JPH0446321B2 - - Google Patents

Info

Publication number
JPH0446321B2
JPH0446321B2 JP58185127A JP18512783A JPH0446321B2 JP H0446321 B2 JPH0446321 B2 JP H0446321B2 JP 58185127 A JP58185127 A JP 58185127A JP 18512783 A JP18512783 A JP 18512783A JP H0446321 B2 JPH0446321 B2 JP H0446321B2
Authority
JP
Japan
Prior art keywords
heat exchanger
steam generator
tube
extra
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58185127A
Other languages
Japanese (ja)
Other versions
JPS6078201A (en
Inventor
Kenzo Hida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58185127A priority Critical patent/JPS6078201A/en
Publication of JPS6078201A publication Critical patent/JPS6078201A/en
Publication of JPH0446321B2 publication Critical patent/JPH0446321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は蒸気発生プラント、特に液体金属ナト
リウムを冷却材として用いる高速増殖炉等の蒸気
発生プラントに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam generation plant, particularly a steam generation plant such as a fast breeder reactor that uses liquid metallic sodium as a coolant.

従来の高速増殖炉においては、金属ナトリウム
は、中性子の照射を受けると放射化するため、一
般には冷却系を1次系と2次系に分け、2次系の
非放射化ナトリウムの熱で蒸気を発生させてい
る。第1図において、1は原子炉であり、ここで
発生した熱を1次系配管2により中間熱交換器3
に運び、ここで2次系の非放射化ナトリウムに移
しかえ、2次系配管4にて蒸気発生器5に伝えこ
こで蒸気を発生させる。6,7はそれぞれ1次
系、2次系の循環ポンプ、8は蒸気系配管、9は
給水ポンプである。中間熱交換器3および蒸気発
生器5は独立して各別に設置され、その間を配管
4で連結している。高速増殖炉は冷却材の温度が
高いため、この配管4は熱膨張応力を低減するた
めの長大な引廻しを要し、蒸気発生器5の据付ス
ペースも含めてかなり大きな配置上のスペースを
必要とし、機器および建物の双方のコストが嵩む
という問題があつた。
In conventional fast breeder reactors, metallic sodium becomes activated when irradiated with neutrons, so the cooling system is generally divided into a primary system and a secondary system, and the heat of the non-activated sodium in the secondary system is used to generate steam. is occurring. In Fig. 1, 1 is a nuclear reactor, and the heat generated here is transferred to an intermediate heat exchanger 3 through a primary system piping 2.
There, it is transferred to a secondary system of non-activated sodium, and is transmitted to a steam generator 5 through a secondary system piping 4, where steam is generated. 6 and 7 are primary system and secondary system circulation pumps, 8 is a steam system piping, and 9 is a water supply pump. The intermediate heat exchanger 3 and the steam generator 5 are installed independently, and are connected by a pipe 4. Since the temperature of the coolant in a fast breeder reactor is high, this piping 4 requires a long route to reduce thermal expansion stress, and requires a considerably large space for installation, including the space for installing the steam generator 5. However, there was a problem in that the cost of both equipment and buildings increased.

本発明は上記不具合に対処するために発明され
たものであつて、その要旨とするところは、シエ
ルアンドチユーブ型熱交換器を下部に、蒸気発生
器を上部に配置して一体的に形成し、上記蒸気発
生器の管外流体用中央下降管と、上記熱交換器の
管外流体用中央下降管とを整列させて連結し、該
連結部に相対変位吸収構造を設け、上記蒸気発生
器および熱交換器の管外流体をポンプにより循環
させ、上記蒸気発生器に内装された伝熱管内の給
水を管外流体により加熱し蒸発させるように構成
したことを特徴とする蒸気発生プラントにある。
The present invention was invented in order to deal with the above-mentioned problems, and its gist is that the shell-and-tube heat exchanger is arranged in the lower part and the steam generator is arranged in the upper part, and is formed integrally. , a central downcomer pipe for extra-tubular fluid of the steam generator and a central downcomer pipe for extra-tubular fluid of the heat exchanger are aligned and connected, and a relative displacement absorbing structure is provided at the connection part, and the steam generator and a steam generation plant, characterized in that the extra-tube fluid of the heat exchanger is circulated by a pump, and the water supplied in the heat transfer tubes installed in the steam generator is heated and evaporated by the extra-tube fluid. .

