability, and the non-contact design simplifies maintenance and enables high-frequency operation, improving reliability.

そしてサイリスタの使用個数も低減でき、輸送も便利で
らる新しい型のサイリスタ制御式電圧位相調整単巻変圧
器を提供できる。
Furthermore, it is possible to provide a new type of thyristor-controlled voltage phase-adjustable autotransformer that can reduce the number of thyristors used and is convenient to transport.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるサイリスタ制御式電圧位相調整単
巻変圧器の一実施例を示す結線図、第2図は周知である
タップコイルとサイリスタ群の構成を示す結線図、第3
図、第4図、第5図は本発明による電圧位相調整の原理
を示す電圧ベクトル図、第6図は本発明による他の一実
施例を示す結線図、第7図は従来の電圧位相調整変圧器
の結線図でらる。 1・・・単巻主変圧器 2・・・直列変圧器 12・・・調整変圧器 3・・・主変圧器直列巻線 5・・・分路巻線 6・・・低圧巻線 4.16・・・同相分電圧調整用タップ巻線8.15・
・・直角分電圧調整用タップ巻線7.11・・・機械的
接点を有するタップ切換器9・・・励磁巻線 10・・・安定巻線 13・・・直列変圧器直列巻線 14・・・調整巻線 17 、18・・・直角分、同相分電圧調整用サイリス
タ群19.20.21・・・タップコイル 22・・・サイリスタ群 代理人 弁理士 則 近 憲 佑 代理人 弁理士 三 俣 弘 文 第1図 第2図
FIG. 1 is a wiring diagram showing an embodiment of the thyristor-controlled voltage phase adjusting autotransformer according to the present invention, FIG. 2 is a wiring diagram showing the configuration of a well-known tap coil and thyristor group, and FIG.
4 and 5 are voltage vector diagrams showing the principle of voltage phase adjustment according to the present invention, FIG. 6 is a wiring diagram showing another embodiment according to the present invention, and FIG. 7 is a conventional voltage phase adjustment method. You can see the wiring diagram of the transformer. 1...Automatic main transformer 2...Series transformer 12...Adjusting transformer 3...Main transformer series winding 5...Shunt winding 6...Low voltage winding 4. 16...Tap winding for in-phase voltage adjustment 8.15.
... Tap winding for quadrature voltage adjustment 7.11 ... Tap changer 9 with mechanical contacts ... Excitation winding 10 ... Stability winding 13 ... Series transformer series winding 14 ... ...Adjustment windings 17, 18...Thyristor group for right-angle and in-phase voltage adjustment 19.20.21...Tap coil 22...Thyristor group Agent Patent attorney Noriyuki Chika Agent Patent attorney 3 Written by Hiroshi Mata Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)単巻主変圧器と直列変圧器及び調整変圧器からな
る電圧位相調整単巻変圧器において、単巻主変圧器は星
形結線された直列巻線と分路巻線、及び三角結線の低圧
巻線を備え、直列変圧器は単巻主変圧器の直列巻線と分
路巻線の接続点に接続されたもう一つの直列巻線を星形
結線の励磁巻線及び安定巻線を備え、調整変圧器は単巻
主変圧器の低圧巻線と並列接続された三角結線の調整巻
線と三角結線、星形結線とからなるタップ巻線を備えて
おり前記星形結線のタップ巻線は自相と同相成分の電圧
を有しない前記三角結線のタップ巻線の二つの相の接続
点に各々一端を接続し、他の一端を前記励磁巻線に接続
した構成とし、前記三角結線、星形結線のタップ巻線に
は2組のサイリスタを互いに逆並列接続したサイリスタ
群により接続したことを特徴とする電圧位相調整単巻変
圧器。
(1) In a voltage phase adjustment autotransformer consisting of a main autotransformer, a series transformer, and a regulating transformer, the main autotransformer has a series winding, a shunt winding, and a triangular connection. The series transformer is equipped with a low voltage winding, and the other series winding is connected to the connection point of the series winding and the shunt winding of the automain transformer, and the excitation winding and stabilizing winding are connected in a star configuration. The regulating transformer is equipped with a tap winding consisting of a triangularly connected regulating winding connected in parallel with the low-voltage winding of the automain transformer, a triangularly connected wire, and a star-shaped wire. The winding has one end connected to the connection point of the two phases of the triangularly connected tap winding which does not have a voltage of an in-phase component with its own phase, and the other end connected to the excitation winding. A voltage phase adjustment autotransformer characterized in that a star-connected tap winding is connected to a thyristor group in which two sets of thyristors are connected in antiparallel to each other.
(2)単巻主変圧器と直列変圧器とからなる電圧位相調
整器において、単巻主変圧器は星形結線された直列巻線
と分路巻線、及び三角結線及び三角結線、星形結線から
なるタップ巻線を備え、直列変圧器は単巻主変圧器の直
列巻線と分路巻線の接続点に接続されたもう一つの直列
巻線と星形結線の励磁巻線及び安定巻線を備えた構成と
したことを特徴とした特許請求の範囲第1項記載の電圧
位相調整単巻変圧器。
(2) In a voltage phase regulator consisting of an auto-wound main transformer and a series transformer, the auto-wound main transformer has a star-connected series winding and a shunt winding, a triangular connection, a triangular connection, and a star-shaped The series transformer is equipped with a tapped winding consisting of a wire connection, another series winding connected to the connection point of the series winding and the shunt winding of the automain transformer, and an excitation winding of star connection and a stabilizing winding. The voltage phase adjusting autotransformer according to claim 1, characterized in that the voltage phase adjusting autotransformer is configured to include a winding.
JP60183044A 1985-08-22 1985-08-22 Single winding transformer for adjusting voltage/phase Pending JPS6244818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60183044A JPS6244818A (en) 1985-08-22 1985-08-22 Single winding transformer for adjusting voltage/phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183044A JPS6244818A (en) 1985-08-22 1985-08-22 Single winding transformer for adjusting voltage/phase

