JPH044723B2 - - Google Patents

Info

Publication number
JPH044723B2
JPH044723B2 JP60044558A JP4455885A JPH044723B2 JP H044723 B2 JPH044723 B2 JP H044723B2 JP 60044558 A JP60044558 A JP 60044558A JP 4455885 A JP4455885 A JP 4455885A JP H044723 B2 JPH044723 B2 JP H044723B2
Authority
JP
Japan
Prior art keywords
bismuth oxide
centered cubic
oxide
nonlinear resistor
voltage nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60044558A
Other languages
Japanese (ja)
Other versions
JPS61204902A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60044558A priority Critical patent/JPS61204902A/en
Publication of JPS61204902A publication Critical patent/JPS61204902A/en
Publication of JPH044723B2 publication Critical patent/JPH044723B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、酸化亜鉛避雷器に使用する電圧非
直線抵抗体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a voltage nonlinear resistor used in a zinc oxide lightning arrester.

〔従来の技術〕[Conventional technology]

従来、避雷器等に使用される酸化亜鉛電圧非直
線抵抗体には、その具備すべき能力として電圧非
直線性にすぐれ、サージ吸収能力が大きく、かつ
課電劣化を起しにくく長寿命である等が要求され
てきている。
Conventionally, zinc oxide voltage nonlinear resistors used in lightning arresters, etc., have the following characteristics: excellent voltage nonlinearity, large surge absorption capacity, and resistance to deterioration caused by electrical charge and long life. is being demanded.

この内、サージ吸収能力を制限するものとして
素子側面部における外部閃絡がある。素子端面で
の微小放電をトリガとする場合が多く、このため
通常第2a図に示すような電極1を持つ電圧非直
線抵抗体本体2の側面部に高抵抗層7を形成して
これを防止する方法がとられている。高抵抗層の
形成には、従来大きく分けて2つの方法が知られ
ている。1つの方法は、SiO2,Sb2O3,Bi2O3
粉末を有機バインダと混合してペースト状とし成
形体に塗布、同時に焼結して、高抵抗層である電
圧非直線抵抗体2を形成するものである。他の方
法は、一担焼成した電圧非直線抵抗体1の側面に
低融性ガラスフリツトを有機バインダと共にペー
スト状として塗布し、これを加熱してガラス化し
て高抵抗層とするものである。
Among these, external flash shorting at the side surface of the element limits the surge absorption ability. In many cases, the trigger is a micro discharge at the end face of the element, and therefore, a high resistance layer 7 is usually formed on the side surface of the voltage nonlinear resistor main body 2 having the electrode 1 as shown in Fig. 2a to prevent this. A method is being taken to do so. Conventionally, there are two known methods for forming a high-resistance layer. One method is to mix powders of SiO 2 , Sb 2 O 3 , and Bi 2 O 3 with an organic binder to form a paste, apply it to a molded body, and simultaneously sinter it to form a voltage nonlinear resistor, which is a high-resistance layer. 2. Another method is to apply a low-melting glass frit together with an organic binder in the form of a paste to the side surface of the voltage nonlinear resistor 1 that has been fired once, and then heat it to vitrify it to form a high-resistance layer.

一方、電圧非直線抵抗体の微細構造を第2b図
に模式的に示すが、酸化亜鉛粒子4、スピネル粒
子5、それらの空隙をうめるように粒界層に
Bi2O3(酸化ビスマス)8が存在する。この粒界
層に存在するBi2O3の結晶相が電圧非直線性、寿
命特性に強く影響することが近年明らかになつて
きた。すなわち寿命特性で言えば8の酸化ビスマ
スの結晶相の違いが、一定電圧を印加した場合の
電流、いわゆるもれ電流の変化率に大きく影響す
るのである。第3図に寿命特性の1例すなわち課
電率80%、周囲温度130℃の場合のもれ電流比
(初期電流で正規化)の経時変化を示す。
On the other hand, the fine structure of the voltage nonlinear resistor is schematically shown in Fig. 2b. Zinc oxide particles 4, spinel particles 5,
Bi 2 O 3 (bismuth oxide) 8 is present. In recent years, it has become clear that the Bi 2 O 3 crystal phase present in this grain boundary layer has a strong influence on voltage nonlinearity and lifetime characteristics. In other words, in terms of lifetime characteristics, the difference in the crystal phase of bismuth oxide in No. 8 greatly affects the rate of change in current when a constant voltage is applied, so-called leakage current. Figure 3 shows an example of the life characteristics, that is, the change over time in the leakage current ratio (normalized by the initial current) when the charging rate is 80% and the ambient temperature is 130°C.