本発明においては、上記構成を具えているの
で、従来熱交換器と蒸気発生器との間を連結して
いた2次系冷却材等の熱媒を移送するための長大
な配管がなくなり、その配管据付けのためのスペ
ースが不要となる。また、シエルアンドチユーブ
型熱交換器の上部空間を利用して蒸気発生器を据
付けうるので、蒸気発生器の据付スペースも節約
することができる。従つて、これら熱交換器、蒸
気発生器、配管等を収納する建屋も小さくなり、
蒸気発生プラントを安価にすることができる。
Since the present invention has the above-mentioned configuration, there is no need for long piping for transferring a heat medium such as a secondary coolant, which was conventionally connected between a heat exchanger and a steam generator. No space is required for piping installation. Furthermore, since the space above the shell and tube heat exchanger can be used to install the steam generator, the installation space for the steam generator can also be saved. Therefore, the buildings that house these heat exchangers, steam generators, piping, etc. have also become smaller.
Steam generation plants can be made cheaper.

以下、本発明を第2図に示す1実施例を参照し
ながら具体的に説明する。
The present invention will be specifically described below with reference to an embodiment shown in FIG.

第2図において、10は1次系の冷却材と2次
系冷却材との間に熱交換をさせるためのシエルア
ンドチユーブ型の中間熱交換器、11は熱交換器
10の伝熱管、12,13はそれぞれ伝熱管11
を支える管板、14は下降管である。原子炉で加
熱された1次系の冷却材は、白抜矢印で示すよう
に上部管板12の上部から流入し、伝熱管11の
中を通つて下部管板13の下から出て炉心に戻
る。2次系冷却材は黒塗矢印で示すように熱交換
器10の上部に配設されこれと1体的に形成され
た蒸気発生器20から中央の下降管14を下りて
来て、下降管14の下部に明けられた窓15から
胴16内に出る。そして伝熱管11内を流れる1
次系冷却材と熱交換をして上部管板12の中央穴
17から上部の蒸気発生器20に出ていく。21
は蒸気発生器20のヘリカルコイル型伝熱管から
なる伝熱管束であり、この伝熱管中を水蒸気系で
ある3次側流体が流れる。図示していない給水ポ
ンプから送られて来た3次側流体(水)はノズル
22より流入し、ダウンカマーチユーブ24を通
つて伝熱管束21の下から伝熱管内に入つて、こ
の管外を流れる2次系冷却材と熱交換して蒸気と
なつてノズル23から流出し、図示していないタ
ービンへと供給される。上部管板12の中央穴1
7から出た2次系冷却材は上昇管25内を上昇し
伝熱管束21の上部に出て、伝熱管の外側を下
り、伝熱管束21の下方で反転してシユラウド2
6と胴27によつて形成された環状部を上昇して
出口ノズル28から図示せぬ2次系循環ポンプへ
と至る。同ポンプで加圧された2次系冷却材は、
ノズル29より下降管30内に流入しこれを下降
して、この下降管30と整列されて相対変位吸収
構造31を介しこれと連結されている下降管14
内に流入する。しかして、1次系冷却材の熱は、
シエルアンドチユーブ型熱交換器において管外を
流れる2次側冷却材に移され、この2次側冷却材
を熱交換器の上部に配設された蒸気発生器の管外
を流すことにより管内を流れる3次側流体の水に
伝達され、水が蒸気となつて出ていく。かくし
て、シエルアンドチユーブ型熱交換器10と蒸気
発生器20とは一体化され、蒸気発生器20の管
外流体用の中央下降管30と熱交換器10の管外
流体用中央下降管14とを整列させて連結したの
で、従来、熱交換器と蒸気発生器の間を結んでい
た長大な管外流体輸送用の配管はなくなる。そし
て、従来かなりの配置スペースを取つていた蒸気
発生器がシエルアンドチユーブ型熱交換器の上部
空間に収まつてしまうので、この配置スペースが
節約され、原子炉補助建屋は大巾に縮少が可能と
なる他、配管の省略による設備費の低減、管外流
体を移送するための機器の容量削減が実現出来
る。
In FIG. 2, 10 is a shell-and-tube type intermediate heat exchanger for exchanging heat between the primary coolant and the secondary coolant, 11 is the heat exchanger tube of the heat exchanger 10, and 12 , 13 are heat exchanger tubes 11, respectively.
14 is a downcomer pipe. The primary coolant heated in the reactor flows from the upper part of the upper tube sheet 12 as shown by the white arrow, passes through the heat transfer tubes 11, exits from below the lower tube sheet 13, and enters the reactor core. return. The secondary coolant comes down the central downcomer pipe 14 from the steam generator 20, which is disposed at the upper part of the heat exchanger 10 and is formed integrally with the heat exchanger 10, as shown by the black arrow. It exits into the shell 16 through a window 15 opened at the bottom of the shell 14. 1 flowing through the heat exchanger tube 11