Publications (1)

Publication Number Publication Date
JPS6244818A true JPS6244818A (en) 1987-02-26

Family

ID=16128758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183044A Pending JPS6244818A (en) 1985-08-22 1985-08-22 Single winding transformer for adjusting voltage/phase

Country Status (1)

Country Link
JP (1) JPS6244818A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043571A (en) * 1988-08-01 1991-08-27 Minolta Camera Kabushiki Kaisha CCD photosensor and its application to a spectrophotometer
JPH05261426A (en) * 1992-03-17 1993-10-12 Nippon Steel Corp Descaling system and descaling nozzle used therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043571A (en) * 1988-08-01 1991-08-27 Minolta Camera Kabushiki Kaisha CCD photosensor and its application to a spectrophotometer
JPH05261426A (en) * 1992-03-17 1993-10-12 Nippon Steel Corp Descaling system and descaling nozzle used therefor

Similar Documents

Publication Publication Date Title
WO1994023354A1 (en) Dynamic phase angle regulation system
JPH0782402B2 (en) Phase shifter
JP5118397B2 (en) Current limiting device
JP3598126B2 (en) Three-phase load voltage phase adjustment transformer
US6011381A (en) Three-phase auto transformer with two tap changers for ratio and phase-angle control
JPS6244818A (en) Single winding transformer for adjusting voltage/phase
CN112821403B (en) Single-phase or three-phase electromagnetic series type transmission line tidal current control topological circuit
JPS62182815A (en) Thyristor control type voltage phase controlled auto-transformer
JPS6244821A (en) Single winding transformer for adjusting voltage/phase
JPS6244820A (en) Single winding transformer for adjusting voltage/phase
JPS62260312A (en) Voltage phase-regulation autotransformer
JPS63106021A (en) Voltage phase regulating autotransformer
JPS6244819A (en) Single winding transformer for adjusting voltage/phase
JPS6244816A (en) Transformer for adjusting voltage/phase
JPS6246314A (en) Voltage phase regulating transformer
JPS62182813A (en) Thyristor control type voltage phase controlled autotransformer
JPS6246316A (en) Voltage phase regulating transformer
JPS6246315A (en) Voltage phase regulating transformer
JPS62182814A (en) Thyristor control type voltage phase controlled transformer
JPS62184513A (en) Voltage phase regulating device of thyrister control type
JPS62236012A (en) Thyristor control type voltage phase regulator
JPS62184512A (en) Voltage phase regulating device of thyrister control type
JPS62236013A (en) Thyristor control type voltage phase regulator
CN113541145B (en) 110kV and above voltage class three-phase electromagnetic series type transmission line current control topological circuit
CN215342259U (en) Grounding transformer with secondary winding