図中曲線Aは体心立方晶の酸化ビスマスが3
%、曲線Bは同じく7%、曲線Cは同じく60%、
曲線Dは同じく95%それぞれ含有している場合で
ある。
Curve A in the figure shows body-centered cubic bismuth oxide with 3
%, curve B is the same 7%, curve C is the same 60%,
Curve D is the case where the content is 95%.

一方、体心立方晶の酸化ビスマスを電圧非直線
抵抗体に形成するには、添加物の配合、焼成雰囲
気等の焼成条件、一担焼成した抵抗体を再加熱す
る方法が、配合を含めた製造方法を規定した場
合、厳密にその体心立方晶の生成割合を調整する
のに有効であることがすでに示されている(特開
昭60−4202号公報)。すなわち、第4図に示すよ
うな再加熱温度と体心立方晶酸化ビスマスへの転
化率との関係がみられる。よつて、第3図、第4
図からもれ電流比の小さい再加熱温度は500−
600゜付近に限定されてくる。
On the other hand, in order to form body-centered cubic bismuth oxide into a voltage nonlinear resistor, the combination of additives, firing conditions such as the firing atmosphere, and the method of reheating the once-fired resistor are important, including the composition. It has already been shown that it is effective to strictly control the proportion of body-centered cubic crystals produced by specifying the manufacturing method (Japanese Patent Application Laid-open No. 4202/1983). That is, there is a relationship between the reheating temperature and the conversion rate to body-centered cubic bismuth oxide as shown in FIG. Therefore, Figures 3 and 4
From the figure, the reheating temperature with a small leakage current ratio is 500−
It is limited to around 600°.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、側面高抵抗層の形成と酸化ビスマスの体
心立方晶への転化率の制御は、別個の工程で行わ
れているのが通常であるが、工数の増加の点から
並びに歩留りの点からみて問題があつた。
Conventionally, the formation of the side high-resistance layer and the control of the conversion rate of bismuth oxide to body-centered cubic crystals have been carried out in separate processes, but this has been done from the viewpoint of increased man-hours and yield. I saw a problem.

この発明は、上記のような工程の繁雑化をさけ
工程を減少させ、歩留りを向上させることを目的
とするものである。
The object of the present invention is to avoid the above-mentioned process complexity, reduce the number of steps, and improve the yield.

〔問題点を解決するための手段〕[Means for solving problems]

すなわちこの発明は、酸化亜鉛を主成分とし少
なくとも酸化ビスマスを含む原料を焼成して電圧
非直線抵抗体素子を造り、酸化ビスマスの所定量
を体心立方晶に転化することから本質的になる電
圧非直線抵抗体の製造方法において、酸化ビスマ
スの所定量を体心立方晶に転化する転化温度域と
同じ温度範囲の焼結温度域をもち、且つ電圧非直
線抵抗体の膨張係数と±10%以内で一致する膨張
係数を有するガラスフリツトを前記素子の側面に
施し、加熱により側面高抵抗層の形成と酸化ビス
マスの体心立方晶への転化とを同時に行なう電圧
非直線抵抗体の製造方法に存する。
That is, this invention produces a voltage nonlinear resistor element by firing a raw material containing zinc oxide as a main component and at least bismuth oxide, and converts a predetermined amount of bismuth oxide into a body-centered cubic crystal, thereby producing a voltage that essentially becomes In the method for manufacturing a nonlinear resistor, the sintering temperature range is the same as the conversion temperature range for converting a predetermined amount of bismuth oxide into a body-centered cubic crystal, and the expansion coefficient is ±10% of the voltage nonlinear resistor. A method of manufacturing a voltage nonlinear resistor comprises applying a glass frit having an expansion coefficient that matches within a range of 1 to 3 on the side surface of the element, and simultaneously forming a lateral high resistance layer and converting bismuth oxide into a body-centered cubic crystal by heating. .