It exchanges heat with the sub-system coolant and exits from the central hole 17 of the upper tube sheet 12 to the upper steam generator 20. 21
is a heat exchanger tube bundle made up of helical coil type heat exchanger tubes of the steam generator 20, and a tertiary side fluid, which is a steam system, flows through the heat exchanger tubes. The tertiary side fluid (water) sent from a water supply pump (not shown) flows in from the nozzle 22, passes through the downcomer tube 24, enters the heat exchanger tube from below the heat exchanger tube bundle 21, and flows outside the tube. It exchanges heat with the secondary coolant flowing through it, becomes steam, flows out from the nozzle 23, and is supplied to a turbine (not shown). Center hole 1 of upper tube plate 12
The secondary coolant coming out of the tube 7 rises inside the riser tube 25, exits the upper part of the heat exchanger tube bundle 21, goes down the outside of the heat exchanger tube, turns over below the heat exchanger tube bundle 21, and flows into the shroud 2.
6 and the cylinder 27 to reach an outlet nozzle 28 and a secondary system circulation pump (not shown). The secondary coolant pressurized by the same pump is
The downcomer pipe 14 flows into the downcomer pipe 30 from the nozzle 29 and descends therein, and is aligned with the downcomer pipe 30 and connected thereto via the relative displacement absorbing structure 31.
flow inside. Therefore, the heat of the primary coolant is
In a shell and tube heat exchanger, the secondary coolant is transferred to the secondary coolant flowing outside the tubes, and this secondary coolant is passed outside the tubes of a steam generator installed at the top of the heat exchanger to cool the inside of the tubes. This is transmitted to the water in the flowing tertiary fluid, and the water exits as steam. Thus, the shell-and-tube heat exchanger 10 and the steam generator 20 are integrated, and the central downcomer pipe 30 for extra-tube fluid of the steam generator 20 and the central downcomer pipe 14 for extra-tube fluid of the heat exchanger 10 are integrated. Since they are aligned and connected, the long extra-tube fluid transport piping that conventionally connected the heat exchanger and steam generator is no longer needed. In addition, the steam generator, which conventionally took up a considerable amount of space, can fit into the space above the shell-and-tube heat exchanger, which saves space and greatly reduces the size of the reactor auxiliary building. In addition, equipment costs can be reduced by eliminating piping, and the capacity of equipment for transferring extra-tubular fluid can be reduced.