〔作用〕[Effect]

この発明は電圧非直線抵抗体の寿命を安定させ
るのに必要な酸化ビスマスの体心立方晶への転化
率を得るための温度と同じ温度範囲のガラスフリ
ツトを使用することにより、電圧非直線抵抗体の
製造に対し、側面高抵抗層の形成と、酸化ビスマ
スの結晶相の制御、すなわち体心立方晶への転心
率の調整とを一回の加熱工程で行なうとするもの
である。
This invention is capable of forming a voltage nonlinear resistor by using a glass frit in the same temperature range as the temperature to obtain the conversion rate of bismuth oxide to body-centered cubic crystal necessary to stabilize the life of the voltage nonlinear resistor. For the production of , the formation of the side high resistance layer and the control of the crystal phase of bismuth oxide, that is, the adjustment of the centroid to body-centered cubic crystal, are performed in a single heating step.

この発明で使用するガラスフリツトは低融性酸
化物ガラスフリツト例えばPbO−SiO2−B2O3
ZnO−SiO2−B2O3系などである。これらは作業
温度の点だけでなく、その膨張係数が電圧非直線
抵抗体の焼結体の膨張係数に近い(±10%以内)
ため好適に使用できる。膨張係数が±10%を越え
ると、ガラスの付着が困難になつたり、素子が変
形するために好ましくない。
The glass frit used in this invention is a low melting oxide glass frit such as PbO- SiO2 - B2O3 ,
Examples include ZnO- SiO2 - B2O3 system. These are not only effective in terms of working temperature, but also in that their expansion coefficient is close to that of the sintered body of the voltage nonlinear resistor (within ±10%).
Therefore, it can be used suitably. If the expansion coefficient exceeds ±10%, it is not preferable because adhesion of glass becomes difficult or the element becomes deformed.

〔実施例〕〔Example〕

以下実施例に基づきこの発明を説明する。 The present invention will be explained below based on Examples.

実施例 1 酸化亜鉛を主成分とし、添加物としてそれぞれ
0.5モル%の酸化クロム、酸化ニツケル、酸化コ
バルト、酸化マンガン、酸化珪素、酸化ビスマ
ス、および1.0モル%の酸化アンチモンを加えた
ものを十分混合し、造粒後成形する。1200℃で焼
成した50〓×25t程度の大きさの素子すなわち第1
a図中2の電圧非直線抵抗体本体に、線膨張係数
が焼成体線膨張係数(約60×10-71/℃)の±10%
以内で、作業温度域が550℃付近のガラスフリツ
トを選び、この粉末をニトロセルロースなどのバ
インダを含む溶剤と混合塗布し、これを加熱しガ
ラス層すなわち第1a図中3の低融点ガラスフリ
ツトの側面高抵抗層の形成と酸化ビスマスの結晶
の転化を同時に行つた。加熱時間は1〜2時間程
度とし、十分酸素の供給し得る状況で行うことが
肝要である。
Example 1 Zinc oxide is the main component, and each additive is
A mixture containing 0.5 mol% of chromium oxide, nickel oxide, cobalt oxide, manganese oxide, silicon oxide, bismuth oxide, and 1.0 mol% of antimony oxide is thoroughly mixed, granulated, and then molded. The first element was fired at 1200°C and had a size of approximately 50 mm x 25 tons .
The linear expansion coefficient of the voltage nonlinear resistor body shown in 2 in the figure a is ±10% of the linear expansion coefficient of the fired body (approximately 60×10 -7 1/℃).
Select a glass frit whose working temperature range is around 550℃, apply this powder mixed with a solvent containing a binder such as nitrocellulose, and heat it to increase the side height of the glass layer, that is, the low melting point glass frit shown in 3 in Figure 1a. The formation of a resistive layer and the conversion of bismuth oxide crystals were performed simultaneously. It is important to set the heating time to about 1 to 2 hours and to carry out the heating under conditions where sufficient oxygen can be supplied.

次に得られた電圧非直線抵抗体のX線回折によ
る分析結果を第5図に示すが、このようにβ形
(正方晶形)の酸化ビスマスとγ形(体心立方晶
形)の酸化ビスマスの混晶となることがあきらか
になつた。得られた電圧非直線抵抗体の微細構造
を第1b図に示す。実際に寿命試験を行つたとこ
ろ、第3図曲線Aに示すような安定した電流の経
時変化を示した。一方側面高抵抗層の効果を見る
ため、4×10μs、100KAのサージ電流を2回通
電したところ、十分に耐えることが出来、閃絡等
は見られなかつた。
Next, the analysis results of the obtained voltage nonlinear resistor by X-ray diffraction are shown in Figure 5, and as shown in Figure 5, it is clear that the β-form (tetragonal) bismuth oxide and the γ-form (body-centered cubic) bismuth oxide. It became clear that it was a mixed crystal. The microstructure of the obtained voltage nonlinear resistor is shown in FIG. 1b. When a life test was actually conducted, a stable change in current over time was shown as shown by curve A in FIG. 3. On the other hand, in order to see the effect of the side high resistance layer, we applied a surge current of 4 x 10 μs and 100 KA twice, and it was able to withstand sufficiently, with no flashovers or the like.

実施例 2 実施例1は交流通電時の例であるが、直流通電
に対して安定な電流の経時変化を示す場合は、体
心立方晶の転化割合が実施例とは必ずしも一致し
ない。1例として実施例1とわずかに異なる配合
すなわちそれぞれ0.5モル%の酸化ビスマス、酸
化クロム、酸化マンガン、酸化珪素と、1.0モル
%の酸化アンチモン、酸化コバルト、及びホウ酸
0.04モル%を含む場合を示す。同様にこれらの粉
末を十分混合し、造粒して成形後1200℃で焼成し
た。これを予備的に加熱処理し、その後寿命特性
(第6図)と、体心立方晶の転化率との関連を求
めた(第7図)。第6図は課電率80%、周囲温度
100℃での直流もれ電流の経時変化を示す図であ
り、それぞれ曲線Eは熱処理なし、曲線Fは600
℃での熱処理、曲線Gは650℃での熱処理、曲線
Hは700℃での熱処理の場合である。第7図は2
時間加熱した場合のアニール温度(℃)とX線回
折より求めた体心立方晶酸化ビスマスへの転化率
との関係を示す図である。この場合には600℃以
上の加熱処理条件で80%以上の体心立方晶への転
化率が望ましいことが分る。この場合には、この
条件に適した作業温度域が650℃程度のガラスフ
リツトを使用する。素子の膨張係数はこの場合実
施例1とほとんどかわらないので作業温度の100
℃程度高いものが必要となる。第5図と同様な直
流に対する寿命特性が得られ、耐量に対しても十
分なものであることが確認された。
Example 2 Example 1 is an example when AC current is applied, but when a stable current change over time is shown with respect to DC current, the conversion ratio of the body-centered cubic crystal does not necessarily match that of the example. As an example, a slightly different formulation from Example 1, i.e. 0.5 mol% each of bismuth oxide, chromium oxide, manganese oxide, silicon oxide, and 1.0 mol% of antimony oxide, cobalt oxide, and boric acid.
The case containing 0.04 mol% is shown. Similarly, these powders were thoroughly mixed, granulated, molded, and then fired at 1200°C. This was preliminarily heat treated, and then the relationship between the lifetime characteristics (Figure 6) and the conversion rate of body-centered cubic crystals was determined (Figure 7). Figure 6 shows charging rate of 80% and ambient temperature.
It is a diagram showing the change in DC leakage current over time at 100°C, where curve E is for no heat treatment and curve F is for 600°C.
Curve G is for heat treatment at 650°C, and curve H is for heat treatment at 700°C. Figure 7 is 2
FIG. 3 is a diagram showing the relationship between the annealing temperature (° C.) and the conversion rate to body-centered cubic bismuth oxide determined by X-ray diffraction when heated for a certain period of time. In this case, it can be seen that a conversion rate to body-centered cubic crystals of 80% or more is desirable under heat treatment conditions of 600° C. or higher. In this case, use a glass frit whose working temperature range is approximately 650°C, which is suitable for these conditions. In this case, the expansion coefficient of the element is almost the same as in Example 1, so it is
It is necessary to use something as high as ℃. It was confirmed that life characteristics against direct current similar to those shown in FIG. 5 were obtained, and that the durability was sufficient.