以上本発明を実施例について説明したが、勿論
本発明はこのような実施例にだけ局限されるもの
ではなく、本発明の精神を逸脱しない範囲内で
種々の設計の改変を施しうるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高速増殖炉における熱媒の流れ
系統図、第2図は本発明の1実施例を示す略示的
断面図である。 シエルアンドチユーブ型熱交換器……10、蒸
気発生器……20、蒸気発生器の管外流体用中央
下降管……30、熱交換器の管外流体用中央下降
管……14、相対変位吸収構造……31。
FIG. 1 is a flow diagram of a heat medium in a conventional fast breeder reactor, and FIG. 2 is a schematic cross-sectional view showing one embodiment of the present invention. Shell and tube heat exchanger...10, Steam generator...20, Central downcomer for fluid outside the steam generator...30, Central downcomer for fluid outside the heat exchanger...14, Relative displacement Absorption structure...31.

Claims (1)

【特許請求の範囲】[Claims] 1 シエルアンドチユーブ型熱交換器を下部に、
蒸気発生器を上部に配置して一体的に形成し、上
記蒸気発生器の管外流体用中央下降管と、上記熱
交換器の管外流体用中央下降管とを整列させて連
結し、該連結部に相対変位吸収構造を設け、上記
蒸気発生器および熱交換器の管外流体をポンプに
より循環させ、上記蒸気発生器に内装された伝熱
管内の給水を管外流体により加熱し蒸発させるよ
うに構成したことを特徴とする蒸気発生プラン
ト。
1 Shell and tube type heat exchanger at the bottom,
A steam generator is disposed in the upper part and integrally formed, and a central downcomer pipe for extra-tube fluid of the steam generator and a central downcomer pipe for extra-tube fluid of the heat exchanger are aligned and connected; A relative displacement absorbing structure is provided in the connecting portion, and a pump circulates the extra-tube fluid of the steam generator and the heat exchanger, and the water supplied in the heat transfer tubes installed in the steam generator is heated and evaporated by the extra-tube fluid. A steam generation plant characterized by being configured as follows.
JP58185127A 1983-10-05 1983-10-05 Steam generating plant Granted JPS6078201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58185127A JPS6078201A (en) 1983-10-05 1983-10-05 Steam generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58185127A JPS6078201A (en) 1983-10-05 1983-10-05 Steam generating plant

Publications (2)

Publication Number Publication Date
JPS6078201A JPS6078201A (en) 1985-05-02
JPH0446321B2 true JPH0446321B2 (en) 1992-07-29

Family

ID=16165339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58185127A Granted JPS6078201A (en) 1983-10-05 1983-10-05 Steam generating plant

Country Status (1)

Country Link
JP (1) JPS6078201A (en)

Also Published As

Publication number Publication date
JPS6078201A (en) 1985-05-02

Similar Documents

Publication Publication Date Title
US4407773A (en) Nuclear reactor installation
JP2999053B2 (en) Pressurized water reactor plant
US4645633A (en) Double tank type fast breeder reactor
US4324617A (en) Intermediate heat exchanger for a liquid metal cooled nuclear reactor and method
US5114667A (en) High temperature reactor having an improved fluid coolant circulation system
JPH0446321B2 (en)
JPH1130686A (en) Steam generator and cooling system for liquid-metal cooled reactor
US4136644A (en) Tube heat exchanger with heating tubes
US5392324A (en) Device for and method of removing the residual power from a fast-neutron nuclear reactor at shutdown
JPS633292A (en) Fast breeder reactor
JPS6027895A (en) Fast breeder reactor
JP4660125B2 (en) Intermediate heat exchanger with built-in electromagnetic pump
JPS6057290A (en) Tank type fast breeder reactor
JPS6230996A (en) Cooling device for liquid-metal cooling type nuclear reactor
JPS61794A (en) Cooling device for liquid-metal cooling type reactor
JPS62170891A (en) Steam generator
JPH0814634B2 (en) Distributed reactor
JPS62108901A (en) Cooling device for liquid-metal cooling type reactor
JPS61164191A (en) Fast breeder reactor
JPH0660722B2 (en) Steam generator
JPH077088B2 (en) Liquid metal cooled reactor cooling system
JPS63193092A (en) Cooling device for liquid-metal cooling type reactor
JPS6033083A (en) Tank type fast breeder reactor
JPS62278485A (en) Nuclear reactor structure
JPH09243769A (en) Support structure of steam generator