なお、この方法ではガラス粉末を有機バインダ
で溶かしたものを塗布し加熱後ガラス化する方法
を示したが、ガラスの構成法はこれに限るもので
はなく、望ましくない作業工程数の増加を伴う点
を除けば必要な体心立方晶の形成に必要な温度域
でガラス化なり固着化し高抵抗層を形成するもの
であればよい。方法としては粉末をバインダと混
ぜテープ状にしたものを巻きつける方法もあろう
し、溶融したガラス浴に浸漬せしめる方法でも良
い。
Although this method shows a method in which glass powder is melted with an organic binder and vitrified after being heated, the method of constructing the glass is not limited to this, and there is the point that it involves an undesirable increase in the number of work steps. Other than that, any material that vitrifies or solidifies to form a high-resistance layer in the temperature range necessary to form the necessary body-centered cubic crystals may be used. Possible methods include mixing powder with a binder and wrapping it in a tape shape, or immersing it in a molten glass bath.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、側面高抵抗層
の形成と酸化ビスマスの体心立方晶の転化率を調
整するのを同時に行うため工数の低減、歩留り向
上に大きく寄与する。
As described above, according to the present invention, the formation of the side high resistance layer and the adjustment of the conversion rate of the body-centered cubic crystal of bismuth oxide are performed simultaneously, which greatly contributes to reducing the number of steps and improving the yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1a図はこの発明による電圧非直線抵抗体の
断面図、第1b図はこの発明による電圧非直線抵
抗体の抵抗体本体の微細構造の模式図、第2a図
は従来の電圧非直線抵抗体の断面図、第2b図は
従来の電圧非直線抵抗体の抵抗体本体の微細構造
の模式図、第3図は従来の電圧非直線抵抗体のも
れ電流比の経時変化を示す線図、第4図は再加熱
温度と体心立方晶酸化ビスマスへの転化率との関
係を示す線図、第5図は実施例における電圧非直
線抵抗体のX線回折パターンを示す図、第6図は
直流もれ電流の経時変化を示す線図、第7図はア
ニール温度とX線回折より求めた体心立方晶酸化
ビスマスへの転化率との関係を示す線図である。 図中、1は電極、2は電圧非直線抵抗体本体、
3は低融性ガラスフリツトの側面高抵抗層、4は
酸化亜鉛粒子、5はスピネル粒子、6は酸化ビス
マスを主成分とする境界層(体心立方晶の割合か
ら規定されている)、7は側面高抵抗層、8は酸
化ビスマスを主成分とする境(粒)界層である。
FIG. 1a is a cross-sectional view of a voltage nonlinear resistor according to the present invention, FIG. 1b is a schematic diagram of the fine structure of the resistor body of the voltage nonlinear resistor according to the present invention, and FIG. 2a is a conventional voltage nonlinear resistor. 2b is a schematic diagram of the fine structure of the resistor body of a conventional voltage nonlinear resistor, and FIG. 3 is a diagram showing the change over time in the leakage current ratio of a conventional voltage nonlinear resistor. FIG. 4 is a diagram showing the relationship between reheating temperature and conversion rate to body-centered cubic bismuth oxide, FIG. 5 is a diagram showing the X-ray diffraction pattern of the voltage nonlinear resistor in the example, and FIG. 7 is a diagram showing the change in direct current leakage current over time, and FIG. 7 is a diagram showing the relationship between the annealing temperature and the conversion rate to body-centered cubic bismuth oxide determined by X-ray diffraction. In the figure, 1 is an electrode, 2 is a voltage nonlinear resistor body,
3 is a high-resistance layer on the side surface of a low-melting glass frit, 4 is a zinc oxide particle, 5 is a spinel particle, 6 is a boundary layer mainly composed of bismuth oxide (defined from the proportion of body-centered cubic crystals), and 7 is a The side high resistance layer 8 is a boundary (grain) boundary layer containing bismuth oxide as a main component.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化亜鉛を主成分とし少なくとも酸化ビスマ
スを含む原料を焼成して電圧非直線抵抗体素子を
造り、酸化ビスマスの所有量を体心立方晶に転化
することから本質的になる電圧非直線抵抗体の製
造方法において、酸化ビスマスの所有量を体心立
方晶に転化する転化温度域と同じ温度範囲の焼結
温度域をもち、且つ電圧非直線抵抗体の膨張係数
と±10%以内で一致する膨張係数を有するガラス
フリツトを前記素子の側面に施し、加熱により側
面高抵抗層の形成と酸化ビスマスの体心立方晶へ
の転化とを同時に行なうことを特徴とする電圧非
直線抵抗体の製造方法。
1. A voltage non-linear resistor element that essentially becomes a voltage non-linear resistor element by firing a raw material containing zinc oxide as a main component and at least bismuth oxide, and converting the amount of bismuth oxide into a body-centered cubic crystal. In the manufacturing method, the sintering temperature range is the same as the conversion temperature range for converting the amount of bismuth oxide into a body-centered cubic crystal, and the expansion coefficient matches the expansion coefficient of the voltage nonlinear resistor within ±10%. A method for manufacturing a voltage nonlinear resistor, characterized in that a glass frit having an expansion coefficient is applied to the side surface of the element, and heating forms a side high resistance layer and simultaneously converts bismuth oxide into a body-centered cubic crystal.
JP60044558A 1985-03-08 1985-03-08 Manufacture of voltage non-linear resistor Granted JPS61204902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044558A JPS61204902A (en) 1985-03-08 1985-03-08 Manufacture of voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044558A JPS61204902A (en) 1985-03-08 1985-03-08 Manufacture of voltage non-linear resistor

Publications (2)

Publication Number Publication Date
JPS61204902A JPS61204902A (en) 1986-09-11
JPH044723B2 true JPH044723B2 (en) 1992-01-29

Family

ID=12694825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044558A Granted JPS61204902A (en) 1985-03-08 1985-03-08 Manufacture of voltage non-linear resistor

Country Status (1)

Country Link
JP (1) JPS61204902A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321509A (en) * 1976-08-11 1978-02-28 Nippon Telegr & Teleph Corp <Ntt> Digital signal two-way repeater unit
JPS5598802A (en) * 1979-01-24 1980-07-28 Hitachi Ltd Nonnlinear voltage resistor
JPS5858704A (en) * 1981-10-05 1983-04-07 株式会社明電舎 Method of producing nonlinear resistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321509A (en) * 1976-08-11 1978-02-28 Nippon Telegr & Teleph Corp <Ntt> Digital signal two-way repeater unit
JPS5598802A (en) * 1979-01-24 1980-07-28 Hitachi Ltd Nonnlinear voltage resistor
JPS5858704A (en) * 1981-10-05 1983-04-07 株式会社明電舎 Method of producing nonlinear resistor

Also Published As

Publication number Publication date
JPS61204902A (en) 1986-09-11

Similar Documents

Publication Publication Date Title
CA1339553C (en) Material for resistor body and non-linear resistor made thereof
JPH044723B2 (en)
JP2623188B2 (en) Varistor and manufacturing method thereof
KR920005155B1 (en) Zno-varistor making method
JPH0555010A (en) Manufacture of voltage-dependent nonlinear element
JPH0519802B2 (en)
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JP3286515B2 (en) Voltage non-linear resistor
JP2531586B2 (en) Voltage nonlinear resistor
JPS5879704A (en) Method of producing nonlinear resistor
JPS61294803A (en) Manufacture of voltage non-linear resistor
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JPH0519801B2 (en)
JP2985619B2 (en) Method of manufacturing voltage non-linear resistor and lightning arrester
JPH07249505A (en) Manufacture of nonlinear resistor
JPH08203708A (en) Nonlinear resistor
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH0142609B2 (en)
JPH03142801A (en) Manufacture of voltage-dependent nonlinear resistor
JPH10289807A (en) Functional ceramic element
JPH0528883B2 (en)
JPH01192104A (en) Manufacture of voltage dependent non-linear resistor
JPH0224361B2 (en)
JPH0510804B2 (en)
JPH04299504A (en) Manufacture of voltage dependent nonlinear resistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term